Solutions to tutorial exercises for stochastic processes

T1. \Rightarrow : Suppose \mathbb{X} is $\mathfrak{F} - \mathfrak{S}^T$ measurable. For any $t \in T$ we have by the definition of \mathfrak{S}^T that $\mathbb{X}^{-1}(\Pi_t^{-1}(S)) \in \mathfrak{F}$ for any $S \in \mathfrak{S}$, where Π_t denotes the projection on the tth coordinate. Finally $\mathbb{X}^{-1}(\Pi_t^{-1}(S)) = \{\omega : X_t(\omega) \in S\} = X_t^{-1}(S) \in \mathfrak{F}$.

 \Leftarrow : Suppose all projections X_t are $\mathfrak{F} - \mathfrak{S}$ -measurable. Let $S \in \mathfrak{S}$ and $t \in T$. Then $\mathbb{X}^{-1}(\Pi_t^{-1}(S)) = X_t^{-1}(S) \in \mathfrak{F}$. So \mathbb{X} is measurable on the set $\{\Pi_t^{-1}(S) : t \in T, S \in \mathfrak{S}\}$. This set generates \mathfrak{S}^T , so \mathbb{X} is $\mathfrak{F} - \mathfrak{S}^T$ measurable.

T2. Since X_t is continuous and since \mathbb{Q} is dense in \mathbb{R} we have that

$$\sup_{t\in\mathbb{R}}X_t=\sup_{t\in\mathbb{Q}}X_t.$$

Let $a \in \mathbb{R}$. Then

$$\left\{ \sup_{t \in \mathbb{R}} X_t \le a \right\} = \left\{ \sup_{t \in \mathbb{Q}} X_t \le a \right\} = \bigcap_{t \in \mathbb{Q}} \{X_t \le a\} \in \mathfrak{F}.$$

So $\sup_{t\in\mathbb{R}} X_t$ is measurable on the set $\{(-\infty, a] : a \in \mathbb{R}\}$, which generates \mathfrak{B} . So $\sup_{t\in\mathbb{R}} X_t$ is $\mathfrak{F}-\mathfrak{B}$ -measurable. Furthermore

$$\left\{\sup_{t\in\mathbb{R}}X_t=\infty\right\}=\bigcap_{n=1}^{\infty}\bigcup_{t\in\mathbb{Q}}\left\{X_t\geq n\right\}\in\mathfrak{F},$$

and similarly

$$\left\{\sup_{t\in\mathbb{R}}X_t=-\infty\right\}=\bigcap_{n=1}^\infty\bigcup_{t\in\mathbb{Q}}\left\{X_t\leq n\right\}\in\mathfrak{F},$$

so that the events $\{\sup_{t\in\mathbb{R}} X_t = \infty\}$ and $\{\sup_{t\in\mathbb{R}} X_t = -\infty\}$ are measurable as well.

T3. We first show by induction that for some s > 0, N_s is Poisson distributed with parameter λs . Firstly $\mathbb{P}(N_s = 0) = e^{-\lambda s}$. Now suppose that $\mathbb{P}(N_s = k) = e^{-\lambda s} \frac{(\lambda s)^k}{k!}$ for all s > 0. Then by conditioning on τ_1 we find

$$\mathbb{P}(N_s = k+1) = \int_0^s \lambda e^{-\lambda x} \mathbb{P}(N_{s-x} = k) dx = \int_0^s \lambda e^{-\lambda x} e^{-\lambda (s-x)} \frac{(\lambda(s-x))^k}{k!} dx$$
$$= e^{-\lambda s} \frac{(\lambda s)^{k+1}}{(k+1)!}.$$

So N_s is indeed Poisson distributed with parameter λs . Let $T_k := \sum_{i=1}^k \tau_i$ be the sequence of arrivals. We can write

$$N_s = \sum_{k=1}^{\infty} \mathbb{1}_{\{T_k \le s\}},$$

and similarly

$$N_t - N_s = \sum_{k=N_s+1}^{\infty} \mathbb{1}_{\{T_k \le t\}} = \sum_{k=1}^{\infty} \mathbb{1}_{\{T_{N_s+k} \le t\}}.$$

We know that $T_{N_s+1} > s$. In fact by the memorylessness of the exponential distribution we have $T_{N_s+1} \sim s + \text{EXP}(\lambda)$. Similarly $T_{N_s+k} \sim s + T'_k$, where T'_k is an i.i.d. copy of T_k . Furthermore T_{N_s+k} is independent of N_s , since N_s is independent of $\tau_{N_s+1}, \tau_{N_s+2}, \ldots$. Finally we have

$$\mathbb{P}(N_s = x, N_t - N_s = y) = \mathbb{P}(N_s = x)\mathbb{P}(N_t - N_s = y \mid N_s = x)$$

$$= \mathbb{P}(N_s = x)\mathbb{P}\left(\sum_{k=1}^{\infty} \mathbb{1}_{\{T_{N_s + k} \le t\}} = y \mid N_s = x\right)$$

$$= \mathbb{P}(N_s = x)\mathbb{P}\left(\sum_{k=1}^{\infty} \mathbb{1}_{\{s + T_k' \le t\}} = y\right)$$

$$= e^{-\lambda s} \frac{(\lambda s)^x}{x!} e^{-\lambda (t-s)} \frac{(\lambda (t-s))^y}{y!}.$$

T4. The process $(M + N)_t$ is increasing and right-continuous, since M_t and N_t are increasing and right-continuous. Furthermore

$$(M+N)_t - (M+N)_s = M_t - M_s + N_t - N_s \sim POI((\lambda + \mu)(t-s)),$$

since $M_t - M_s$ and $N_t - N_s$ are independent and Poisson distributed with parameter $\lambda(t-s)$ and $\mu(t-s)$ respectively. It remains to show that $(M+N)_t$ has steps of size 1 almost surely. Construct the process M'_t by placing $X_i \sim \text{POI}(\lambda)$ points, x_1^i, \ldots, x_k^i , uniformly at random in the interval [i, i+1), so that $M'_t \stackrel{d}{=} M_t$. Similarly construct $N'_t \stackrel{d}{=} N_t$ by placing the points y_1^i, \ldots, y_l^i in the interval [i, i+1). Then $(M'+N')_t \stackrel{d}{=} (M+N)_t$. Suppose $(M'+N')_t$ has a jump of size 2. Then there exists an interval [i, i+1) such that $x_v^i = y_w^i$ for some $v, w \in \mathbb{N}$. Now,

$$\mathbb{P}((M'+N')_t \text{ has jump of size 2}) \leq \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{v=1}^{k} \sum_{w=1}^{l} \mathbb{P}(X_i = k, Y_i = l, x_v^i = y_w^i) \\
= \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{v=1}^{k} \sum_{w=1}^{l} \mathbb{P}(X_i = k) \mathbb{P}(Y_i = l) \mathbb{P}(x_v^i = y_w^i) \\
= 0,$$

since $\mathbb{P}(x_v^i = y_w^i) = 0$. So $(M' + N')_t$ has steps of size 1 almost surely and thus $(M + N)_t$ as well.