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Solutions to tutorial exercises for stochastic processes

T1. Let f be a non-negative harmonic function for X. Then

|f(x)| = f(x) = E[f(x)] = E
[
|f(x)|

]
<∞,

so that f is bounded. Since X is irreducible and recurrent it follows that every bounded
harmonic function for X is constant.

T2. We will prove the statement by induction on n. The induction base is exactly the Feller
property. Now suppose

x 7→ Ex
n∏
k=1

fk(Xtk)

is continuous. For n+1 we can use the tower property and the Markov property to obtain

Ex

[
n+1∏
k=1

fk(Xtk)

]
= Ex

[
n∏
k=1

fk(Xtk)E
x
[
fn+1(Xtn+1)

∣∣ Ftn]
]

= Ex

[
n∏
k=1

fk(Xtk)E
Xtn
[
fn+1(Xtn+1−tn)

]]
.

Let
g(x) = Ex

[
fn+1(Xtn+1−tn)

]
,

then g(x) is continuous by the Feller property. Therefore (fng)(x) is continuous. We
conclude that

Ex

[
n+1∏
k=1

fk(Xtk)

]
= Ex

[
n−1∏
k=1

fk(Xtk)(fng)(Xtn)

]
is continuous by the induction hypothesis.

T3. (a) We only prove property (S2)of the probability semigroup, the other properties were
proven in the lecture in the proof of Theorem 4.1. We have

‖Ttf − f‖ = sup
x∈S

∣∣(Ttf)(x)− f(x)∣∣ = sup
x∈S

∣∣E0 [f(x+Bt)]− f(x)]
∣∣

≤ E0

[
sup
x∈S

∣∣f(x+Bt)− f(x)
∣∣] .
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Since f ∈ C0(S), it vanishes at in�nity, and it is therefore uniformly continuous.
This implies that

sup
x∈S

∣∣f(x+Bt)− f(x)
∣∣→ 0 as t ↓ 0 a.s.,

sinceBt → 0 almost surely. It follows by the dominated convergence that ‖Ttf−f‖ →
0 as t ↓ 0.

(b) If f ∈ Cb(S) it is not necessarily uniformly continuous, so that the above argument
does not hold. For example consider f(x) = max{cos(x2), 0}. Then it can be shown
that for every t > 0 there exists an x ∈ S such that E0 [f(x+Bt)]− f(x)] is bounded
away from zero independent of t, so that Ttf does not converge to f .

T4. (G1): Firstly D(L) is vector space. To use the Stone-Weierstrass theorem we further
need to show that D(L) separates points and vanishes nowhere. Consider the functions
fa(x) = exp(−(x − a)2) ∈ D(L). Then for all pairs x 6= y in S we have fx(x) = 1 and
fx(y) < 1, so that D(L) separates points. Furthermore since fx(x) = 1, the space vanishes
nowhere. The theorem now states that D(L) is dense in C0(S).

(G2): Let λ > 0 and g = f − λf ′. Since f ∈ C0(R) we have infx f(x) ≤ 0. Similarly
infx g(x) ≤ 0. If infx f(x) = 0 we immediately have infx g(x) ≤ infx f(x). Now suppose
infx f(x) < 0, then since f is continuous there exists x0 ∈ S with f(x0) = infx f(x) and
f ′(x0) = 0. We now get

inf
x
f(x) = f(x0) = f(x0)− λf ′(x0) ≥ inf

x
g(x).

(G3): Let g ∈ C0(s). We need to show that there exists an f ∈ C0(R) with f − λf ′ = g.
This di�erential equation is solved by

f(x) = Ce
1
λ
x −

∫ x

0

1

λ
g(y)e

1
λ
(x−y)dy.

To make the computations easier we take

C =

∫ ∞
0

1

λ
g(y)e−

1
λ
y,

so that

f(x) =

∫ ∞
x

1

λ
g(y)e

1
λ
(x−y)dy.

We need to show that f ∈ C0(R). Continuity follows immediately, so it remains to show
that f vanishes at in�nity. We have

|f(x)| ≤ 1

λ
sup

y∈[x,∞)

|g(y)|λ→ 0 as x→∞.
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For the other limit we can write

f(x) = −
∫ 0

−∞

1

λ
g(x− y)e

1
λ
ydy.

The integrand is bounded by 1
λ
‖g‖, so that by dominated convergence

lim
x→−∞

|f(x)| =
∣∣∣∣∫ 0

−∞
lim

x→−∞

1

λ
g(x− y)e

1
λ
ydy

∣∣∣∣ = 0.

(G4): Let λ > 0. Consider fn(x) = exp
(
−x2
n

)
, and

gn(x) = fn(x)− λf ′n(x) = exp

(
−x2

n

)
+

2λx

n
exp

(
−x2

n

)
.

Then supn ‖gn‖ <∞, fn → 1 and gn → 1 pointwise as n→∞.

This belongs to the process that moves deterministically to the right at unit speed: Xt =
X0 + t. The semigroup of this process is given by

(Ttf)(x) = Ex[f(Xt)] = f(x+ t).

This process indeed has generator f ′:

lim
t↓0

(Ttf)(x)− f(x)
t

= lim
t↓0

f(x+ t)− f(x)
t

= f ′(x).
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