Algebraic Geometry 2 Exercises 3

Dr. Tom Bachmann

Summer Semester 2021

Exercise 1. Let S_{\bullet} be a commutative \mathbb{N} -graded ring and $f \in S_0$. Let $D_h(f) \subset \operatorname{Proj}(S_{\bullet})$ denote the subset of homogeneous primes not containing f.

Show that $D_h(f)$ is an open subset, and $D_h(f) \simeq \operatorname{Proj}((S_{\bullet})_f)$ as schemes.

Exercise 2. Let S_{\bullet} be a commutative \mathbb{N} -graded ring and $d \geq 1$. Put

$$S_{\bullet}^{(d)} = \bigoplus_{n} S_{nd}$$

Show that $S^{(d)}_{\bullet}$ is a commutative N-graded ring and $\operatorname{Proj}(S^{(d)}_{\bullet}) \simeq \operatorname{Proj}(S_{\bullet})$ as schemes.

Exercise 3. Let $\varphi : S_{\bullet} \to T_{\bullet}$ be a morphism of commutative N-graded rings. Put

$$U = \{ q \in \operatorname{Proj}(T_{\bullet}) \mid \varphi(S_{+}) \not\subset q \}.$$

Show that $U \subset \operatorname{Proj}(T_{\bullet})$ is an open subset and construct an induced morphism of schemes

$$\operatorname{Proj}(\varphi): U \to \operatorname{Proj}(S_{\bullet}).$$

Exercise 4. Notation as in the previous exercise. Suppose that φ is surjective. Show that $U = \operatorname{Proj}(T_{\bullet})$ and $\operatorname{Proj}(\varphi)$ is a closed immersion.