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Solutions to tutorial exercises for stochastic processes

T1. Consider σ ≡ 1 and τ := inf{t ≥ 1 : Bt = 0}. Then σ ≤ τ and

E[B2
σ] = 1 > 0 = E[B2

τ ].

T2. (a) Consider τ := inf{t ≥ 0 : Bt = 1}. Then EB2
τ = 1 < ∞. Suppose E[τ ] < ∞, then

we can apply the optional stopping theorem to �nd

E[Bτ ] = E[B0] = 0.

However, by the de�nition of τ , we have that Bτ = 1. So we conclude that E[τ ] =∞.

(b) Let τ be a stopping time with E[τ ] = ∞ and E[
√
τ ] < ∞. Since E[

√
τ ] is �nite

we conclude that τ is �nite almost surely. Let t > 0, then by the optional stopping
theorem:

E[B2
τ∧t] = E[τ ∧ t].

Since τ ∧ t → τ almost surely as t → ∞ we �nd by the monotone convergence
theorem that E[τ ∧ t] → E[τ ] = ∞. We will now prove that E[B2

τ ] ≥ E[B2
τ∧t] for all

t > 0, which will complete the proof of the statement. From the proof of Theorem
2.50 in Brownian Motion by Mörters and Peres it follows that

Bτ∧t ≤ sup
0≤s≤4α

Bs =:M+,

with α = dlog4 τe and M+ ∈ L1. Similarly

−Bτ∧t ≤ − inf
0≤s≤4α

Bs =:M−.

Since B
d
= −B, we have M− d

= M+, so that M− ∈ L1. We now have |Bτ∧t| ≤
M+ ∨M− ∈ L1. It follows that Bτ∧t is uniformly integrable. We claim that from
uniform integrability it follows that E[Bτ |Ft] = Bτ∧t almost surely. We now use
Jensen's inequality to obtain

E[B2
τ∧t] = E

[
E[Bτ | Ft]2

]
≤ E

[
E[B2

τ | Ft]
]
= E[B2

τ ].

It remains to prove the claim. By the continuity of paths we have that Bτ∧t → Bτ

almost surely. Combining this with the uniform integrability it follows that Bτ∧t →
Bτ in L

1 as well. Therefore

E[Bτ | Ft] = lim
s→∞

E[Bτ∧s | Ft].
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Now let s > t. We have

E[Bτ∧s | Ft] =E[B(τ∧s)∨t1{τ∧s>t} | Ft] + E[Bτ∧t1{τ∧s≤t} | Ft]
=1{τ∧s>t}E[B(τ∧s)∨t | Ft] +Bτ∧t1{τ∧s≤t}

=1{τ∧s>t}Bt +Bτ∧t1{τ∧s≤t}
s→∞−→1{τ>t}Bt +Bτ∧t1{τ≤t}

=1{τ>t}Bτ∧t +Bτ∧t1{τ≤t}

=Bτ∧t.

T3. We use the Markov property to �nd

E0[Xt | Fs] = −
1

2

∫ s

0

f ′′(Bu)du+ E0

[
f(Bt)−

1

2

∫ t

s

f ′′(Bu)du
∣∣∣ Fs]

= −1

2

∫ s

0

f ′′(Bu)du+ E0

[(
f(Bt−s)−

1

2

∫ t−s

0

f ′′(Bu)du

)
◦ θs

∣∣∣ Fs]
= −1

2

∫ s

0

f ′′(Bu)du+ EBs
[
f(Bt−s)−

1

2

∫ t−s

0

f ′′(Bu)du

]
.

Since f ′′ ∈ L1 we can apply Fubini's theorem to �nd

E0[Xt | Fs] = −
1

2

∫ s

0

f ′′(Bu)du+ EBs [f(Bt−s)]−
1

2

∫ t−s

0

EBs [f ′′(Bu)]du. (1)

We now focus on the integrand of the last term. Let p(t, x, y) = 1√
2πt

exp
(
− (x− y)2/2t

)
be the normal density, then by using integration by parts twice we �nd

EBs [f ′′(Bu)] =

∫
R
p(u,Bs, y)f

′′(y)dy

=

∫
R

∂2p(u,Bs, y)

∂y2
f(y)dy.

The normal density p(t, x, y) = 1√
2πt

exp
(
− (x− y)2/2t

)
satis�es the di�erential equation

∂
∂t
p = 1

2
∂2

∂y2
p, so that

EBs [f ′′(Bu)] = 2

∫
R

∂p(u,Bs, y)

∂u
f(y)dy.

We again use Fubini's theorem:

1

2

∫ t−s

0

EBs [f ′′(Bu)]du = lim
ε→0

∫
R

∫ t−s

ε

∂p(u,Bs, y)

∂u
duf(y)dy

= lim
ε→0

∫
R

(
p(t− s, Bs, y)− p(ε, Bs, y)

)
f(y)dy

= EBs [f(Bt−s)]− lim
ε→0

EBs [f(Bε)]

= EBs [f(Bt−s)]− f(Bs),

2



where we use the dominated convergence theorem in the last step. Combining this with
(1) gives

E0[Xt | Fs] = f(Bs)−
1

2

∫ s

0

f ′′(Bu)du.
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