Algebraic Geometry 2

Exercises 11

Dr. Tom Bachmann

Summer Semester 2021

Exercise 1. Let $\varphi : A \to B$ be a homomorphism of commutative rings. For a *B*-module *N*, denote by N^{φ} the induced *A*-module. Show that the functor

$$B\operatorname{-Mod} \to A\operatorname{-Mod}, \quad N \mapsto N^{\varphi}$$

is right adjoint to $M \mapsto B \otimes_A M$.

Exercise 2. Let $\varphi : A \to B$ be a homomorphism of commutative rings and write $f : \text{Spec}(B) \to \text{Spec}(A)$ for the corresponding morphism of affine schemes. For a *B*-module *N*, show that

$$f_*\widetilde{N} \simeq \widetilde{N^{\varphi}}.$$

Exercise 3. Let A be a UFD and Σ a locally free sheaf of rank 1 on Spec (A). Show that Σ is trivial (i.e. isomorphic as an $\mathcal{O}_{\text{Spec}(A)}$ -module to $\mathcal{O}_{\text{Spec}(A)}$).

Exercise 4. Let Σ be a locally free sheaf of finite type on the scheme X.

- (1) Show that the canonical map $\Sigma \to (\Sigma^{\vee})^{\vee}$ is an isomorphism.
- (2) Construct for any \mathcal{O}_X -module M a canonical isomorphism

 $\mathcal{H}om_{\mathcal{O}_X}(\Sigma, M) \simeq \Sigma^{\vee} \otimes M.$