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Solutions to tutorial exercises for stochastic processes

T1. Xt is Gaussian since it is a linear combination of Bs+t and Bs and B is Gaussian. Fur-
thermore

E[Xt] = E[Bs+t]− E[Bs] = 0,

and for some t, r > 0 we have

Cov(Xt, X, r) = Cov(Bt+s −Bs, Br+s, Bs)

= −Cov(Bt+s, Bs) + Cov(Bt+s, Br+s)− Cov(Bs, Br+s) + Cov(Bs, Bs)

= −s+ s+ t ∧ r − s+ s = t ∧ r.

Lastly, Xt is continuous, since Bt is continuous. So Xt is Brownian motion.

Yt is Gaussian, since it is a rescaling of Bt and B is Gaussian. Furthermore E[Yt] =
1√
c
E[Bct] = 0, and for some t, r > 0

Cov(Yt, Yr) = Cov

(
Bct√
c
,
Bcr√
c

)
=

1

c
(ct ∧ cr) = t ∧ r.

Finally, Yt is continuous since Bt is continuous. So Yt is also Brownian motion.

T2. We will use the monotone class theorem to prove the result. De�ne the space of functions
H as follows:

H = {f : R2 → R : E[f(X, Y )|G] = g(X)}.

By the linearity of the expectation, H is a linear space. Furthermore for A,B ∈ B(R), H
contains the indicator 1A×B:

E[1A×B(X, Y )|G] = E[1A(X)1B(Y )|G] = 1A(X)E[1B(Y )|G] = 1A(X)P(Y ∈ B) = g(X).

To apply the monotone class theorem it remains to show that for a sequence fn ∈ H with
fn ↑ f and f bounded it holds that f ∈ H. By the monotone convergence theorem we
have

E[f(X, Y )|G] = lim
n→∞

E[fn(X, Y )|G] = lim
n→∞

gn(X).

Furthermore, again using the monotone convergence theorem, it holds that

lim
n→∞

gn(x) = lim
n→∞

E[fn(x, Y )] = E[f(x, Y )] = g(x),

so that f ∈ H. The monotone class theorem now states that H contains all bounded and
measurable functions f , which is the desired result.

1



T3. Let Zt be de�ned as follows.

Zt =

{
0 if t = 0

tB1/t if t > 0,

whereB is standard Brownian motion. Then Z is Brownian motion as well and limt→0 Zt =
0 almost surely. By applying the change of variables s := 1/t we �nd

0 = lim
t→0

Zt = lim
s→∞

Bs

s
. a.s.

An alternative is to prove that Bt/t → 0 in L2 and subsequently use the martingale
convergence theorem.

T4. Since B is almost surely continuous we can write∫ t

0

Bsds = lim
k→∞

t

k

k∑
i=1

Bi t
k
.

Similarly for points t1, . . . , tn > 0 and constants α1, . . . , αn ∈ R we can write for the linear
combination

n∑
j=1

αj

∫ tj

0

Bsds = lim
k→∞

n∑
j=1

αjtj
k

k∑
i=1

B
i
tj
k

=: lim
k→∞

Zk.

Since B is a Gaussian process, Zk has a normal distribution for every k ∈ N. The above
limit is in the almost sure sense, therefore we conclude that limk→∞ Zk has a normal
distribution as well, so that X is Gaussian.

To calculate E[Xt] we need to apply Fubini's theorem. Therefore we �rst need to check
that X ∈ L1:

E
∣∣∣∣∫ t

0

Bsds

∣∣∣∣ ≤ E
∫ t

0

|Bs|ds ≤
∫ t

0

E|Bs|ds ≤ t2 <∞,

where we used Fubini's theorem in the second inequality. This is allowed since B ∈ L1.
Now we can calculate E[Xt]:

E[Xt] = E
[∫ t

0

Bsds

]
=

∫ t

0

E[Bs]ds = 0.

Now let 0 ≤ s ≤ t. We again use Fubini's Theorem to calculate the covariance:

Cov(Xs, Xt) =

∫ s

0

∫ t

0

E[BuBv]dudv =

∫ s

0

∫ t

0

u ∧ v dudv

=

∫ s

0

∫ v

0

u dudv +

∫ s

0

∫ t

v

v dudv

=
1

2
ts2 − 1

6
s3.
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