Algebraic Geometry 2 Exercises Tutorium 8

Dr. Tom Bachmann

Winter Semester 2020–21

Exercise 1. Recall the meaning of a rational curve over k. Classify non-singular rational curves over k.

Exercise 2. Let k be a field of characteristic $\neq 2$ and denote by Y the affine curve $V(y^2 - x^3 + x) \subset \mathbb{A}^2_k$. Prove that Y is not rational, as follows.

- (1) Show that Y is non-singular.
- (2) Show that k[Y] is a domain.*
- (3) Show that the subring of k[Y] generated by x over k is isomorphic to the polynomial ring k[x].
- (4) Construct an automorphism σ of k[Y] with $\sigma(x) = x$ and $\sigma(y) = -y$.
- (5) For $a \in k[Y]$ define $N(a) = a \cdot \sigma(a)$. Show that $N(a) \in k[x]$, N(1) = 1 and N(ab) = N(a)N(b).
- (6) Show that $k[Y]^{\times} = k^{\times}$.
- (7) Show that $x, y \in k[Y]$ are irreducible.
- (8) Show that k[Y] is not a UFD.
- (9) Conclude.

*Note: this is not really necessary. Why?