Algebraic Geometry 2 Exercises 4

Dr. Tom Bachmann

Summer Semester 2021

Exercise 1. Show that the canonical map $\operatorname{Proj}(A[T_0]) \to \operatorname{Spec}(A)$ is an isomorphism.

Exercise 2. Let X be an integral scheme of finite type over the field k. Show that dim X = 0 if and only if $X \simeq \text{Spec}(L)$, where L/k is some finite field extension.

Exercise 3. Let A be a commutative ring.

- (1) Exhibit a bijection between actions of the group scheme \mathbb{G}_m on Spec (A) and \mathbb{Z} -graduations of A.
- (2) Given a \mathbb{G}_m -action on Spec (A), show that the action extends over the commutative monoid $\mathbb{A}^1 \supset \mathbb{G}_m$ if and only if $A_n = 0$ for n < 0.

Exercise 4. Let R be a commutative N-graded ring. Set $A = R_0$ and assume that there are elements $f_0, \ldots, f_r \in R_1$ generating R as an A-algebra.

- (1) Put Spec $(R) \setminus \{0\}$:= Spec $(R) \setminus V(R_+)$. Show that Spec $(R) \setminus \{0\}$ is a \mathbb{G}_m -invariant open subset of Spec (R) (for the \mathbb{G}_m action coming from the grading via Exercise 3).
- (2) Show that $D(f_i) \subset \text{Spec}(R) \setminus \{0\}$ is a \mathbb{G}_m -invariant open subset which is isomorphic as a scheme with \mathbb{G}_m -action to $\text{Spec}(R_{(f_i)}) \times \mathbb{G}_m$ (where \mathbb{G}_m acts on the second factor only).
- (3) Construct a surjective \mathbb{G}_m -equivariant morphism $\operatorname{Spec}(R) \setminus \{0\} \to \operatorname{Proj}(R)$ (where the \mathbb{G}_m -action on $\operatorname{Proj}(R)$ is trivial).