Algebraic Geometry 2 Exercises 2

Dr. Tom Bachmann

Summer Semester 2021

Exercise 1. Let $i: X \to Y$ be an open immersion. Show that i is proper if and only if $Y \simeq X \amalg Z$.

Exercise 2. Show that $f: X \to Y$ is separated if and only if the image of the diagonal $X \to X \times_Y X$ is a closed subset.

Exercise 3. Let $f : X \to Y$ be a quasi-compact morphism of schemes (i.e. the preimage of any quasi-compact open subset is quasi-compact). Show that $f(X) \subset Y$ is closed if and only if whenever $y \in f(X)$ then also $\overline{\{y\}} \subset f(X)$ (i.e. f(X) is stable under specialization).

Exercise 4. Let S be a scheme, X a reduced S-scheme and Y a separated S-scheme. Suppose given S-morphisms $f, g : X \to Y$ agreeing on a dense open subset of X. Show that f = g.

Show by example that neither the assumption on X nor on Y can be removed.