Algebraic Geometry 2 Exercises 5

Dr. Tom Bachmann

Summer Semester 2021

Exercise 1. Let A be a unique factorization domain. Show that A is integrally closed (in its field of fractions).

Exercise 2. Let k be a field.

- (1) Show that k[T] is a Dedekind domain. (Equivalently, \mathbb{A}^1_k is a regular curve over k.)
- (2) Show that k[X,Y]/(Y³ X²) is not a Dedekind domain.
 (3) Show that the homomorphism k[X,Y]/(Y³ X²) → k[T] sending X to T³ and Y to T² is an integral closure (in other words it is an injection of integral domains such that the target is the integral closure of the source in the fraction field of the target).