Algebraic Geometry 2 Exercises 10

Dr. Tom Bachmann

Summer Semester 2021

Exercise 1. Let X be a scheme and $U \subset X$ an open subset.

(1) Let \mathbb{Z}_U be the sheaf on X associated with the presheaf

$$V \mapsto \begin{cases} \mathbb{Z} & V \subset U \\ 0 & V \not\subset U \end{cases}$$

Show that for any abelian sheaf F we have

$$\operatorname{Hom}_{Ab(X)}(\mathbb{Z}_U, F) \simeq F(U).$$

(2) Let $\underline{\mathcal{O}}_U = \mathcal{O}_X \otimes \mathbb{Z}_U$. Show that for any sheaf of \mathcal{O}_X -modules M we have

 $\operatorname{Hom}_{\mathcal{O}_X}(\underline{\mathcal{O}}_U, M) \simeq M(U).$

(3) Show that $\underline{\mathcal{O}}_U$ is *not* quasi-coherent in general.

Exercise 2. Let X be a noetherian scheme, M a coherent \mathcal{O}_X -module and $x \in X$. Show that if $M_x \simeq \mathcal{O}_{X,x}$ (as $\mathcal{O}_{X,x}$ -modules) then there exists an open neighbourhood U of x in X such that $M|_U \simeq \mathcal{O}_X|_U$.

Exercise 3. Let X be a scheme and $\mathcal{E}, \mathcal{F}, \mathcal{G}$ be sheaves of \mathcal{O}_X -modules.

(1) Show that the presheaf

 $\mathcal{H}om(\mathcal{E},\mathcal{F}): U \mapsto \operatorname{Hom}_{\mathcal{O}_X|_U}(\mathcal{E}|_U,\mathcal{F}|_U)$

is a sheaf of \mathcal{O}_X -modules.

(2) Show that there is a natural isomorphism

 $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{E}, \mathcal{H}om(\mathcal{F}, \mathcal{G})) \simeq \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{E} \otimes \mathcal{F}, \mathcal{G}).$