Übungen zu Analysis II für Statistiker

Tutoriumsaufgaben:

- T1. Bestimmen Sie eine Stammfunktion von $e^x \sin(x)$ z.B. mittels zweimaliger partieller Integration.
- T2. Bestimmen Sie die Bogelänge der Helix $\alpha \colon [0,2\pi] \to \mathbb{R}^3, \, \alpha(t) = (\cos(t),\sin(t),t).$
- T3. Zeigen Sie, dass die Folge $(f_n)_{n\in\mathbb{N}}$ von Funktionen $f_n\colon\mathbb{R}\to\mathbb{R}$,

$$f_n(x) = \frac{x^2}{1 + nx^2},$$

gleichmäßig konvergiert. Was ist die Grenzfunktion?

Hausaufgaben:

H1. (4 Punkte) Berechnen Sie

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin(x)^2 dx$$

mit partieller Integration.

H2. (4 Punkte) Berechnen Sie

$$\int_{a}^{b} \frac{1}{x^3 - x^2 + x - 1} dx$$

für $a, b \in (-1, 1)$. Beachten Sie dazu, dass $x^3 - x^2 + x - 1 = (x - 1)(x^2 + 1)$ gilt, und nutzen Sie eine entsprechende Partialbruchzerlegung.

- H3. (4 Punkte) Sei $\alpha \colon \mathbb{R} \to \mathbb{R}^2$ die Kurve $\alpha(t) = (e^t \cos(t), e^t \sin(t))$. Skizzieren Sie die Bahn von α . Berechnen Sie für $a < b \in \mathbb{R}$ die Länge $L(\alpha|_{[a,b]})$ von $\alpha|_{[a,b]}$ (also die Länge des Bogens zwischen $\alpha(a)$ und $\alpha(b)$). Zeigen Sie, dass $\lim_{a \to -\infty} L(\alpha|_{[a,0]})$ existiert, und berechnen Sie den Grenzwert.
- H4. (4 Punkte) Zeigen Sie, dass das uneigentliche Integral

$$\int_{1}^{\infty} \frac{\sin(x)}{x^{\alpha}} dx$$

für $\alpha>0$ konvergiert und für $\alpha>1$ absolut konvergiert.

Abgabe: Bis Freitag, 7.7.17, 12:15.