Übungen zur Analysis II

Prof. Dr. P. Pickl Blatt 1

Aufgabe 1

Sei X eine Menge. Die $diskrete\ Metrik\ d$ auf X ist definiert durch

$$d(x,y) = \begin{cases} 0 & \text{falls } x = y \\ 1 & \text{falls } x \neq y \end{cases}$$
 für alle $x, y \in X$

- (a) Zeigen Sie, dass es sich bei d tatsächlich um eine Metrik handelt.
- (b) Seien X, Y metrische Räume, wobei X mit der diskreten Metrik ausgestattet ist. Zeigen Sie, dass in diesem Fall jede Funktion $f: X \to Y$ stetig ist.
- (c)Seien (X, d_X) , (Y, d_Y) metrische Räume, wobei d_Y die diskrete Metrik bezeichnet. Zeigen Sie, dass für jede Abbildung $f: X \to Y$ folgende Aussagen äquivalent sind:
 - (i) f ist stetig.
 - (ii) f ist lokal konstant, d.h. für jedes $x_0 \in X$ gibt es ein $r(x_0) \in \mathbb{R}^+$, sodass

$$f(x) = f(x_0) \qquad \forall \ x \in B_{r(x_0)}(x_0) \ .$$

Aufgabe 2

Sei (X,d) ein metrischer Raum und $Y\subset X$ eine Teilmenge. Dann erhalten wir durch Einschränkung der Abbildung d auf $Y\times Y$ eine Metrik d_Y auf Y. Wir nennen d_Y eine eingeschränkte Metrik oder Spurmetrik. Wir bezeichnen eine Teilmenge $U\subset Y$ als offen bzw. abgeschlossen in Y, wenn U bezüglich der eingeschränkten Metrik auf Y offen bzw. abgeschlossen ist.

Zeigen Sie: Die offenen bzw. abgeschlossenen Teilmengen in Y sind genau die Teilmengen der Form $Y \cap U$, wobei U die offenen bzw. abgeschlossenen Teilmengen von X durchläuft.

Bemerkung: Das bedeutet natürlich nicht, dass die in Y offenen (abgeschlossenen) Mengen auch offen (abgeschlossen) in X sein müssen.

Aufgabe 3

Bestimmen Sie Rand, Inneres und Abschluss der folgenden Teilmengen

- (a) $(a, b] \subset \mathbb{R}$ bezüglich der Standardmetrik von \mathbb{R}
- (b) $\mathbb{Q} \subset \mathbb{R}$ bezüglich der Standardmetrik von \mathbb{R}
- (c) $\{(x,y,0) \in \mathbb{R}^3 | -1 < x < 1, -1 < y < 1\} \subset \mathbb{R}^3$ bezüglich der Standardmetrik von \mathbb{R}^3
- (d) $\{(x,y,0) \in \mathbb{R}^3 | -1 < x < 1, -1 < y < 1\} \subset E = \{(x,y,0) \in \mathbb{R}^3 | x,y \in \mathbb{R}\}$ bezüglich der eingeschränkten Metrik d_E , die durch die Einschränkung der Standardmetrik von \mathbb{R}^3 auf E erzeugt wird (siehe Aufgabe 2).

Aufgabe 4

Sei V ein Vektorraum über einem Körper \mathbb{K} . Eine Halbnorm ist eine Abbildung $||\cdot||:V\to\mathbb{R}^+\cup\{0\}$, sodass $\forall\ v,w\in V,\ \lambda\in\mathbb{K}$ gilt: $i)||\lambda\cdot v||=|\lambda|\cdot||v||$ und $ii)||v+w||\le ||v||+||w||$. Die durch eine Halbnorm erzeugte Abbildung $d:V\times V\to\mathbb{R}^+\cup\{0\},\ (v,w)\mapsto ||v-w||$ wird Halbmetrik oder Pseudometrik genannt (insbesondere ist bei einer Halbmetrik – im Gegensatz zu einer Metrik – offenbar für $v,w\in V$ mit $v\neq w$ auch d(v,w)=0 möglich).

(a) Sei $\mathcal{B}([a,b],\mathbb{R})$ der Vektorraum der beschränkten, integrierbaren Funktionen von [a,b] nach \mathbb{R} . Zeigen Sie, dass für $f \in \mathcal{B}([a,b],\mathbb{R})$ durch

$$||f||_1 := \int_a^b |f| dx$$

zwar eine Halbnorm, aber keine Norm auf $\mathcal{B}([a,b],\mathbb{R})$ gegeben ist.

(b) In der Vorlesung haben wir gesehen, dass bezüglich der durch die sup-Norm $||f||_{\infty}$ induzierten Metrik die Menge der stetigen Funktionen von [a,b] nach \mathbb{R} eine abgeschlossene Teilmenge von $\mathcal{B}([a,b],\mathbb{R})$ ist. Zeigen Sie nun, dass die Menge der stetigen Funktionen bezüglich der durch die Halbnorm $||\cdot||_1$ induzierten Halbmetrik *nicht* abgeschlossen in $\mathcal{B}([a,b],\mathbb{R})$ ist.

Bemerkung: Die Aussagen von Aufgabenteil (b) hängen nicht an der Halbnorm. Sie gelten ebenso, wenn beispielsweise $\mathcal{B}([a,b],\mathbb{R})$ durch die linksseitig stetigen Funktionen auf [a,b] ersetzt wird, allerdings definiert dann $||\cdot||_1$ tatsächlich eine Norm (warum?).

Abgabe: Mittwoch, 2.11.2011 12 Uhr.