

Solutions to tutorial exercises for stochastic processes

T1. Let $Z \sim N(\mu, \sigma^2)$. Let $N \in \mathbb{N}$ and let $(Z_n)_{1 \leq n \leq N}$ be i.i.d. random variables with $Z_1 \sim N\left(\frac{\mu}{N}, \frac{\sigma^2}{N}\right)$. Then

$$\sum_{n=1}^N Z_n \sim N(\mu, \sigma^2),$$

so that Z is infinitely divisible.

Let $\lambda > 0$ and $X \sim \text{POI}(\lambda)$. Let $N \in \mathbb{N}$ and let $(X_n)_{1 \leq n \leq N}$ be i.i.d. random variables with $X_1 \sim \text{POI}\left(\frac{\lambda}{N}\right)$. Then

$$\sum_{n=1}^N X_n \sim \text{POI}(\lambda),$$

so that X is infinitely divisible.

T2. Let X be a random variable with finite support and $N \in \mathbb{N}$. Suppose $\text{Var}(X) = 0$, so that X is constant. Then

$$\sum_{i=1}^N \frac{X}{N} \stackrel{d}{=} X,$$

so that X is infinity divisible. Now suppose $\text{Var}(X) > 0$. Without loss of generality we can assume $\mathbb{E}[X] = 0$ and $\text{Var}(X) = 1$. Suppose there exists i.i.d. random variables $(X_i^N)_{1 \leq i \leq N}$ with $\sum_i X_i^N \stackrel{d}{=} X$. Then $\mathbb{E}[X_i^N] = 0$ and $\text{Var}(X_i^N) = \frac{1}{N}$ for all i . We know that X has finite support, so that there exists $m \in \mathbb{R}$ such that

$$m = \inf \{A \in \mathbb{R} : \mathbb{P}(X \in [-A, A]) = 1\},$$

so that $\mathbb{P}(X > m) = 0$. It follows that

$$0 = \mathbb{P}(X > m) = \mathbb{P}\left(\sum_{i=1}^N X_i^N > m\right) \geq \mathbb{P}\left(X_1^N > \frac{m}{N}\right)^N,$$

so that $\mathbb{P}\left(X_1^N > \frac{m}{N}\right) = 0$. Similarly we can prove that $\mathbb{P}\left(X_1^N < -\frac{m}{N}\right) = 0$. Let $\varepsilon > 0$. It now follows that the triangular array $(X_i^N)_{N \in \mathbb{N}, 1 \leq i \leq N}$ satisfies the Lindeberg condition:

$$\sum_{i=1}^N \mathbb{E} \left[(X_i^N)^2 \mathbb{1}_{\{|X_i^N| > \varepsilon\}} \right] = N \mathbb{E} \left[(X_1^N)^2 \mathbb{1}_{\{|X_1^N| > \varepsilon\}} \right] \leq n \frac{m^2}{n^2} = \frac{m^2}{N} \rightarrow 0 \quad \text{as } N \rightarrow \infty.$$

The Lindeberg-Feller theorem now states that $\sum_i X_i^N$ converges weakly to a random variable with standard normal distribution as $N \rightarrow \infty$. However, $X \stackrel{d}{=} \sum_i X_i^N$ has finite support, which is a contradiction. It follows that the only infinitely divisible random variables with finite support are constants.

T3. We first show that X has stationary increments. Let $0 \leq s \leq t$. We have

$$X_t - X_s = \sum_{n=N_s}^{N_t} Y_n \stackrel{d}{=} \sum_{n=1}^{N_t - N_s} Y_n.$$

Since N is a Poisson process it has stationary increments. So the distribution of $N_t - N_s$ only depends on $t - s$. So the distribution of $X_t - X_s$ only depends on $t - s$.

Let $0 \leq s < t$. We prove that $X_t - X_s$ and X_s are independent. Denote by $\phi_Y(\cdot)$ the characteristic function of Y_1 . Let $a, b \in \mathbb{R}$. We have

$$\begin{aligned} \mathbb{E}[\exp(iaX_s + ib(X_t - X_s))] &= \mathbb{E}\left[\exp\left(ia \sum_{j=1}^{N_s} Y_j\right) \exp\left(ib \sum_{j=N_s+1}^{N_t} Y_j\right)\right] \\ &= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \mathbb{E}\left[\exp\left(ia \sum_{j=1}^k Y_j\right) \exp\left(ib \sum_{j=k+1}^{k+l} Y_j\right) \mathbb{1}_{\{N_s=k, N_t=k+l\}}\right] \\ &= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \phi_Y(a)^k \phi_Y(b)^l e^{-\lambda s} \frac{(\lambda s)^k}{k!} e^{-\lambda(t-s)} \frac{(\lambda(t-s))^l}{l!}, \end{aligned}$$

since Y_j are independent of each other and of N , and since N has stationary and independent increments. It follows that

$$\begin{aligned} \mathbb{E}[\exp(iaX_s + ib(X_t - X_s))] &= \sum_{k=0}^{\infty} \phi_Y(a)^k e^{-\lambda s} \frac{(\lambda s)^k}{k!} \sum_{l=0}^{\infty} \phi_Y(b)^l e^{-\lambda(t-s)} \frac{(\lambda(t-s))^l}{l!} \\ &= \phi_{X_s}(a) \phi_{X_t - X_s}(b), \end{aligned}$$

so that X_s and $X_t - X_s$ are independent. It can be proven similarly that n increments are independent.

T4. Let $Z \sim \text{Exp}(1)$. Then Z has characteristic function

$$\mathbb{E}[e^{i\theta Z}] = \frac{1}{1 - i\theta} = e^{-\psi(\theta)},$$

where

$$\psi(\theta) := \log(1 - i\theta).$$

If we show that $\psi(\theta)$ satisfies the Lévy-Khintchin formula, then there exists a Lévy process with $\mathbb{E}[\exp(i\theta X_1)] = \exp(-\psi(\theta))$, so that $X_1 \sim \text{Exp}(1)$. The derivative of ψ satisfies

$$\psi'(\theta) = -i \frac{1}{1 - i\theta} = - \int_0^\infty ie^{i\theta x} e^{-x} dx.$$

We now have

$$\psi(\theta) = \psi(0) + \int_0^\theta \psi'(s)ds = - \int_0^\theta \int_0^\infty ie^{isx}e^{-x}dxds = - \int_0^\infty e^{-x} \int_0^\theta ie^{isx}dsdx,$$

where we used Fubini's theorem to switch the integrals. It follows that

$$\psi(\theta) = - \int_0^\infty \frac{e^{-x}}{x} (e^{i\theta x} - 1)dx = \int_0^\infty (1 - e^{i\theta x} - i\theta x \mathbb{1}_{\{x < 1\}}) \pi(dx) + i\theta \int_0^1 x \frac{e^{-x}}{x} dx,$$

where $\pi(dx) = \mathbb{1}_{\{x > 0\}} \frac{e^{-x}}{x} dx$. Finally we have

$$\psi(\theta) = i\theta \left(1 - \frac{1}{e}\right) + \int_0^\infty (1 - e^{i\theta x} - i\theta x \mathbb{1}_{\{x < 1\}}) \pi(dx).$$

Moreover, π is a Lévy-measure:

$$\int_{\mathbb{R} \setminus \{0\}} (x^2 \wedge 1) \pi(dx) = \int_0^1 x e^{-x} dx + \int_1^\infty \frac{e^{-x}}{x} dx < 2 < \infty.$$

So $\psi(\theta)$ satisfies the Lévy-Khinchin formula with triplet $(1 - 1/e, 0, \pi)$.