$\frac{\mathrm{WS}\ 16/17}{\mathrm{Sheet}\ 3}$

Exercises for Stochastic Processes

Tutorial exercises:

- T1. (a) Show that τ is a stopping time iff $\forall t \geq 0 : \{\tau < t\} \in \mathfrak{F}_t$!
 - (b) Let (τ_n) be a sequence of stopping times. Show that $\sup_n \tau_n$, $\inf_n \tau_n$, $\limsup_n \tau_n$, $\lim \sup_n \tau_n$, $\lim \inf_n \tau_n$ and, if existent, $\lim_n \tau_n$ are stopping times!
- T2. Let τ , (τ_n) be stopping times w.r.t. the right-continuous filtration (\mathfrak{F}_t) associated to Brownian motion.
 - (a) Show that

$$\mathfrak{F}_{\tau} := \{A \mid \forall t \ge 0 : A \cap \{\tau \le t\} \in \mathfrak{F}_t\}$$

is a σ -algebra!

- (b) Show that, if $\tau_1 \leq \tau_2$, then $\mathfrak{F}_{\tau_1} \subset \mathfrak{F}_{\tau_2}!$
- (c) Show that, if $\tau_n \downarrow \tau$, then $\mathfrak{F}_{\tau} = \bigcap_n \mathfrak{F}_{\tau_n}!$
- T3. Determine the distribution of
 - (a) $\tau_1 := \inf\{t \ge 1 \mid B_t = 0\}$ and
 - (b) $\tau_2 := \sup\{t < 1 \mid B_t = 0\}$

for a Brownian motion B starting in the origin!

 \rightarrow Page 2

Homework exercises:

- H1. Show that, if B is a Brownian motion and τ a finite stopping time (w.r.t. the corresponding right-continuous filtration (\mathfrak{F}_t)), then $Y_t := B_{\tau+t} B_{\tau}$ defines a Brownian motion, which is independent of \mathfrak{F}_{τ} !
- H2. The "tail σ -algebra" w.r.t. Brownian motion $B_t(\omega) = \omega(t)$ on $C[0, \infty]$ is defined as

$$\mathfrak{T} := \bigcap_{t>0} \sigma\left(\{ B_s \mid s \ge t \} \right) \,.$$

- (a) Show that, for any $A \in \mathfrak{T}$, $\mathbb{P}^x(A) \in \{0, 1\}!$
- (b) Show that $P^{x}(A)$ does not depend on x!
- H3. Show that the (ω -dependent) set of times at which a Brownian motion has local maxima is a.s. dense in \mathbb{R}^+_0 !
- H4. (a) Let B be a Brownian motion starting in the origin, a > 0 and

$$\tau_a := \inf\{t > 0 \mid B_t - t = a\}.$$

Show that, for a, b > 0,

$$\mathbb{P}(\tau_{a+b} < \infty \mid \tau_a < \infty) = \mathbb{P}(\tau_b < \infty) !$$

(b) Conclude that $\sup_{t>0}(B_t - t)$ has an exponential distribution!

Deadline: Monday, 14.11.16