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Solutions to tutorial exercises for stochastic processes

T1. Let f be a non-negative harmonic function for X. Then

E[f(z)] =E[|f(2)]] < o0,

so that f is bounded. Since X is irreducible and recurrent it follows that every bounded
harmonic function for X is constant.
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T2. We will prove the statement by induction on n. The induction base is exactly the Feller
property. Now suppose
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is continuous. For n+1 we can use the tower property and the Markov property to obtain
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Let
g(:c) =E* [fn+1<th+1*tn>] )

then g(x) is continuous by the Feller property. Therefore (f,g)(x) is continuous. We

conclude that
n+1

k=1

is continuous by the induction hypothesis.
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T3. (a) We only prove property (S2)of the probability semigroup, the other properties were
proven in the lecture in the proof of Theorem 4.1. We have

ITef = fIl = sup (Tf)(w) = f(x)| = sup [E” [f (= + By)] — f(2)]]
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Since f € Cy(5), it vanishes at infinity, and it is therefore uniformly continuous.
This implies that

sup |f(z+ By) — f(z)| =0 as t10 as,

€S

since B; — 0 almost surely. It follows by the dominated convergence that |7} f— f|| —
Oast 0.

(b) If f € Cp(S) it is not necessarily uniformly continuous, so that the above argument
does not hold. For example consider f(x) = max{cos(z?),0}. Then it can be shown
that for every ¢ > 0 there exists an x € S such that E° [f(z + B;)] — f(z)] is bounded
away from zero independent of ¢, so that T} f does not converge to f.

T4. (G1): Firstly D(L) is vector space. To use the Stone-Weierstrass theorem we further
need to show that D(L) separates points and vanishes nowhere. Consider the functions
fa(x) = exp(—(z — a)?) € D(L). Then for all pairs z # y in S we have f,(z) = 1 and
fz(y) < 1, so that D(L) separates points. Furthermore since f,(z) = 1, the space vanishes
nowhere. The theorem now states that D(L) is dense in Cy(5).

(G2): Let A > 0 and g = f — Af'. Since f € Cyp(R) we have inf, f(z) < 0. Similarly
inf, g(z) < 0. If inf, f(z) = 0 we immediately have inf, g(z) < inf, f(x). Now suppose
inf, f(z) < 0, then since f is continuous there exists zg € S with f(zg) = inf, f(x) and
f'(x9) = 0. We now get

inf f(x) = F(z0) = F(z0) = Af'(w0) 2 inf g(a)

(G3): Let g € Cy(s). We need to show that there exists an f € Co(R) with f — Af' = g.
This differential equation is solved by

1 * 1 1
fz) = Cex® —/ 19W)erVdy.
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To make the computations easier we take
1
c= [ Satet,
0 A

so that
1 1

fla)= [ Jaweeay,

We need to show that f € Cy(R). Continuity follows immediately, so it remains to show
that f vanishes at infinity. We have

[f(2)] <

sup [g(y)]A =0 as x — oo.
yelz,00)

> =



For the other limit we can write

fa) == [ o —petay.
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The integrand is bounded by 1/g||, so that by dominated convergence

0 1
lim |f(x)| = ‘/ :EEEHOO Xg(x — y)eiydy‘ = 0.
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(G4): Let A > 0. Consider f,(z) = exp <‘Tx2>, and

—X

gul2) = ful2) = \fL(x) = exp (T) L (i) |

n

Then sup, ||gn]| < o0, f, = 1 and g, — 1 pointwise as n — oo.

This belongs to the process that moves deterministically to the right at unit speed: X; =
Xo + t. The semigroup of this process is given by

(Tif)(@) = E*[f(Xy)] = f(z +1).
This process indeed has generator f’:
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