Algebraic Geometry 2 Exercises Tutorium 2

Dr. Tom Bachmann

Winter Semester 2020–21

Exercise 1. Let S_{\bullet}, T_{\bullet} be commutative N-graded rings with $S_0 = T_0 = A$. Put

$$R_{\bullet} = \bigoplus_{d \ge 0} S_d \otimes_A T_d.$$

Show that R_{\bullet} is a commutative $\mathbb N\text{-}\mathrm{graded}$ ring, and construct an isomorphism

$$\operatorname{Proj}(R_{\bullet}) \simeq \operatorname{Proj}(S_{\bullet}) \times_{\operatorname{Spec}(A)} \operatorname{Proj}(T_{\bullet}).$$

Deduce that there is a closed immersion

$$\mathbb{P}^n_A \times_A \mathbb{P}^m_A \hookrightarrow \mathbb{P}^N_A.$$

Exercise 2. A morphism $X \to Y$ is called *projective* if there exists a closed immersion of Y-schemes $X \hookrightarrow \mathbb{P}_Y^n$ for some n. Show that projective morphisms are stable under composition.

Exercise 3. Let \mathcal{P} be a collection of morphisms of schemes containing the closed immersions and being stable under composition and base change. Show that (a) products of morphisms in \mathcal{P} are in \mathcal{P} , (b) if $g \circ f \in \mathcal{P}$ and g is separated, then $f \in \mathcal{P}$, and (c) if $f \in \mathcal{P}$ then $f_{red} \in \mathcal{P}$.

Deduce that projective morphisms satisfy (a), (b), (c).

Exercise 4. Show that an integral domain R is a valuation ring if and only if given ideals I, J we have either $I \subset J$ or $J \subset I$. Deduce that if R is a valuation ring and P is a prime ideal, then R/P and R_P are valuation rings.