Solutions to tutorial exercises for stochastic processes

T1. Let G(x,y) be the Green function of the Markov chain. Let x be the recurrent state, so that $G(x,x) = \infty$. We will show that state y is recurrent by showing that $G(y,y) = \infty$. Let $t,s \ge 0$. We use the Chapman-Kolmogorov equation twice to obtain

$$p_{2t+s}(y,y) \ge p_t(y,x)p_{t+s}(x,y) \ge p_t(y,x)p_s(x,x)p_t(x,y).$$

Therefore,

$$G(y,y) = \int_0^\infty p_s(y,y) ds \ge \int_{2t}^\infty p_s(y,y) ds = \int_0^\infty p_{2t+s}(y,y) ds \ge p_t(y,x) G(x,x) p_t(x,y).$$

Since the Markov chain is irreducible we have $p_t(y, x), p_t(x, y) > 0$, we conclude that $G(y, y) = \infty$.

T2. '⇒': Using strict stationarity of the Markov chain we find

$$\pi(x) = \mathbb{P}(X_0 = x) = \mathbb{P}(X_t = x) = \sum_{x_0 \in S} \mathbb{P}(X_t = x, X_0 = x_0) = \sum_{x_0 \in S} \pi(x_0) p_t(x_0, x),$$

so $\pi(\cdot)$ is invariant.

' \Leftarrow ': Let $n \in \mathbb{N}$, $0 \le t_1 < t_2 < \cdots < t_n$ and s > 0. Let $x_1, \ldots, x_n \in S$. We use the invariance property of $\pi(\cdot)$ to obtain

$$\mathbb{P}(X_{t_1+s} = x_1, \dots, X_{t_n+s} = x_n) = \sum_{x_0 \in S} \pi(x_0) p_{t_1+s}(x_0, x_1) p_{t_2-t_1}(x_1, x_2) \dots p_{t_n-t_{n-1}}(x_{n-1}, x_n)$$
$$= \pi(x_1) p_{t_2-t_1}(x_1, x_2) \dots p_{t_n-t_{n-1}}(x_{n-1}, x_n),$$

which is independent of s, so the Markov chain is strictly stationary.

T3. \Rightarrow : By reversibility we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\pi(x)p_t(x,y)\Big|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t}\pi(y)p_t(y,x)\Big|_{t=0} \quad \forall x,y \in S$$
$$\pi(x)q(x,y) = \pi(y)q(y,x) \quad \forall x,y \in S.$$

 \Leftarrow : Assume that $\pi(x)q(x,y)=\pi(y)q(y,x)$ for all $x,y\in S$. This can be stated as

$$\begin{pmatrix} \pi(1) & & \\ & \ddots & \\ & & \pi(n) \end{pmatrix} Q = Q^T \begin{pmatrix} \pi(1) & & \\ & \ddots & \\ & & \pi(n) \end{pmatrix}.$$

Since S is finite the transition probabilities P_t are given by $\exp(tQ)$. Therefore

$$\begin{pmatrix} \pi(1) & & \\ & \ddots & \\ &$$

It follows that $\pi(\cdot)$ is reversible.

T4. Let $\varepsilon > 0$. Choose $K \in \mathbb{N}$ such that

$$\left| \frac{a_K}{K} - \inf \left\{ \frac{a_n}{n}, n \in \mathbb{N} \right\} \right| < \frac{\varepsilon}{2},$$

this is possible by the definition of infimum. Now choose $M \in \mathbb{N}$ such that $\frac{a_r}{KM} < \frac{\varepsilon}{2}$ for all $r = 0, 1, \ldots, K - 1$. Let N = KM, and let $n \geq N$. We can find $r, s \in \mathbb{N}$ such that n = sK + r and r < K. Now, using the subadditivity property:

$$\frac{a_n}{n} \le \frac{sa_K}{sK+r} + \frac{a_r}{sK+r} \le \frac{sa_K}{sK} + \frac{a_r}{KM} \le \frac{sa_K}{sK} + \frac{a_r}{KM} < \inf\left\{\frac{a_n}{n}, n \in \mathbb{N}\right\} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2}.$$

Since we also have $\frac{a_n}{n} \ge \inf \left\{ \frac{a_n}{n}, n \in \mathbb{N} \right\}$, the result follows.