Übungen zu Analysis II für Statistiker

Tutoriumsaufgaben:

T1. Betrachten Sie den Raum von $m \times n$ Matrizen $\mathbb{R}^{m \times n}$, und die Funktion $\|\cdot\| : \mathbb{R}^{m \times n} \to \mathbb{R}$, gegeben durch

$$||A|| := \sup_{\substack{x \in \mathbb{R}^n, \\ ||x|| = 1}} ||Ax||.$$

- (a) Zeigen Sie, dass $\|\cdot\|$ ein Norm auf $\mathbb{R}^{m\times n}$ ist.
- (b) Zeigen Sie, dass

$$||A|| = \sup_{\substack{x \in \mathbb{R}^n, \\ x \neq 0}} \frac{||Ax||}{||x||}.$$

- T2. Berechnen Sie die Hessematrix der folgenden Funktionen im Punkt 0.
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 \cos(y) + y \sin(x)$,

(b)
$$g: \mathbb{R}^3 \to \mathbb{R}$$
, $g(x, y, z) = z^4 + x^3y + x^2 + xy + xz + \frac{1}{2}y^2 + 2z^2$.

T3. Betrachte die Funktion

$$f \colon \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \begin{cases} \frac{y^3}{x^2 + y^2} & \text{ für } (x,y) \neq 0 \\ 0 & \text{ für } (x,y) = 0. \end{cases}$$

Zeigen Sie, dass in 0 alle Richtungsableitungen $D_v f(0)$, $v \in \mathbb{R}^2 \setminus \{0\}$, existieren, aber dass im Allgemeinen $\langle \nabla f(0), v \rangle = D_v f(0)$ nicht gilt.

Hausaufgaben:

H1. (4 Punkte) Berechnen Sie die kritischen Punkten der folgenden Funktionen:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = x^2 + 4xy - y^2 - 8x - 6y$,

(b)
$$g: \mathbb{R}^2 \to \mathbb{R}$$
, $g(x,y) = x + y\sin(x)$,

(c)
$$h: \mathbb{R}^3 \to \mathbb{R}$$
, $h(x, y, z) = \exp(-x^2 - y^2 - z^2)$,

(d)
$$p: \mathbb{R}^2 \to \mathbb{R}$$
, $p(x,y) = \cos(x^2 + y^2)$.

H2. (4 Punkte) Berechnen Sie die ersten drei Terme, d.h. den konstanten Term, die linearen Terme und die quadratischen Terme (ohne das Restglied), in der Taylorformel der folgenden Funktionen in den gegebenen Punkten:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \frac{e^x}{1-y}$ in 0,

(b)
$$g: \mathbb{R}^2 \to \mathbb{R}$$
, $g(x,y) = \frac{x-y}{x+y}$ in $(1,1)$.

H3. (4 Punkte) Bestimmen Sie die Definitheit der folgenden Matrizen.

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} -4 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & -10 \end{pmatrix},$$

H4. (4 Punkte) Betrachten Sie die Funktionen

$$f: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^2, \qquad f(x,y) := (\log(xy), x \log y),$$

$$g: \mathbb{R}^2 \to \mathbb{R}^2, \qquad g(x,y) := (x^2 + y^2, y).$$

- (a) Berechnen Sie Df(x,y), Dg(x,y) und daraus $D(g \circ f)(x,y)$ mit Hilfe der Kettenregel.
- (b) Berechnen Sie $D(g \circ f)(x, y)$ noch einmal ohne die Kettenregel, indem Sie die partiellen Ableitungen von $g \circ f$ direkt bestimmen.

Abgabe: Bis Freitag, 9.6.17, 12:15.