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Solutions to tutorial exercises for stochastic processes

T1. (a) (G1l): D(L) is a vector space closed under multiplication. We can use the Stone-
Weierstrass theorem to show that D(L) is dense in Cy(R).

(G2):Let A >0, f € D(L) and g = f — 3 f”. If inf, f(z) = 0 we have
inf g(z) < le f(z) — gf”(m) =0 =1inf f(x).

Now suppose inf, f(z) < 0. Then there exists an zo with f(x¢) = inf, f(z) and
f"(zo) > 0. We find

: A .
1rxlfg(a?) = f(xo) — §f”($0) < f(@o) = Hzlff(x)‘
(G3):Let A > 0 and let g € Cy(R). Let p = 5. Consider the resolvent of the Brownian
motion semigroup f := U,g given by (see (c))
1
f(z) = / _eﬂ/ﬂlw*ylg y)dy
(@)= | NoT (y)

— —V2u(z—y) —2u(y—2)
= eV g(y)dy+/ e 9(y)dy.
/_oo V24 : V2

We can compute the derivative of f:

flx)=— / e VIE) () dy + g (x) + / VI gy dy — ()

o V20 V21
_ / e=VIHE=) g3\ dy + / e=VER2) g 1)\ ly.

And the second derivative:

() =\/2u /_ " VI gy dy — g(z) + / ) e VU g(y)dy — g(x)
=2uf(r) — 2g9(x).

So that ) |
Sg=f o f'= - ALS.
1 24

So ig € R(I — A\L). It follows that R(I — A\L) = Cy(R).

(G4): Let A > 0 and consider f,(x) = exp <—%> Define g, = f, — 3f,. Then

f
fn€D(L) for all n € N, f,(x) — 1 pointwise for all z € R and g, (z) — 1 pointwise
for all z € R. Furthermore sup,, ||g,| < oo.
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(b) Let T;f(z) := E* f(B;) be the Brownian motion semigroup. We will show that

'T;Ef_f_l "

t 2
T,f(x) = B* f(By) = E°[f(x + VIBy)].

We use a Taylor approximation of f around x so that for some £ dependent on x,t
and B; we have

t]o.

We can write

T,f(z) — f(z) = E°[f(z + VIB)) — f(x)]
= f'(x)E°[ViB] + EOUWQ il

= %t/Rf”(E)y%(y)dy,

where ¢(y) = W exp (——) We have |¢ — z| < |v/bty + at|. Therefore by uniform

continuity of f” it holds that

sup |[f"(&) — f"(x)] =0 as t—0.

We conclude

th(‘r)_f(x) 1 "
TR

1
= —su
9 SUP

Ag%a—ﬂ@w@m4

sup
xr

§/sup!f”(f)—f(x)}¢(y)dy—>0 as t]0,
R

x

by the dominated convergence theorem.

(c) Let f € Cy(R), we can write

2
e 2tdz

EN@ZWU@MZEW@+&H=/f@+@JL-

27t

_(z— y)
/ fly dy.
Hence, for a > 0:

At RY

where we used Fubini’s theorem to exchange the integrals. We have

dtdy,

(x—y)? o — g\
—Ozt—2—t— (\/a——ﬁ) +\/%]x—y],



so that

o o2 e—V2alz—y| _ 2
/ e—ot=U5 gy — / ”—exp ( |x y|> dt.
o V2mt \/Q_t

It remains to show that

[ (- () e

We use the change of variables

g lr =yl
' 20t

s S e (— (vai- |x¢_2_ty‘>z> at —

|z —yl? 25 |z —y| ?
_ _(r=u ds.
/0 oz @ p—E exp R Vas s

The exponential on the left and right hand site of the above expression are the same.
Therefore

[ oo (- (=B o [ e (- (- 25 )
- e <_ (5 “O‘_>> "
(e () )
O E) () )

d [z —yl\ _ Va | [z—y
&@a‘ \/2_t>_2\/f+2\/2_t3’

so by another change of variables

/ \/:exp< ( \x\/;_ty\) >dt—%/owexp(_02)dg_%_l_

so that

Note that




T2. Define the Feller process X; = at + vbB;. Let ¢(y) = \/%exp (—%) Then for all
fe{feC(R)|f,f"e Co(R)} we have

Tf(@) — /() =B [f (at +VOB,) = f()]
=E° [f <:L‘+at+ \/EBl) — f(a:)} :

We can use a Taylor approximation of f around z to get

T,f(x) ~ f(2) = F'(2)Eat + VAIB)] + SE [7'(6) at + VEiB,)’]

= F@at+ [ 1€t + Vi) o)y

for some ¢ dependant on z,y and t with |¢ — z| < |V/bty + at|. Therefore by uniform
continuity of f” we have

sup [f"(&) — f"(x)] =0 as t—0.

We will now show that X; has generator af’ + %f”:

sup |5 (T1(0) = 1(0)) = af'(a) = 3"(2)| =
sup 5 [ 7(©@atondy+ Vit [ @ty + 3 [ (7€) = fa)ody

b
< S@ 1+ VBRI [ oy + 5 [ suwls(©) - @l oy
R R =«
—0 as t—0,

where we use the dominated convergence theorem for the convergence of the last term.
So it follows that the generator of X; is £ and that £ is a probability generator. The
operators T; form the corresponding probability semigroup.

T3. (a) We can use Taylor’s theorem to write for some ¢ dependent on x,¢ and Bi:
Tif(z) = f(z) = E°[f(x + ViB) — f(x)]
u 1 o
=D L@EVIBY] + 5 ) E[f()tBi B)
i=1 V)

t o , t o
<5 D EUal©B] + 5 D BB B
i=1 i,J

— 3 EU(© B,



T4.

Similarly we have
Tf(@) ~ (@) > 5 S E(fal€) B
i=1

If t | 0 then & — x. Therefore by uniform continuity of f; and the dominated
convergence theorem:

Sup T;ff(l') — f((L’) . %Af<$>

1
— Ssu
! ¢ =P

x / (AF(E) — AF(x))yPo(y)dy

<5 [swlAf© - Aoy >0 ws tlo.
R

x

Let € > 0, we can write

_ 1 t+e
IELLEL N P
€ e), ds

1 [ d
= - — Ty d
5/0 FPias g(z)ds
1 [ d
= - —T,T, d
5/0 qslt g(z)ds
1 /.. d
== T,—1T, ds,
5/0 "ds glx)ds
since T} is a linear operator. We obtain
t —u(t 1 [®
L R
€ £ Jo

— T, Lg(x) as € —0,

so that

du(t.2) = TLg(w) = B [éAgm} = AR [g(X)] = 5 Au(t, ),

where we used Leibniz’s rule to switch the differentiation and integration.

We say that a process X is stationary if X; ~ p (under P*) implies X, ~ p for all
t,s. Suppose X; ~ u, then

Bf(X.) = [ fd
The new definition of stationary now says that
[ rsan= [ ran =550
On the other hand

[ Tt = [ B R udn) = BB (X) = ¥ (Xir)
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So
E*f(X:) = E* f(Xers),

which is the old definition of stationary if we take indicator functions for f.

(b) Suppose p is stationary, so [T;f — fdu = 0. Then for all ¢ > 0 we have

‘/Efd,u‘:‘/ﬁf—ydu'gHEf—th_fH —0 as t}0.

t

Now suppose [ Lfdu = 0. We now have

[ 1= san= [ /0 L pasap = / /0 LT fdsdp = /0 t [ 1. fduts =0,

where we used Fubini’s theorem in the last step.



