
STRICT A1-INVARIANCE OF PRESHEAVES WITH FRAMED TRANSFERS

TOM BACHMANN

Abstract. These are notes for a topics course at LMU Munich in winter 2021/2.

Contents

1. Introduction 1
2. Lower algebraic K-theory 2
3. The (homotopy) category of framed correspondences 7
4. More about hCorfr

k 11
5. A prototypical result 14
6. The formal argument 16
7. Transfers on cohomology 18
8. Injectivity for semilocal schemes 20
9. A moving lemma 23
10. Vista 24
References 24

1. Introduction

1.1. Statement of the theorem. In [EHK+21] there was defined a category hCorfr
k (there spelled with two

“r”) with objects the smooth k-schemes and morphisms certain kinds of correspondences. There is a functor
Smk → hCorfr

k which is the identity on objects. The aim of these notes is to prove the following result.

Theorem 1.1. Let k be a perfect field. Let F : (hCorfr
k )op → Ab be a functor (i.e. presheaf) such that

F (X q Y ) ' F (X) × F (Y ) and F is A1-invariant, i.e., for every X ∈ Smk the canonical map F (X) →
F (A1 ×X) is an isomorphism.

Then F is strictly A1-invariant, that is, for every X ∈ Smk and i ≥ 0 the canonical map Hi
Nis(X,F ) →

Hi
Nis(A

1 ×X,F ) is an isomorphism.
HereHi

Nis(X,F ) denotes cohomology in the Nisnevich topology on the small étale site ofX, of the presheaf
thereon obtained from F by restriction along EtX → Smk → hCorfr

k .

1.2. Situation in the literature. The first theorem along these lines was proved by Voevodsky in [Voe00a,
Theorem 5.6]. The statement is essentially the same; the only difference is that the category hCorfr

k is replaced
by a related one. This result is one of the cornerstones of Voevodsky’s celebrated theory of a derived category
of motives [Voe00b].

More generally, from any category of correspondences one can attempt to build a theory of generalized
motives. Proving an “A1-invariant implies strictly A1-invariant” theorem will be an important step in estab-
lishing that the theory of generalized motives is well-behaved. This program has been carried out several
times [GP20, Dru17, Kol17, DK20]. For a textbook account in the case of Voevodsky correspondences, see
[MVW06, Lecture 24].

In some sense, the most general “reasonable” category of correspondences is hCorfr
k , and Theorem 1.1 is

thus in some sense the strongest strict A1-invariance result. While it can be deduced from results in the
literature (see the proof of [EHK+21, Theorem 3.4.11]), the arguments are more indirect than is necessary.
We aim to remedy this in these notes.
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1.3. Preliminaries. We assume basic knowledge of scheme theory, including but not limited to differentials,
conormal sheaves, flat, smooth and étale morphisms, and elementary category theory. Beyond this, we require
the following.

• Some theory of local complete intersection (lci) and syntomic (i.e. flat lci) morphisms; see e.g. [Liu02,
§6.3].

• Some theory of cohomology of sheaves on sites; see e.g. [Mil80, §II and §III]. In particular we need
basic homological algebra, including projective modules, derived functors etc.

1.4. Outline. We begin by given an elementary definition of the category hCorfr
k . This requires us to first

treat the algebraicK-theory groupoid and the stable normal bundle. After that we prove strict A1-invariance,
following [DK20]. While this reference treats a different category of correspondences, their arguments apply
to hCorfr

k with only superficial changes.

1.5. Notation and terminology. All schemes are assumed noetherian.
Most notation is introduced throughout the text.
Here are some comments for the experts. By a category we always mean an ordinary 1-category. We use

notation consistent with common use, but sometimes with non-standard definitions. For example we write
K(X)≤1 for the 1-truncation of the K-theory space of X; this is an ordinary groupoid (well-defined up to
equivalence) which we define directly. Given an lci morphism f : X → Y , we define the “stable normal
bundle” Lf ∈ K(X)≤1; this is the opposite of the class of the cotangent complex. We make these definitions
only in the case of affine schemes; this is enough for our arguments and simplifies everything considerably.

2. Lower algebraic K-theory

We define the algebraic K-theory groupoid of a symmetric monoidal category. In particular, we define
K0 and K1 of a ring. Our presentation follows lectures 5 and 6 of [Hoy20].

For a more thorough introduction to algebraic K-theory see [Wei13], or [Mil71] for a historic perspective.
The first two subsections recall standard definitions which can be found in any book on category theory.

2.1. Symmetric monoidal categories and functors.

Definition 2.1. A monoidal category is a category C with a functor ⊗ : ×C → C and an object 1 ∈ C,
together with natural isomorphisms (for X,Y, Z ∈ C)

αX,Y,Z : (X ⊗ Y )⊗ Z ' X ⊗ (Y ⊗ Z),

λX : 1⊗X ' X,
ρX : X ⊗ 1 ' X,

such that the following diagrams commute:
• (unit axiom)

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

α

ρ
λ

• (pentagon axiom)

((X ⊗ Y )⊗ Z)⊗W (X ⊗ Y )⊗ (Z ⊗W )

(X ⊗ (Y ⊗ Z))⊗W X ⊗ (Y ⊗ (Z ⊗W ))

X ⊗ ((Y ⊗ Z)⊗W )

(Here all isomorphisms are instances of α tensored with identities.)

Remark 2.2. The pentagon axiom implies that X1 ⊗ · · · ⊗Xn is well-defined up to canonical isomorphism,
independent of the choice of parenthesization. This is known as MacLane’s coherence theorem.
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Definition 2.3. A symmetric monoidal category is a monoidal category C together with a natural isomor-
phism

γX,Y : X ⊗ Y ' Y ⊗X
such that γ2 = id and the following diagram commutes:

• (hexagon axiom)
(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z)

(Y ⊗X)⊗ Z (Y ⊗ Z)⊗X

Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X)

α

γ γ

α α

γ

Remark 2.4. The hexagon axiom implies that X1 ⊗ · · · ⊗ Xn is independent of order, up to canonical
isomorphism.

Example 2.5. If R is a commutative ring, then the category R-Mod of R-modules is a symmetric monoidal
category, with ⊗ the usual tensor product.

Definition 2.6. A monoidal functor F : C → D is a functor together with an isomorphism F (1C)
ε' 1D

and a natural isomorphism
µX,Y : F (X ⊗ Y ) ' F (X)⊗ F (Y ),

such that certain evident diagrams commute.
A symmetric monoidal functor is a monoidal functor such that F (γCX,Y ) ' γDFX,FY via µ.
A monoidal natural transformation ϕ : F → G is a natural transformation such that the following

diagrams commute:
•

F (1C) F (1D)

1D

ϕ

εF

εG

•
F (X ⊗ Y ) G(X ⊗ Y )

F (X)⊗ F (Y ) G(X)⊗G(Y ).

ϕ

µF µG

ϕ

Definition 2.7. Let C,D be symmetric monoidal categories. We can form the category Fun⊗(C,D) with
objects the symmetric monoidal functors and morphisms the monoidal natural transformations.

2.2. Picard groupoids.

Definition 2.8. A groupoid is a category in which all morphisms are isomorphisms.

Example 2.9. Let C be any category. We denote by C' ⊂ C the maximal sub-groupoid, i.e., the objects of
C' are the same as the objects of C, and the morphisms of C' are the isomorphisms of C. This is a groupoid.

Example 2.10. Let S be a set. We can view S as a category with set of objects S, and only identity
morphisms. This is a groupoid.

Example 2.11. Let G be a group. We can form the category BG with one object ∗, and Hom(∗, ∗) = G.
This is a groupoid.

Definition 2.12. A (symmetric) monoidal groupoid is an essentially small (symmetric) monoidal category
which is also a groupoid.

Scholium 2.13. A category C is called essentially small if the class of isomorphism classes of objects is in
fact a set. We shall largely ignore size issues in the sequel.
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Definition 2.14. For an essentially small groupoid C, we denote by π0(C) the set of isomorphism classes of
objects. For a monoidal groupoid C, we put π1(C) = Hom(1,1).

If C is a (symmetric) monoidal groupoid, then π0(C) is a (commutative) monoid.

Definition 2.15. A Picard groupoid is a symmetric monoidal groupoid C such that the commutative monoid
π0(C) is a group.

In other words, for every X ∈ C there must exist Y ∈ C such that X ⊗ Y
η
' 1. We call the pair (Y, η)

an inverse of X. One verifies immediately that if (Y ′, η′) is another inverse of X, then there is a unique
isomorphism Y ' Y ′ compatible in the evident sense with (η, η′).

Remark 2.16. We will often call just Y an inverse of X, suppressing η. But note that without a given choice
of η, inverses are (in general) unique only up to non-unique isomorphism.

Remark 2.17. Let C be a Picard groupoid and X ∈ C. Then

π1(C) ⊗X−−→ Hom(X,X)

is an isomorphism. Indeed if Y is an inverse of X, then ⊗Y induces an inverse of the above map.

2.3. Group completion.

Definition 2.18. Let C be a symmetric monoidal groupoid. A group completion is a symmetric monoidal
functor η : C → Cgp, where Cgp is a Picard groupoid, such that for every Picard groupoid D the canonical
functor

Fun⊗(Cgp,D)
◦η−→ Fun⊗(C,D)

is an equivalence of categories.

Remark 2.19. One may prove (e.g. using the 2-categorical adjoint functor theorem) that Cgp always exists.

Example 2.20. Let D be a Picard groupoid and F : C → D a symmetric monoidal functor. Under the
equivalence Fun×(Cgp,D) ' Fun×(C,D), F corresponds to some symmetric monoidal functor F̃ : Cgp,D
such that F̃ ◦ η ' F . In fact, given any two symmetric monoidal functors F̃ , F̃ ′ : Cgp → D with this
property, there exists a unique natural isomorphism κ : F̃ ' F̃ ′ compatible with the other data.

Remark 2.21. Following this line of argument, we easily prove that any two group completions are canon-
ically equivalent. Moreover C 7→ Cgp is a functor in an appropriate sense: given F : C1 → C2 there is an
induced symmetric monoidal functor F gp : Cgp

1 → C
gp
2 , well-defined up to unique natural isomorphism, and

furthermore (G ◦ F )gp coincides up to unique natural isomorphism with Ggp ◦ F gp.

Scholium 2.22. There is an analog of this construction “one category level down”: the fully faithful embedding

Ab ↪→ AbMon

has a left adjoint M 7→Mgp. This is also known as the Grothendieck construction. For example Ngp ' Z.

The two kinds of group completion are related.

Lemma 2.23. Let C be a symmetric monoidal groupoid. Then π0(Cgp) ' π0(C)gp.

(Here on the left hand side (−)gp refers to Definition 2.18, whereas on the right hand side it refers to
Scholium 2.22.)

Proof. For a (commutative) monoid M , we can also view M as a discrete (symmetric) monoidal groupoid,
as in Example 2.10. Then for any symmetric monoidal groupoid C we find that

π0Fun⊗(C,M) ' HomAbMon(π0C,M).

(In fact Fun⊗(C,M) is discrete, but we do not need this.) Hence for any abelian group A we find that

HomAbMon(π0C, A) ' π0Fun⊗(C, A) ' π0Fun⊗(Cgp, A) ' HomAbMon(π0(Cgp), A).

It follows that the abelian group π0(Cgp) satisfies the same universal property as π0(C)gp, whence the two
are canonically isomorphic. �

Here is a non-obvious property of symmetric monoidal groupoids.
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Lemma 2.24. Let C be a symmetric monoidal groupoid. Then the group π1(C) is abelian.

Proof. We have the two operations

◦,⊗ : π1(C)× π1(C)→ π1(C).

The second one is commutative, C being symmetric. The first one is the one is the one defining the group
operation in π1(C). We shall show that the two coincide. In fact given f, g : 1→ 1 we have

f ⊗ g = (f ◦ id)⊗ (id ◦g) = (f ⊗ id) ◦ (id⊗g) = f ◦ g,

since ⊗ is a functor. This concludes the proof. �

Note that if X ∈ C, then Hom(X,X) is a group, but it need not be abelian (unless X = 1). Of course if
C is a Picard groupoid, then Hom(X,X) ' π1(C) is abelian. We can use this to get a good handle on Cgp,
in some cases.

Theorem 2.25. Let C be a symmetric monoidal groupoid and suppose given an object X ∈ C such that for
every Y ∈ C there exists Z ∈ C and n ≥ 0 with Y ⊗ Z ' X⊗n. Then π1(Cgp) ' Gab∞, where

G∞ = colim
n

Hom(X⊗n, X⊗n)

and (−)ab denotes the maximal abelian quotient of a group.

Proof sketch. We build a symmetric monoidal category C′. Its objects are the pairs (c, n) with c ∈ C and
n ∈ Z, thought of as c⊗X⊗n. Define

HomC′(c⊗X⊗n, d⊗X⊗m) =
(

colim
r

HomC′(c⊗X⊗n+r, d⊗X⊗m+r)
)ab

.

The symmetric monoidal structure is the “obvious” one (e.g. the switch on X⊗n is given by γ◦nX,X , for n ∈ Z).
One checks that C → C′ satisfies the axioms of a group completion. �

Exercise 2.26. Supply the details of the above proof.

2.4. K-theory.

Definition 2.27. For a ring R, we denote by ProjR ⊂ R-Mod the category of finitely generated, projective
R-modules. View this as a symmetric monoidal category via direct sum. We set

K(R)≤1 = (Proj'R)gp

and
Ki(R) = πiK(R)≤1, for i = 0, 1.

Remark 2.28. We use the symmetric monoidal structure on ProjR given by direct sum, not tensor product.
In particular this definition makes sense even for non-commutative rings. We shall have no use for this fact.

Remark 2.29. We have
K0(R) ' π0(Proj'R)gp and K1(R) ' GL∞(R)ab.

Indeed the first isomorphism is Lemma 2.23. For the second, we put GL∞(R) = colimn GLn(R), where
GLn(R) = Aut(Rn), and apply Theorem 2.25 (with X = R).

Example 2.30. Let k be a field (or PID). Then K0(k) = Z, since π0(Proj'k ) = N (i.e. any finitely generated
torsion-free k-module is isomorphic to kn for some n).

Example 2.31. The maps det : GLn(R)→ R× are compatible, and hence induce det : GL∞(R)→ R×. The
target being abelian, we obtain

det : K1(R)→ R×.

One may prove that this is an isomorphism if R is a semilocal ring.

Scholium 2.32. One may also define Ki(R) for i > 1. In fact there is a space (also known as ∞-groupoid)
K(R) such that Ki(R) = πi(K(R)). This is the subject of higher algebraic K-theory.
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2.4.1. Functoriality. Let α : R→ S be a ring homomorphism. Then extension of scalars defines a symmetric
monoidal functor Proj(α) : ProjR → ProjS , and hence via Example 2.20 we obtain an essentially unique
functor

K(α) : K(R)≤1 → K(S)≤1.

Since naturally isomorphic functors induce the same maps on πi, we obtain from this unique homomorphisms

Ki(α) : Ki(R)→ Ki(S).

Given β : S → T another ring homomorphism, there is a canonical natural isomorphism Proj(β ◦ α) '
Proj(β) ◦ Proj(α) and hence also

K(β ◦ α)≤1 ' K(β)≤1 ◦K(α)≤1.

Again since isomorphic functors induce the same maps on πi we find that

Ki(β ◦ α) = Ki(β) ◦Ki(α).

Thus Ki(−) is a functor.

Scholium 2.33. Since K(−)≤1 is only well-defined up to (canonical) natural isomorphism, it does not really
make sense to ask if it is a functor, at least in the usual sense. The theory of 2-categories can be used to
make precise the idea that K(−)≤1 is a functor in every relevant sense.

2.4.2. K-theory and exact sequences. We have defined K-theory in terms of group completion, that is, by
converting direct sums of modules to sums in our Picard groupoid. However, it turns out that K-theory also
interacts favorably with (non-split) short exact sequences. Thus let

0→ P1 → P2 → P3 → 0

be an exact sequence in ProjR. There exists a splitting s : P3 → P2, inducing an isomorphism ϕ : P2 '
P1 ⊕ P3. In general ϕ depends on s, but this is no longer the case in K-theory.

Proposition 2.34. In the above situation, the image of ϕ in K(R)≤1 is independent of s.

Proof. Let s′ : P3 → P2 be another splitting. Identifying P2 with P1 ⊕ P3 via ϕ, s′ takes the form (α, idP3
),

for some (indeed any) map α : P3 → P1. We consequently obtain a commutative diagram of isomorphisms

P2 P1 ⊕ P3

P1 ⊕ P3,

ϕ

ϕ′
M

where

M =

(
1 α
0 1

)
.

It is sufficient (and necessary) to show that the automorphism M maps to the identity in K(R)≤1. Writing
P1, P3 as summands of free modules, we may as well assume that P1 = Rm and P3 = Rn. Then M ∈
GLn+m(R) and we must write this as a commutator. Since we can write M as a product of elementary
matrices, it suffices to deal with this case. We may assume that m + n > 2. Denoting by Eij(r) the
elementary matrix with entry r in off-diagonal spot (i, j), one verifies that Eij(r) is the commutator of
Eil(r) and Elj(1), for any i 6= l 6= j. �

2.4.3. K-theory of affine schemes.

Definition 2.35. If X is an affine scheme, we put K(X)≤1 = K(OX(X))≤1 and similarly for Ki(X). Given
f : X → Y a morphism of affine schemes, we obtain f∗ : K(Y )≤1 → K(X)≤1 and similarly for Ki.

Note that ProjOX(X) can be equivalently described as the category of vector bundles (locally free sheaves)
on X.

Remark 2.36. K-theory can be extended to non-affine schemes, but the definition is more complicated (it
takes into account the fact that there are non-split exact sequences of vector bundles). We shall not need
this.
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3. The (homotopy) category of framed correspondences

In this section we define the category hCorfr
A, which is the basis for the definition of presheaves with framed

transfers. The definition can be extracted from [EHK+21, §3.2.2], but we give a self-contained account.

3.1. The stable normal bundle. Let f : X → Y be an lci morphism of affine schemes. Being locally of
finite type and affine, we may factor f as X

i
↪−→ AnY → Y , for some n ≥ 0. Then i is automatically a regular

immersion, and so the conormal sheaf Ci is locally free. We now put

Lif = Ci − Ω1
An
Y /Y
|X ∈ K(X)≤1.

Remark 3.1. Of course Ω1
An
Y /Y
|X ' OnX .

Scholium 3.2. What we really mean by this definition is that Lif is a pair (M,η), where M ∈ K(X)≤1 and
η is an isomorphism between M + Ω1

An
Y /Y
|X and Ci in K(X)≤1. If (M ′, η′) is another such pair, then there

is a unique isomorphism M 'M ′ compatible with the other data; see also Remark 2.16.

It turns out that Lif is essentially independent of i.

Theorem 3.3. (1) Let X
j
↪−→ AmY → Y be another factorization of f . We construct an isomorphism

αij : Lif ' L
j
f ∈ K(X)≤1.

(2) Let X
k
↪−→ ApY → Y be yet another factorization of f . Then the following diagram commutes in

K(X)≤1

Lif Lkf

Ljf .

αik

αij αjk

Once this is proved, we find that for all relevant purposes, L?
f is independent of the chosen factorization.

We write Lf ∈ K(X)≤1 for this canonically defined object. If no confusion can arise, we also denote this as
LX/Y . It satisfies the following further “properties”.

Theorem 3.4. (3) Let g : Y → Z be lci, with Z affine. We construct

βg,f : LX/Z ' LX/Y + f∗LY/Z ∈ K≤1(X).

(4) Given furthermore h : Z →W lci, with Z affine, the following diagram commutes

LX/W LX/Z + (gf)∗LZ/W

LX/Y + f∗LY/W LX/Y + g∗LY/Z + (gf)∗LZ/W .

Here all isomorphisms are induced by instances of β.
(5) Suppose given a cartesian square

X ′
p′−−−−→ X

f ′
y f

y
Y ′

p−−−−→ Y.
Assume Y ′ is affine and either f or p is flat. We construct

γf,p : LX′/Y ′ ' p′∗LX/Y ∈ K(X ′)≤1.

(6) Given another morphism of affine schemes q : Y ′′ → Y ′, set X ′′ = Y ′′ ×Y ′ X ′, and so on. Assume
that either f is flat or both p and q are. Then up to the natural identifications we have

γf ′,q ◦ γf,p = γf,qp ∈ HomK(X′′)≤1
(LX′′/Y ′′ , (q

′p′)∗LX/Y ).

(7) β and γ are compatible in the evident way.
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(8) Suppose that f is étale. We construct

δf : Lf ' 0 ∈ K(X)≤1.

The isomorphism δ is compatible with composition and base change (i.e. β and γ) in the evident
way.

Proof of Theorems 3.3 and 3.4. (1) Consider X ↪→ (i, j)An+m. This provides yet another factorization, and
it suffices to compare Lif and L(i,j)

f . The embedding X ↪→ jAm corresponds to regular functions c̄1, . . . , c̄m
on X. Consider the embedding An ↪→ hAn+m corresponding to the regular functions (x1, . . . , xn, c1, . . . , cm)
on An, where xi is the i-th coordinate and cj lifts c̄j . Then the composite hi is (i, j). Using the short exact
sequence for the conormal sheaf in a composite of regular immersions and the interaction of exact sequences
with K-theory (Proposition 2.34), we find that

CX/Am+n ' CX/An + CAn/Am+n |X ∈ K(X)≤1.

Since the closed embedding h is cut out by (xn+i − ci)1≤i≤m, the second conormal sheaf is canonically
isomorphic to Om. It follows that

L
(i,j)
f ' CX/An + CAn/Am+n |X −Om+n ' CX/An −On ' Lif ,

defining the desired isomorphism.
(3) Consider the diagram

An+m
Z

AnY AmZ

X Y Z

in which all maps are the evident ones, and the square is cartesian. We find that

CX/An+m
Z
' CX/An + CAn

Y /An+m
Z
|X ' CX/An + CY/Am

Z
|X ,

where we have also used the stability of conormal sheaves under flat base change. From this we produce the
desired isomorphism, as before.

(5) Consider the diagram of cartesian squares

X ′
p′−−−−→ Xy y

AnY ′ −−−−→ AnYy y
Y ′

p−−−−→ Y.

The assumptions imply that X ′ → AnY ′ is a regular immersion. It follows that CX/An
Y
|X′ ' CX′/An

Y ′
, from

which we obtain the desired isomorphism as before.
(8) Since X → Y is smooth, we have an exact sequence

0→ CX/An
Y

d−→ Ω1
An
Y /Y

→ Ω1
X/Y → 0.

Since X/Y is étale, Ω1
X/Y = 0 and so d is an isomorphism. This yields

LX/Y = CX/An
Y
− Ω1

An
Y /Y

' 0,

as needed.
It remains to show that the stated compatibilities hold. This is tedious but straightforward. �

Example 3.5. Let X → Y be a regular immersion. Then we have the “factorization” X → A0
Y → Y , showing

that LX/Y ' NX/Y .
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Example 3.6. Let X → Y be smooth, and X → AnY → Y a factorization. Then one has the exact sequence

0→ NX/A1
Y
→ Ω1

An
Y /Y

→ Ω1
X/Y → 0.

It follows that
LX/Y ' NX/A1

Y
− Ω1

An
Y /Y

' −Ω1
X/Y .

3.2. The groupoid of framed correspondences.

Definition 3.7. Let A be an affine scheme, and X,Y ∈ AffA. A framed correspondence from X to Y over
A consists of

• a finite syntomic morphism (of A-schemes) Z → X,
• any morphism (of A-schemes) Z → Y , and
• an isomorphism

τ : LZ/X ' 0 ∈ K(Z)≤1.

We think of framed correspondences as some kinds of generalized maps, and often write α : X  Y to
mean that α is a framed correspondence from X to Y (over A). We often summarize the data of a framed
correspondence in a diagram

Z

X Y.

τ

p q

In this case the label p is the name of the morphism Z → X, q is the name of Z → Y , and τ is the
trivialization of LZ/X ; any of these may be omitted for clarity.

Remark 3.8. Let p : Z → X be finite syntomic. Then it may or may not be the case that Lp is isomorphic
to 0 in K(Z)≤1. If so, then the set of such isomorphisms is a torsor over K1(Z).

Definition 3.9. Let X,Y ∈ AffA and suppose given two framed correspondences

Z

X Y,

τ
α

Z ′

X Y.

τ
α′

An isomorphism between α and α′ consists of an isomorphism f : Z → Z ′ such that the following diagram
commutes

Z

X Y

Z ′

f

and the composite

LZ/X ' LZ′/X |Z + LZ/Z′
τ ′' 0 + 0 ' 0 ∈ K(Z)≤1

is τ . (Here we have also used Theorem 3.4(3,8).)

Definition 3.10. Isomorphism of framed correspondences can be composed in an evident way. We hence
obtain the groupoid of framed correspondences Corfr

A(X,Y )≤1.

3.3. The category hCorfr
A.

Definition 3.11. Let X1, X2, X3 ∈ AffA and

Z1

X1 X2,

τ

α

Z2

X2 X3.

τ

α′
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be framed correspondences. Consider the diagram

Z

Z1 Z2

X1 X2 X3,

in which the square is cartesian. We have an isomorphism

LZ/X1
' LZ/Z1

+ LZ1/X |Z ' LZ2/X2
|Z + LZ1/X |Z

τ,τ ′

' 0.

This data defines a framed correspondence α′ ◦ α : X1  X3 called the composition of α and α′.

Theorem 3.12. There is a category hCorfr
A as follows. The objects are the affine A-schemes, the set

of morphisms from X to Y is π0(Corfr
A(X,Y )≤1) (i.e. framed correspondences up to isomorphism), and

[α′] ◦ [α] = [α′ ◦ α].

Proof. Straightforward verification. �

Lemma 3.13. There is a functor AffA → hCorfr
A which is the identity on objects and sends a morphism

X → Y to the framed correspondence
X

X Y,

τ

p

where p = id and τ is the canonical isomorphism (e.g. obtained via Theorem 3.4(8)).

Scholium 3.14. Just as there is a “higher version” K(R) of K(R)≤1, which is an “∞-groupoid”, there is
a “higher version” Corfr

A of hCorfr
A which is an “∞-category”. Presheaves of sets on Corfr

A are the same as
presheaves on hCorfr

A; this is what allows us to eschew the infinitudes. On the other hand, when considering
presheaves of ∞-groupoids, the differences become pronounced.

Moreover, using more complicated definitions of K-theory valid for non-affine schemes, the category
(h)Corfr

A can be enlarged to also contain non-affine schemes.

Remark 3.15. There is a variant of the theory of framed correspondences, where τ (i.e. the framing) is
omitted from the definitions. This yields a groupoid Corfsyn

A (X,Y )≤1 and a category hCorfsyn
A . We shall not

use this in the sequel.

3.4. Examples of presheaves with framed transfer. Suppose F ∈ P(SmAffk) is A1-invariant. We may
wish to prove that F is strictly A1-invariant. By the main theorem, it will suffice to find F̃ ∈ P(hCorfr

k )

extending F . Suppose instead that we can find F̂ ∈ P(hCorfsyn
k ) extending F . Then we can restrict F̂ along

the evident functor hCorfr
k → hCorfsyn

k to obtain F̃ . In other words, providing F with transfers in the sense
of hCorfsyn

k is harder than providing it with transfers in the sense of hCorfr
k . We shall consider two examples

to illustrate the difference.
Consider first the presheaf F (X) = K0(X), i.e. the group completion of the set of isomorphism classes

of vector bundles. To lift this to hCorfsyn
k , for every finite syntomic morphism p : X → Y we must find a

transfer map p∗ : K0(X) → K0(Y ). Viewing a vector bundle V on X as a locally free sheaf, we have the
sheaf p∗V on Y . Since p is finite flat, p∗V is locally free again. Clearly p∗(V ⊕W ) ' p∗(V ) ⊕ p∗(W ). It
follows that there is an induced map p∗ : K(X)≤1 → K(Y )≤1, and taking π0 we obtain the desired transfer.
One may prove that this lifts K0(−) to a presheaf on hCorfsyn

k .
Now we shall consider a variant of this construction which does not lift to hCorfsyn

k , but which does lift
to hCorfr

k . By a symmetric bilinear bundle on X we mean a pair of a vector bundle V and a bilinear map
V × V → O which is symmetric and such that the induced map V → V ∗ is an isomorphism. Symmetric
bilinear bundles can be added in an evident way, and we write GW0(X) for the group completion of the set
of isomorphism classes of symmetric bilinear bundles. This is clearly a functor on Affop

k . Now let p : X → Y
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by a finite syntomic morphism, and V a symmetric bilinear bundle on X. We would like to make p∗(V ) into
a symmetric bilinear bundle on Y . The functor p∗ is lax symmetric monoidal, so we obtain a symmetric
map p∗(V )⊗p∗(V )→ p∗(OX). However, to turn this into a symmetric bilinear form in a natural way, surely
we need a (reasonable) further map p∗(OX) → OY to compose with. Duality theory in algebraic geometry
shows that

Hom(p∗(OX),OY ) ' Hom(OX ,detLp).

Here we have used a functor det : K(X)≤1 → Shv(X) induced by the determinant of a vector bundle.
Consequently we can build a natural transfer whenever we are provided with a trivialization of detLp, for
example, if we are provided with a trivialization of Lp itself. One may prove that this construction lifts
GW0(−) to a presheaf on hCorfr

k .

4. More about hCorfr
k

4.1. Semiadditive categories.

Definition 4.1. A category C is called pointed there exists an object 0 ∈ C which is both initial and final,
i.e., for every X ∈ C we have Hom(X, 0) = ∗ = Hom(0, X).

Remark 4.2. Equivalently, C has an initial object ∅, a final object ∗, and the unique map ∅ → ∗ is an
isomorphism.

Definition 4.3. A pointed category C is called semiadditive if for all X,Y ∈ C the sum X q Y and the
product X × Y exist, and the canonical map

X q Y ' (X × 0)q (0× Y )→ (X × Y )q (X × Y )→ X × Y

is an isomorphism. We write X ⊕ Y for the common object X q Y ' X × Y .

Lemma 4.4. The category hCorfr
A is semiadditive. The 0 object corresponds to the empty scheme, and the

operation ⊕ corresponds to the disjoint union of schemes.

Proof. We have Sch∅ ' {∅} and K(∅)≤0 ' ∗. From this we deduce that

Corfr
A(∅, Z) ' ∗ ' Corfr

A(Z, ∅)

for any Z ∈ AffA, i.e., hCorfr
A is pointed.

Now let X,Y ∈ AffA. We get SchXqY ' SchX × SchY , and also K(X q Y )≤1 ' K(X)≤1 × K(Y )≤1.
From this one easily deduces that

Corfr
A(X q Y,Z) ' Corfr

A(X,Z)× Corfr
A(Y, Z) and Corfr

A(Z,X q Y ) ' Corfr
A(Z,X)× Corfr

A(Z, Y ),

naturally in X,Y, Z ∈ AffA. This implies semiadditivity. �

4.2. Presheaves on a semiadditive category.

Definition 4.5. Let C be a category with finite coproducts. Denote by PΣ(C)≤0 ⊂ Fun(Cop,Set) the
subcategory of those presheaves F such that

F (X q Y )
(i∗X ,i

∗
Y )−−−−−→ F (X)× F (Y )

is an isomorphism for all X,Y ∈ C, and F (∅) = ∗. We sometimes call the objects in PΣ(C)≤0 Σ-presheaves
or even Σ-sheaves.

Scholium 4.6. Let F : A → B be any functor, and p : I → A a diagram. Assume that p has a limit L, and
F ◦ p : I → B has a limit L′. There is a canonical map F (L) → L′, induced by the maps F (L → p(x))
for x ∈ I and the universal property of L′. We say that F preserves the limit of p if F (L) → L′ is an
isomorphism. More generally, it makes sense to ask if F preserves all limits of a certain shape (or shapes),
assuming all such limits exist in A and B.

Now if C has finite coproducts, then Cop has finite products, and the condition for F : Cop → Set to be
in PΣ(C)≤0 is precisely equivalent to asking that F preserves all finite products (including the empty one).
For this reason we also write

PΣ(C)≤0 := Fun×(Cop,Set).
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Construction 4.7. Let C be semiadditive, F ∈ PΣ(C) and X ∈ C. Define an operation + : F (X)×F (X)→
F (X) via the composite

F (X)× F (X) ' F (X ⊕X)
∆∗−−→ F (X),

where ∆ : X → X ⊕X ' X ×X is the diagonal.

Lemma 4.8. In the above situation, (F (X),+) is a commutative monoid, natural in X ∈ C.

Proof. Commutativity of the addition operation corresponds to the fact that the composite

X
∆−→ X ⊕X τ−→ X ⊕X

coincides with ∆, where τ is the swap map. Similarly associativity follows from the fact that

X
∆,id−−−→ (X ⊕X)⊕X ' X ⊕X ⊕X

is the triple diagonal, and similarly for (id,∆) in place of (∆, id). Naturality of the monoid structure along
f : X → Y ∈ C follows from the following commutative diagram in C

X
∆−−−−→ X ⊕X

f

y f⊕f
y

Y
∆−−−−→ Y ⊕ Y.

�

Lemma 4.9. Let C be semiadditive, X ∈ C and F ∈ Fun×(Cop,AbMon). The map

F (X)× F (X) ' F (X ⊕X)
∆∗−−→ F (X)

is addition in the commutative monoid F (X).

Proof. The composite

F (X)× F (X)
p∗1+p∗2−−−−→ F (X ⊕X) ' F (X)× F (X)

is the identity. Indeed composition with the first projection is i∗1◦(p∗1+p∗2) and p1i1 = id whereas p2i1 = 0, and
similarly for the second projection. It follows that the composite in question is given by ∆∗◦(p∗1+p∗2) = id + id,
as needed. �

Proposition 4.10. Let C be semiadditive. The forgetful functor Fun×(Cop,AbMon) → PΣ(C)≤0 is an
equivalence of categories.

Proof. Lemma 4.8 supplies a functor in the other direction, and Lemma 4.9 shows that the two functors are
inverse isomorphisms.1 �

Definition 4.11. Let F ∈ PΣ(C)≤0, where C is semiadditive. We call F grouplike if each of the commutative
monoids F (X) for X ∈ C is an abelian group. Denote by PΣ(C)gp

≤0 ⊂ PΣ(C)≤0 the full subcategory on
grouplike Σ-presheaves.

Corollary 4.12. The forgetful functor Fun×(Cop,Ab)→ PΣ(C)≤0 is an equivalence onto PΣ(C)gp
≤0.

Proof. Indeed Fun×(Cop,Ab) ⊂ Fun×(Cop,AbMon) is the subcategory of sectionwise grouplike functors, so
this is immediate from Proposition 4.10. �

Definition 4.13. We write PAb(C) for the common category PΣ(C)gp
≤0 ' Fun×(Cop,Ab).

1But the notion of isomorphism of categories is evil, so we do not state this stronger conclusion in the proposition.
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4.3. Local group completion. Suppose that C is a category with finite coproducts. The Yoneda embedding
C → Fun(Cop,Set) factors through PΣ. Consequently, if C is semiadditive, then for X,Y ∈ C the set
HomC(X,Y ) acquires a commutative monoid structure (being identified with the sections over X of the
presheaf represented by Y ).

Remark 4.14. Chasing through the definitions, we find that given f, g : X → Y ∈ C, f + g is given by the
composite

X
∆−→ X ⊕X f⊕g−−−→ Y ⊕ Y ∇−→ Y.

We can group-complete the commutative monoids comprising the category C.

Lemma 4.15. Let C be semiadditive. There is a category Cgp with the same objects as C, and HomCgp(X,Y ) =
HomC(X,Y )gp. The category Cgp is semiadditive and the canonical functor C → Cgp preserves finite coprod-
ucts.

Proof. Straightforward checking. �

The category Cgp satisfies a universal property.

Lemma 4.16. The forgetful functor PΣ(Cgp)≤0 → PΣ(C)≤0 is an equivalence onto the subcategory of grou-
plike objects.

Proof. By Remark 4.14, the composite

X
∆−→ X ⊕X id,− id−−−−→ X ⊕X ∇−→ X

is the zero map. This implies that if F ∈ PΣ(Cgp)≤0 and a ∈ F (X), then a+ (− id)∗(a) = 0; hence F (X) is
grouplike. The forgetful functor thus factors through PΣ(C)gp

≤0. Next we claim that if F ∈ PΣ(C)gp then F
admits a unique extension to a presheaf on Cgp. Granting this, we obtain a functor PΣ(C)gp → PΣ(Cgp), and
the two functors are seen to be inverse isomorphisms. It remains to prove the claim. If f ∈ HomCgp(X,Y )
then f = f1 − f2, where f1, f2 ∈ HomC(X,Y ) (not uniquely determined). The only choice for f∗ : F (Y )→
F (X) is f∗1 − f∗2 . It is straightforward to verify that this is well-defined, concluding the proof. �

4.4. Presheaves with framed transfers.

Definition 4.17. Let C ⊂ Affk be closed under finite coproducts. Write hCorfr
k (C) ⊂ hCorfr

k for the full
subcategory on the objects of C.

A presheaf with framed transfers (over k, relative to C) means an object of PAb(hCorfr
k (C)).

The most common choice for us will be C = SmAffk, the subcategory of smooth affine k-schemes. Note
that for any C as in the definition, hCorfr

k (C) is semiadditive.

Remark 4.18. Lemma 3.13 yields a functor C → hCorfr
k (C). Restriction along this turns an object of

PAb(hCorfr
k (C)) into an abelian presheaf on C itself, called the underlying presheaf.

4.5. A1-invariance. Let C ⊂ Affk be closed under finite coproducts, and product with A1. We call F ∈
PAb(hCorfr

k (C)) A1-invariant if the underlying presheaf is, that is, if given X ∈ C the canonical map F (X)→
F (X × A1) is an isomorphism.

There are many equivalent characterizations of A1-invariance.

Lemma 4.19. Let F ∈ PAb(C). The following conditions are equivalent:
(1) F is A1-invariant, i.e., for X ∈ C the canonical map p∗ : F (X)→ F (X × A1) is an isomorphism.
(2) For X ∈ C the canonical map i∗0 : F (X × A1)→ F (X) is an isomorphism.
(3) The maps p∗ are surjective (for every X).
(4) The maps i∗0 are injective (for every X).
(5) The maps i∗0 and i∗1 are equal (for every X).

Here is : X → X × A1 is the inclusions at s ∈ A1.

Proof. Since p ◦ is = id, the map p∗ is an isomorphism if and only if i∗s is, in which case the two are inverse.
Thus in particular i∗0 = (p∗)−1 = i∗1. Hence (1) is equivalent to (2), and either implies (5). Moreover again
since i∗0p∗ = id, the map p∗ is always injective and i∗0 is always surjective, so that (1) is equivalent to (3)
and (2) is equivalent to (4). It remains to prove that (5) implies any of the other conditions. Consider
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the map m : A1 × A1 × X → A1 × X induced by multiplication (x, y, t) 7→ (xy, t). Then mi0 is the map
(x, t) 7→ (0, x, t) 7→ (0, t), i.e. the same as i0p. On the other hand mi1 is the map (x, t) 7→ (1, x, t) 7→ (x, t),
i.e. the identity. It follows that

p∗i∗0 = m∗i∗0
(5)
= m∗i∗1 = id∗,

and hence p∗ is surjective as needed. �

Definition 4.20. We write PA1

Ab(hCorfr
k (C)) ⊂ PAb(hCorfr

k (C)) for the full subcategory on A1-invariant
presheaves.

Definition 4.21. Let
hCorfr

k (X,Y ) = hCorfr
k (X,Y )gp/imα,

where α : hCorfr
k (A1 ×X,Y )gp → hCorfr

k (X,Y )gp is given by α(h) = h ◦ i0 − h ◦ i1.

Remark 4.22. Two morphisms of the form h ◦ i0, h ◦ i1 are called (directly) A1-homotopic.

Lemma 4.23. We have a category hCorfr
k (C) with the evident objects, mapping sets, and composition. It is

semiadditive. The forgetful functor PAb(hCorfr
k (C))→ PAb(hCorfr

k (C)) is an equivalence onto the subcategory
of A1-invariant presheaves.

Proof. The first assertion follows easily from the fact that A1-homotopic maps are stable under composition
on either side. For the second assertion, since (hCorfr

k )gp(C) → hCorfr
k (C) is surjective on mapping sets, it

follows from Lemma 4.16 that the functor is fully faithful. It remains to prove that given F ∈ PAb(hCorfr
k (C)),

F extends (necessarily uniquely) over hCorfr
k (C) if and only if F is A1-invariant. If F is A1-invariant, a ∈ F (X)

is a section and h ∈ hCorfr
k (Y × A1, X), then

α(h)∗(a) = i∗0h
∗(a)− i∗1h∗(a) = 0

by Lemma 4.19(5). Conversely, in the category hCorfr
k (C) the two maps i0, i1 : X → A1 × X are equal by

construction, and so i∗0 = i∗1 whenever F extends. Thus we conclude by Lemma 4.19(5) again. �

Scholium 4.24. In the category hCorfr
k (C), the map p : A1×X → X is an isomorphism with inverse i0 (= i1).

This follows from the previous result via the Yoneda lemma, or by directly noting that the composite i0p− id
equals α(m) and so is 0. In the sequel, many arguments about A1-invariant presheaves with transfers will
be expressed as arguments in the category hCorfr

k (C).

5. A prototypical result

Up to certain formal arguments explained in the next section, proving strict A1-invariance largely involves
studying the category hCorfr

k . Before delving into the formalism, we want to illustrate what we mean by the
latter in the simplest case.

5.1. Construction of framed correspondences.

Lemma 5.1. Let X → Y be smooth of relative dimension d. Let f1, . . . , fn ∈ O(X) and put Z =
Z(f1, . . . , fn). If all non-empty fibers of Z → Y have relative dimension d− n, then X → Y is syntomic.

Proof. Since the problem is local on X and Y , we may assume that X,Y are affine and the morphism factors
as X → AdY → Y , with X → AdY étale. Now apply [EHK+21, Lemma 2.1.15] (and note that relative “global
complete intersections” are syntomic [Sta18, Tag 00SW]). �

Example 5.2. The most common example of a framed correspondence is as follows. Let f1, . . . , fn ∈ O(AnX)
and assume that Z = Z(f1, . . . , fn) is finite over X. Then by the above, Z → X is syntomic. Moreover

LZ/X = CZ/An
X
− Ω1

An
X/X

is trivialized, since both terms are canonically isomorphic to free modules of rank n (with bases [f1], . . . , [fn]
and dT1, . . . , dTn, respectively). This presentation is sometimes called an equational framing.

We shall employ only the case of relative dimension 1.
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Construction 5.3. Suppose given X,Y ∈ Affk, p : U → X smooth of relative dimension 1, g : U → Y ,
f ∈ O(U), a decomposition Z(f) = Z q Z ′ with Z → X finite, and an isomorphism µ : Ω1

U/X ' OU . We
denote by

div(f)µ,gZ ∈ Corfr
k (X,Y )

the correspondence
Z

X Y,

τ

p g

where Z → X,Z → Y are obtained from the inclusion Z → U by composition with the maps U → X,U → Y .
The map p is finite syntomic by Lemma 5.1. The trivialization τ is given by

LZ/X ' LZ/U + LU/X |Z ' NZ/U − Ω1
U/X |Z

(f,µ)
' OZ −OZ ' 0.

Warning 5.4. The notation div(f)µ,gZ can be confusing if X,Y or p are not clear from the context.

This construction has the following properties, all of which are straightforward from the definition.
• If λ ∈ O×(U) then div(λf)λµ,gZ = div(f)µ,gZ .
• If Z = Z1

∐
Z2, then div(f)µ,gZ = div(f)µ,gZ1

+ div(f)µ,gZ2
.

• If Z → X and Z → Y are both isomorphisms of schemes, then div(f)µ,gZ is invertible.
• Given h : Y →W we have h ◦ div(f)µ,gZ = div(f)µ,hgZ .
• Given h : W → X we have div(f)µ,gZ ◦h = div(f ′)h

∗µ,gh
h−1Z . Here we are using f ′ : U ′ := U ×XW →W

and the isomorphism Ω1
U ′/W ' h

∗Ω1
U/X .

5.2. Injectivity for the relative affine line. Using the above method for constructing correspondences,
we can prove our first non-trivial result about presheaves with framed transfers.

Theorem 5.5. Let U ∈ SmAffk, V1 ⊂ V2 ⊂ A1
U affine and open. Assume that A1

U \ V2 and V2 \ V1 are finite
over U . Then for F ∈ PA1

Ab(hCorfr
k (SmAffk)), the restriction map F (V2)→ F (V1) is injective.

Example 5.6. If U = Spec(k), then any open subschemes ∅ 6= V1 ⊂ V2 ⊂ A1
k satisfy the hypotheses.

In order to establish Theorem 5.5, it will be enough to show the following.

Theorem 5.7. Let U, V1, V2 as above. Then there exists Φ : V2  V1 such that

[i ◦ Φ] = [idV2 ] ∈ hCorfr
k .

Here i : V1 → V2 denotes the inclusion.

Indeed given F as in Theorem 5.5, it extends to a presheaf on hCorfr
k (SmAffk) (by Lemma 4.23). Then

Φ∗i∗ = id, whence i∗ must be injective.

Proof of Theorem 5.7. We begin by constructing certain functions f, g ∈ k[A1
U ×U V2]. We shall denote the

first coordinate by y and the second by x. We will arrange that f, g are respectively monic in y of degrees
n and n− 1 (for some n sufficiently large). Moreover, we shall ensure that

f |(A1
U\V1)×UV2

= 1

g|(A1
U\V2)×UV2

= (y − x)−1

g|(V2\V1)×UV2
= 1 g|Z(y−x) = 1.

To do this, first note that each of the subschemes we are restricting to is finite over V2, and hence proper
closed in A1

V2
. Now apply Lemma 5.8 below.

Let h ∈ k[A1 × V2 × A1] be given by

h = (1− λ)f + λ(y − x)g;
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here λ denotes the third coordinate. Note that h is monic in y. Define

Φ′ = div(f |V1×UV2
)dy,pr1Z(f) : V2  V1

Θ = div(h|V2×UV2×A1)dy,pr1Z(h) : V2 × A1  V2.

Since f, h are monic in y, their vanishing loci are finite (over V2, respectively V2×A1). By construction, they
have no zeros if y 6∈ V1 or y 6∈ V2, respectively. Hence the vanishing loci relevant for the div(. . . ) are also
finite.

Since h|λ=0 = f we find that
Θ′ ◦ i0 = i ◦ Φ′.

Since h|λ=1 = (y − x)g has vanishing locus splitting into two disjoint pieces, we find that

Θ′ ◦ i1 = div((y − x)g|V2×UV2)dy,pr1Z(y−x) + div((y − x)g|V2×UV2)dy,pr1Z(g) .

Define
Φ− = div((y − x)g|V1×UV2

)dy,pr1Z(g) : V2  V1.

As before the vanishing locus is finite. Finally put Φ = Φ′ − Φ−. We find that

[i] ◦ [Φ] = [i ◦ Φ′]− [i ◦ Φ′] = [Θ ◦ i1]− [i ◦ Φ′] = div((y − x)g|V2×UV2
)dy,pr1Z(y−x),

which is invertible as needed. �

Lemma 5.8. Let U be an affine scheme and Z ⊂ A1
U a closed subscheme which is finite over U . Let

f̄ ∈ O(Z). Then for n sufficiently large there exists a monic f ∈ O(A1
U ) with f |Z = f̄ .

Proof. Let U = Spec(A), Z = Spec(A[T ]/I). Since Z is finite, there exist g1, . . . , gr ∈ A[T ] whose images
generate A[T ]/I as an A-module. Let n be larger than the maximum of the degrees of the gi. We claim
that f as desired can be found for such n. Indeed note that any h̄ ∈ A[T ]/I admits a lift h ∈ A[T ] of degree
< n; in fact we can choose the lift to be an A-linear combination of the gi. Now let f1 be an arbitrary lift
of f̄ − Tn of degree < n, and put f = Tn + f1. �

6. The formal argument

Fix a perfect field k.

6.1. Axiomatics.

Definition 6.1. X ∈ Affk is called essentially smooth if it can be written as a cofiltered limit of objects
in SmAffk with affine transition maps. Denote by EssSmAffk ⊂ Affk the category of essentially smooth
schemes.

Example 6.2. Let X ∈ Smk and x ∈ X. Then Xx, X
h
x , X

sh
x ∈ EssSmAffk.

Example 6.3. Let K/k be a finitely generated field extension. Then Spec(K) ∈ EssSmAffk. Indeed Spec(K)
is the generic point of a smooth k-variety, by generic smoothness (using that k is perfect).

Example 6.4. A∞ = limi Ai is not essentially smooth.

Given F ∈ P(SmAffk), we can left Kan extend F to P(EssSmAff). Thus for X = limiXi with Xi ∈
SmAffk we put

F (X) = colim
i

F (Xi).

We shall use this freely in the sequel.

Definition 6.5 (IA). We say that F satisfies injectivity on the affine line (short IA) if the following holds.
For any finitely generated field extension K/k (automatically essentially smooth) and open subschemes
∅ 6= V1 ⊂ V2 ⊂ A1

K (automatically affine), the restriction F (V2)→ F (V1) is injective.
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Definition 6.6 (EA). We say that F satisfies excision on the relative affine line (short EA) if the following
holds. For any essentially smooth affine scheme U and affine open subscheme V ⊂ A1

U containing 0U ,
restriction induces an isomorphism

F (A1
U \ 0U )/F (A1

U ) ' F (V \ 0U )/F (V ).

(Note that A1
U \ 0U and V \ 0U are indeed affine.)

Furthermore we require that if K/k is a finitely generated field extension, z ∈ A1
K a closed point, V ⊂ A1

K

an open neighborhood of z, then

F (A1
K \ z)/F (A1

K) ' F (V \ z)/F (V ).

Definition 6.7 (IL). We say that F satisfies injectivity for henselian local schemes (short IL) if the following
holds. For any essentially smooth, henselian local scheme U with generic point η, the restriction F (U)→ F (η)
is injective.

Definition 6.8 (EE). We say that F satisfies étale excision (short EE ) if the following holds. Let π : X ′ → X
be an étale morphism of essentially smooth, local k-schemes. Let Z ⊂ X be a principal closed subscheme
such that π−1(Z)→ Z is an isomorphism. Then the canonical map

F (X \ Z)/F (X)→ F (X ′ \ π−1(Z))/F (X ′)

is an isomorphism.

We shall also use the notion of contraction.

Definition 6.9. Let F be a presheaf. We denote by F−1 the presheaf X 7→ F (X ×Gm)/F (X), and by F−n
the n-fold iterate of this construction.

The main result of this section is as follows.

Theorem 6.10. Let k be a perfect field. Let C be a collection of abelian presheaves on SmAffk which is
closed under F 7→ F−1 and F 7→ Hi(−, F ). Assume that whenever F ∈ C is A1-invariant then it satisfies
IA, EA, IL and EE.

Let F ∈ C be A1-invariant. Then for every essentially smooth (not necessarily affine) k-scheme X we
have

Hi(X × A1, F ) ' Hi(X,F ).

Remark 6.11. We shall eventually prove that C = {presheaves admitting framed transfers} satisfies the
assumptions of Theorem 6.10. This will prove Theorem 1.1, i.e., achieve the goal of these notes.

6.2. A1-invariance of the associated sheaf.

Lemma 6.12. Let K/k be a finitely generated field extension and F a presheaf satisfying IA, EA, IL and
EE. Let U ⊂ A1

K be open. Then F (U) ' (aNisF )(U) and Hi(U,F ) = 0 for i > 0.

Proof. Let X = A1
K .

We first establish the following claim: (∗) if U ⊂ A1
K is open, z1, . . . , zn ∈ U are distinct closed points,

then

F (U \ {z1, . . . , zn})/F (U) '
n⊕
i=1

F (Uhzi \ zi)/F (Uhzi).

If n = 1, this follows by combining EA and EE. Now let n > 1, and assume the claim proved for n − 1.
Combining IA and the case n = 1, we have a short exact sequence

0→ F (U \ {z1, . . . , zn−1})/F (U)→ F (U \ {z1, . . . , zn})/F (U)→ F (Uhzn \ zn)/F (Uhzn)→ 0.

By induction the source is isomorphic to
⊕n−1

i=1 F (Uhzi \zn)/F (Uhzi), and we can thus split the sequence. This
proves the claim.

Consider the following sequence of presheaves on XNis

0→ F →
⊕
η∈U(0)

F (η)→
⊕
z∈U(1)

F (Uhz \ z)/F (Uhz )→ 0;

here U → X is some étale scheme (automatically affine). Observe that the second two terms are skyscraper
sheaves. In particular they are sheaves, and even acyclic. We argue that this sequence is exact after
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sheafification. For this we need only consider the case U = η (a generic point of some étale X-scheme), and
the case where U is henselian local of dimension 1, so in particular has only two points. Both sequences
exact; the only non-trivial point is injectivity of F (U)→ F (η) which is IL.

It follows that we may compute Hi(U,F ) using the above resolution; in particular Hi = 0 for i > 1. Let
U ⊂ X. We first compute H0(U,F ): it consists of those elements a ∈ F (η) (where η is the generic point
of U) such that for every closed point z ∈ U , a is in the image of F (Xh

z ) → F (Xh
z \ z). Let a be such

an element. Then there exists ∅ 6= V ⊂ U and a′ ∈ F (V ) such that a = a′|η. Let z ∈ U \ V and put
V ′ = V ∪{z}. Note that V ′ ⊂ U is open. By (∗) with n = 1 we have F (V )/F (V ′) ' F ((V ′z )h \ z)/F ((V ′z )h).
The image of a′ in the right hand group vanishes by assumption, hence it vanishes in the left hand group. In
other words there exists a′′ ∈ F (V ′) extending a′. Repeating this argument finitely many times we conclude
that F (U)→ H0(U,F ) is surjective. The map is injective by IA, and hence an isomorphism.

It remains to prove that H1(U,F ) = 0. In other words, given distinct closed points z1, . . . , zn ∈ U we
must prove that F (η)→

⊕n
i=1 F (Uhzi \ zi)/F (Uhzi) is surjective. This follows from (∗), since it identifies the

right hand side with a quotient of F (U \ {z1, . . . , zn}). �

Remark 6.13. Suppose that in addition F is A1-invariant. Then we get

H0(A1
K , F ) ' F (A1

K) ' F (K) ' H0(Spec(K), F )

and also
Hi(A1

K , F ) = 0 = Hi(Spec(K), F ), i > 0,

since the Nisnevich cohomological dimension of fields is zero. Of course these conclusions would be expected
if F was strictly A1-invariant.

In fact A1-invariance of H0(−, F ) = aNisF follows easily from the restricted case considered above.

Corollary 6.14. Suppose that F is A1-invariant and satisfies IA, EA, IL and EE. Then aNisF is A1-
invariant.

Proof. Let X ∈ SmAffk. We must prove that H0(X × A1, F ) → H0(X,F ) is injective (see Lemma 4.19).
Consider the diagram

H0(X,F ) −−−−→
∏
η∈X(0) H0(η, F )x x

H0(A1
X , F ) −−−−→

∏
η∈X(0) H0(A1

η, F )y y∏
x∈A1

X
H0((A1

X)hx, F ) −−−−→
∏
x∈A1

X
H0(ηx, F ),

where ηx is the generic point of (A1
X)hx. This lies over a point of A1

η, so the bottom right hand map is defined
and the diagram commutes. The bottom left hand map is injective and the bottom map is injective by IL;
hence the middle map is injective. Consequently the top left hand map is injective as soon as the top right
hand map is. This reduces the claim to the case X = η, which holds by Lemma 6.12. �

6.3. A1-invariance of cohomology. We have to work harder for the higher cohomology groups.
To be added late.

7. Transfers on cohomology

Let us first study colimits in abelian presheaves.

Lemma 7.1. Let C be a category with finite coproducts. Then colimits in PAb(C) are computed sectionwise.

That is, given a diagram F : I → PAb(C) and c ∈ C, we have

(colim
i

Fi)(c) ' colim
i

Fi(c).

Note that the colimit on the left hand side is computed in in PAb(C) and the colimit on the right hand side
is computed in Ab.
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Proof. We know that colimits in Fun(Cop,Ab) are computed sectionwise. It thus suffices to prove that if
Fi ∈ PAb(C) ⊂ Fun(Cop,Ab) for every i, then colimi Fi computed in Fun(Cop,Ab) lies in PAb(C). In other
words, the colimiting presheaf G must still satisfy G(c

∐
d) ' G(c) × G(d). For this it is enough to show:

given A,B : I → Ab, we have

colim
i

[Ai ×Bi] '
[
colim
i

Ai

]
×
[
colim
i

Bi

]
.

It suffices to prove this for I being a filtered category, or the category corresponding to a finite coproduct, or
a reflexive coequalizer [?]. Since finite coproducts are also finite products in Ab, they commute with finite
products as needed. The case of filtered colimits and reflexive coequalizers is easily verified by hand. �

Corollary 7.2. Let f : C → D be a functor between categories with finite coproducts, preserving finite
coproducts. Then in the adjunction

f : PAb(C)� PAb(D) : f∗

(where the left adjoint is left Kan extension), f∗ preserves all limits and colimits.

Proof. Preservation of limits is clear, being a right adjoint. Preservation of colimits follows from Lemma 7.1
since colimits are computed sectionwise in both categories. �

In particular, we can compute colimits in presheaves with transfers just as we would without transfers;
more precisely the forgetful functor commutes with colimits.

We shall prove that cohomology presheaves admits transfers by employing a trick: we shall find a specific
resolution (the Godement resolution) which actually is a resolution by presheaves with framed transfers.

Construction 7.3. Let F ∈ PAb(SmAffk). Define E0F ∈ PAb(SmAffk) by

(E0F )(X) =
∏
x∈X

F (Xh
x ),

with the evident structure maps. Denote by F → E0F the map induced by restriction.

To define the “evident” structure maps, suppose that X → Y is a map in SmAffk, taking x ∈ X to
y ∈ Y . Then since (X ×Y Y hy )hx ' Xh

x , there is a canonical induced map Xh
x → Y hy , giving a component of

(E0F )(Y )→ (E0F )(X).

Lemma 7.4. (1) F → E0F is a well-defined map of presheaves.
(2) E0F is a sheaf.
(3) The induced map aNisF → E0F is injective.

Proof. (1,2) Tedious checks.
(3) Let X ∈ SmAffk, x ∈ X. The composite F (X) → (E0F )(X) → F (Xh

x ), where the second map is
projection, is just restriction. Taking the colimit over étale neighborhoods of x, we find that the induced
map F (Xh

x ) → (E0F )(Xh
x ) admits a retraction, and so is injective. The map is thus injective on stalks, as

needed. �

Now we show that the Godement construction is compatible with transfers.

Lemma 7.5. Let F ∈ PAb(hCorfr
k (SmAffk)). Then F → E0F lifts canonically to PAb(hCorfr

k (SmAffk)).

We shall only sketch the proof of this result. For a very careful treatment of a closely related result, see
[Ivo07].

Proof sketch. We explain how to define transfers on E0F and leave the rest to the reader. Consider a framed
correspondence

Z

X Y,

τ

f

α

with X,Y ∈ SmAffk. For x ∈ X, y ∈ Y we shall define α∗xy : F (Y hy )→ F (Xh
x ); these will be the components

of α∗ : (E0F )(Y ) → (E0F )(X). Let x1, . . . , xn ∈ Z be the fibers above x. We set α∗xy = α∗1 + · · · + α∗n. If
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f(xi) 6= y we let α∗i = 0. Otherwise by [Sta18, Tag 08HR] there is a unique map Zhxi
→ Y hy compatible with

xi → y. Moreover since (use [Sta18, Tag 04GH(1)])

Xh
x '

n∐
i=1

Zhxi
,

we obtain a framed correspondence
Zhxi

Xh
x Y hy .

τ

αi

This concludes the construction. �

Remark 7.6. The proof illustrates one reason why it is crucial to use the Nisnevich instead of Zariski topology:
Xx ×X Z need not be a finite disjoint union of local rings, and the argument will break down.

Corollary 7.7. If F ∈ PAb(hCorfr
k (SmAffk)), then Hi(−, F ) also has canonical framed transfers.

Proof. Consider the sequence
F → E0F → E1F → . . . ,

where
Ei+1F := E0(EiF/imEi−1F )

(and E−1F := F ), with EiF → Ei+1F the evident composite. By construction, this is a complex, and since
G → E0G is Nisnevich locally injective and each EiF is a Nisnevich sheaf (Lemma 7.4), aNisF → E•F
is a resolution. Since moreover each EiF is flasque, we can use the resolution to compute cohomology
presheaves. Thus in order to prove the result, it suffices to prove that E•F is a complex of presheaves with
framed transfers. This follows from Lemma 7.5 (and the fact that colimits of presheaves can be computed
with or without transfers, by Lemma 7.2). �

8. Injectivity for semilocal schemes

In this section we shall prove the following result.

Theorem 8.1. Let X ∈ EssSmAffk have finitely many closed points x1, . . . , xn. Let Z ⊂ X be a principal
closed subscheme containing all the closed points. Let F ∈ PA1

Ab(hCorfr
k ). Then F (X)→ F (X \Z) is injective.

Before going any further, let us see how to deduce axiom IA from this.

Example 8.2. Let X be henselian local with generic point η. We have

η ' lim
∅6=U⊂X

U = lim
Z⊂X

X \ Z.

Here the limit is over all non-empty open subschemes of X, which we may (for cofinality reasons) assume
to be principal. We can index this equivalently on the complements, which are the proper principal closed
subschemes Z. Now applying Theorem 8.1 to each such Z and using that a filtered colimit of injections is
injective, we deduce that

F (X)→ colim
Z

F (X \ Z) ' F (η)

is injective. This is IL.

To prove the theorem, we shall use the following lemma.

Lemma 8.3. Assume k is infinite.
Let V ∈ SmAffk, x1, . . . , xn ∈ V , Z ⊂ V principal closed containing all the xi, X the semilocalization of

V in the xi. Then there is a framed correspondence Φ : X  V \ Z such that

V \ Z

X V

Φ

commutes up to A1-homotopy.
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Proof of Theorem 8.1. We assume that k is infinite. In the case of finite fields a “coprime extensions” trick
can be used to reduce to the infinite case.

Write X = limiXi, where Xi ∈ SmAffk. Since Z is a principal closed subscheme, without loss of generality
we may assume that Z = limi Zi, where Zi ⊂ Xi is principal closed. Let yi1, . . . , yin ∈ Xi denote the images
of the xi. We may assume that yij ∈ Zi for all j. Let Yi be the semilocalization of Xi in the yij . Noting
that limi Yi ' X, it suffices to prove that F (Yi) → F (Yi \ Zi) is injective. Let V ⊂ Xi be an open affine
neighborhood of the {yij}j . Lemma 8.3 shows that

ker(F (V )→ F (V \ Z) ⊂ ker(F (V )→ F (Yi)).

Taking the (filtered, whence exact) colimit over all such open neighborhoods we deduce that

ker(F (Yi)→ F (Yi \ Zi)) ⊂ ker(F (Yi)→ F (Yi)) = 0.

This concludes the proof. �

Remark 8.4. To prove Lemma 8.3, we may assume that x1, . . . , xn ∈ V are closed. Indeed if not, pick
closed specializations y1, . . . , yn. Note that yi ∈ Z (Z being closed) and xi ∈ Vy1,...,yn (Vy1,...,yn being an
intersection of open subsets containing yi). Applying the Lemma with the yi in place of the xi yields the
right hand half of the following diagram

V \ Z

Vx1,...,xn
Vy1,...,yn V.

j

Φ′

Setting Φ = Φ′ ◦ j proves what we want.

To prove Lemma 8.3, we shall use the following geometric result. It is established in the next section.

Proposition 8.5. Assume k infinite.
Let V ∈ SmAffk, Z ⊂ V a closed subscheme (everywhere) of positive codimension, x1, . . . , xn ∈ Z closed

points, U = Vx1,...,xn
. Then we have a diagram in EssSmAffk

V
v←− C j−→ C

p−→ U

with the following properties:
(1) p : C → U is a relative projective curve, j is an open immersion, and p ◦ j : C → U is smooth.
(2) p ◦ j admits a section ∆ such that U ∆−→ C

v−→ V is the canonical map.
(3) v−1(Z) is finite over U .
(4) C \ C is finite over U .
(5) Ω1

C/U is trivial.

Proof of Lemma 8.3. We shall use several times that any line bundle on a semilocal scheme is trivial. We
shall also use that if X is projective over an affine scheme A, F → G a surjection of coherent sheaves on X,
then H0(X,F (n))→ H0(X,G(n)) is surjective for n sufficiently large.

Choose data as in Proposition 8.5. We use U instead of X now. Put Z ′ := v−1(Z), D := C \ C. Since
D is finite over U , if T is a positive dimensional component of the fiber of C → U over a closed point, then
T is not contained in D. For every such component, pick a closed point xT ∈ T with xT 6∈ D, and write
S for the finite set of points obtained in this way. Since OC → ODq(Z′∪∆∪S) is surjective, for r sufficiently
large H0(C,O(r)) → H0(D q (Z ′ ∪ ∆ ∪ S),O(r)) is surjective. Since OZ′∪∆∪S(n) is trivial, it admits a
non-vanishing section 1. We can thus find d ∈ H0(C,O(r)) mapping to

(0, 1) ∈ H0(D q (Z ′ ∪∆ ∪ S),O(r)) ' H0(D,O(r))×H0(Z ′ ∪∆ ∪ S,O(r)).

Note that D ⊂ Z(d). Replace D by Z(d), C by C \ C, O(1) by O(r). By construction Z ′ ∪∆ ⊂ C. Also
D → U is finite. Indeed it is proper, so it suffices to prove quasi-finiteness, and so by semicontinuity of
fiber dimension [Sta18, Tag 0D4I] (and using that C → U is a relative curve) it suffices to prove that if T
is a positive dimensional component of a fiber of C → U over a closed point, then T 6⊂ D. But xT 6∈ D by
construction. Hence all hypotheses still hold.
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Note that ∆ : U → C is a regular immersion of codimension 1, and hence ∆ ⊂ C is a divisor. In particular
O(−∆) (the ideal sheaf defining ∆) is a line bundle on C, with inverse O(∆). We claim that for n sufficiently
large, we can find sections satisfying the following hypotheses:

s ∈ H0(C,O(n)), s̃ ∈ H0(C × A1,O(n)), s′ ∈ H0(C,O(n)⊗O(−∆)), δ ∈ H0(C,O(∆))

Z(s) ∩ (Z ′ qD) = ∅, Z(s′) ∩ (Z ′ ∪D ∪∆) = ∅, Z(δ) = ∆

Z(s̃) finite over A1
U

s̃|C×0 = s, s̃|C×1 = s′ ⊗ δ, Z(s̃) ∩D × A1 = ∅.

The last two conditions imply that also Z(s), Z(s′ ⊗ δ) are finite over U , and so is Z(s′) (being a closed
subscheme of Z(s′ ⊗ δ)). Pick an isomorphism µ : Ω1

C/U ' OC , and recall the map v : C → V . We
consider the following framed correspondences, built using Construction 5.3 from the relative smooth curves
C \ Z ′ → U and C × A1 → U × A1 (plus extra data)

Φ′ = div(s/dn)µ,vZ(s) − div(s′ ⊗ δ/dn)µ,vZ(s′) ∈ Corfr
k (U, V \ Z)gp

Θ′ = div(s̃/dn)µ,vZ(s̃) − div(s′ ⊗ δ/dn)µ,vZ(s′) ◦ pr
A1×U
U ∈ Corfr

k (A1
U , V )gp.

We compute

Θ′ ◦ i0 = i ◦ Φ′

and

Θ′ ◦ i1 = div(s′ ⊗ δ/dn)µ,vZ(δ).

The latter is a framed correspondence

∆

U V.

τ

p v

α

Consider also the framed correspondence

∆

U U.

τ

p p

β

Then since U ' ∆
v−→ V is j : U → V we find that α = j ◦ β. On the other hand β is invertible. Put

Φ′ = Φ ◦ β−1 and Θ = Θ′ ◦ β−1. One checks that Θ ◦ i0 = i ◦ Φ and Θ ◦ i1 = α ◦ β−1 = j, as needed.
It remains to construct s, s′, δ and s̃. For δ, we just take the tautological section of O(∆) (dual to the

inclusion O(−∆) ⊂ O). For n large enough, both

H0(C,O(n)⊗O(−∆))→ H0(Z ′ ∪D ∪∆,O(n)⊗O(−∆))

and

H0(C,O(n))→ H0(Z ′ qD,O(n))

are surjective. Pick s′ such that s′|Z′∪D∪∆ has no zeros (this is possible because Z ′ ∪D ∪∆ is semilocal, so
any line bundle on it is trivial). Pick s in such a way that s|D = s′ ⊗ δ|D and s|Z′ is non-vanishing. Finally
put s̃ = (1− t)s+ ts′⊗ δ, where t is the coordinate on A1. We are done once we prove that Z(s̃)→ A1×U is
finite (note that Z|D×A1 is just given by s|D = s′⊗ δ|D, which is non-vanishing). The map being proper and
C × A1 → U × A1 being a relative curve, it is enough to show that if T is a positive dimensional component
of a fiber, then T 6⊂ Z(s̃). But O(1)|T is ample whence non-trivial, so D = Z(d) meets T . We conclude since
Z(s̃) and D are disjoint. �
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9. A moving lemma

In order to prove Proposition 8.5, we shall use the method of general projections. The following result is
enough for what we need.

Theorem 9.1. Let k be a field, X ⊂ ANk a closed subscheme of dimension d, Z ⊂ AN of dimension ≤ d− 1,
S ⊂ AN a finite set of closed point (i.e. a subscheme of dimension 0). Then for a general linear projection
π : AN → Ad, the following hold:

(1) π|X : X → Ad is finite.
(2) If X is smooth, then π|X is étale at all points of S ∩X.
(3) π−1(π(S)) ∩ Z ⊂ S.

Scholium 9.2. Linear maps AN → Ad are parametrized by the variety P = AN×d, in the sense that given
x ∈ P we obtain a linear map πx : ANk(x) → Adk(x). The meaning of the theorem is that there exists a dense
open subset U ⊂ P such that for all x ∈ U , the map πx satisfies conditions (1), (2) and (3) (slightly modified
to take into account the base change to k(x)).

Remark 9.3. Note that a dense open subset of affine space over an infinite field contains a rational point. It
follows that in the case of an infinite field, there is an actual linear projection π : ANk → Adk satisfying all the
properties.

Scholium 9.4. To prove Theorem 9.1, we can use the following simplifications. Firstly, in any topological
space, finite intersections of dense open sets are dense open. It follows that in order to prove that a general
map satisfies a finite conjunction of properties, it suffices to prove separately for each condition that it is
satisfied by a general map. Furthermore, affine space being irreducible, an open set being dense is equivalent
to it being nonempty. Thus it will suffice to prove that the set of maps satisfying some condition is open,
and then exhibit a single map satisfying the condition.

Proof of Theorem 9.1. Write π = (π1, . . . , πd), where πi : AN → Ad is given by πi =
∑N
j=1 a

i
jxj (with aij ∈ k).

We treat each of the conditions in turn.
Condition (1). Let π̄i = ai1X1 + · · · + aiNXN and π̄0 = X0 and put V = Z(π̄0, π̄1, . . . , π̄d) ⊂ PN . We

obtain a map
π̄ : PN \ V → Pd, (X0 : · · · : XN ) 7→ (π̄0 : · · · : π̄d).

Write PN−1
∞ ⊂ PN ,Pd−1

∞ ⊂ Pd for the hyperplanes at infinity. Note that π̄−1(Pd−1
∞ ) ⊂ PN−1

∞ , π̄−1(Ad) ⊂ AN

and π̄|AN = π. Let X̄ ⊂ PN be the closure of X. If X̄ ∩ V = ∅ then we obtain a proper map π̄|X̄ : X̄ → Pd.
Note that X̄ ∩AN = X whence π̄|−1

X̄
(Ad) = X, and so π|X : X → Ad is both proper and affine, whence finite.

It thus remains to prove that for general π, X̄ ∩ V = ∅.
By assumption, dimX = d and hence dimX ∩ PN−1

∞ = d− 1. This is a well-known fact, a proof of which
we now sketch. Let G be the Grassmannian of (N −1−d)-dimensional linear subspaces of PN−1

∞ . Let U ⊂ P
be the open subset of full rank linear maps AN → Ad. Sending π to V defines a morphism of schemes U → G.
We shall prove that there is an open subset of G such that the corresponding V misses X̄ ∩ PN−1

∞ =: Y . By
assumption, dimX ≤ d and hence dimY < d. Let T ⊂ Y × G be the set of pairs (y, V ) with y ∈ V . The
fibers of T → Y are given by Grassmannians of subspaces spaces containing a specific point, which is the
same is (N − d− 2)-dimensional linear subspaces of PN−2. Using that dimG = d(N − d) we find that

dimT ≤ dim(fibers) + dimY = d(N − d− 1) + d− 1 = d(N − d)− 1 < dimG.

It follows that T → G is not surjective, and hence its image is a proper closed subset. This was to be shown.
Condition (2). Since X is smooth, étaleness is equivalent to proving that Ω1

Ad/k|S∩X → Ω1
X/k|S∩X is an

isomorphism. This is a linear map between finite dimensional vector spaces over fields of the same dimension,
and so being an isomorphism is determined by the non-vanishing of a determinant. This is visibly an open
condition. To prove non-emptiness, we may assume that k is algebraically closed and S = {x} ⊂ X. The
map Ω1

Ad/k|x → Ω1
X/k|x has image spanned by dπ1, . . . , dπd. The map Ω1

AN/k|x → Ω1
X/k|x is a surjection,

and dπ1, . . . , dπd define d arbitrary elements in the source. It remains to prove: given a surjection of finite-
dimensional k-vector spaces V →W with dimW = d, then the images of d general elements of V in W are
linearly independent. We have already proved that this condition is open, so it suffices to prove that it is
non-empty, which is clear (lift a basis of W ).
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Condition (3). The argument is similar to (1). We may assume that k is algebraically closed, S = {s}.
π−1(π(s)) is a general affine-linear subspace of AN containing s of dimension N−d. Translating to the origin,
these are in bijection with linear subspaces, and so parametrized by a Grassmannian G. Let T ⊂ Z × G
be the subset of pairs (z, V ) where z ∈ V and z 6= s. As before, considering the fibers, we find that
dimT < dimG. The closure of the image of T in G is thus a proper closed subset, and hence its open
complement is nonempty, as needed. �

Proof of Proposition 8.5. If V is not pure, argue separately for each connected component. Hence we may
assume that V is pure of dimension d. Pick an embedding V ↪→ AN . Applying Theorem 9.1, we find a linear
map π : AN → Ad such that π|V : V → Ad is finite, π|V is étale at S = {z1, . . . , zn}, and π−1(π(S))∩Z ⊂ S.
Let V ′ ⊂ V be a open neighbourhood of S such that π|V ′ is étale. Note that in proving the theorem, we
may replace V by an open neighborhood of S at will; hence redesignate V ′ as V , V as V , Z ∩ V ′ as Z and
Z as Z. Applying Theorem 9.1 again, we find a linear map $ : Ad → Ad−1 such that $|π(Z)∪π(V \V ) is finite,
and $−1($(π(S))) ∩ π(Z \ Z) ⊂ π(S). Now we form the following pullbacks

V −−−−→ V
π−−−−→ Ad

$−−−−→ Ad−1x v

x x $π

x
C −−−−→ C0 −−−−→ A1

U −−−−→ U.

The canonical map U → V induces a section ∆ : U → C. By construction, v−1(Z \ Z) → U is finite,
but also misses the closed points of U (since Z \ Z → Ad−1 misses the image of S). This implies that
v−1(Z \ Z) is empty, i.e., v−1(Z) = v−1(Z). Thus v−1(Z) → U is finite. By Zariski’s main theorem, the
composite C0 → A1

U → P1
U factors as C0

g−→ C
f−→ P1

U , where f is finite and g is a dense open immersion.
Now i : C0 → f−1(A1

U ) is a dense open immersion, but also C0 → A1
U is finite, so i is also a closed

immersion, whence an isomorphism. We claim that C \ C0 → U is finite. Being proper, we just need to
check quasi-finiteness. By what we just said,

C \ C0 = f−1(P1
U \ A1

U )→ P1
U \ A1

U ' U

is finite, hence quasi-finite. On the other hand C0 \ C → U is finite by construction, so also quasi-finite;
this proves the claim. It follows that this construction of C ⊂ C satisfies all the required properties (e.g.
C → A1

U is étale, so C is smooth over U and Ω1
C/U is trivial). �

10. Vista

The axioms EE and EA are proved by similar but more elaborate arguments. I will add them in a future
revision.

This concludes the proof of strict A1-invariance of presheaves with framed transfers (over infinite perfect
fields).
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