Algebraic Geometry 2 Exercises Tutorium 2

Dr. Tom Bachmann

Winter Semester 2020–21

Exercise 1 (Recollections on reduced schemes).

- (1) Define reduced schemes.
- (2) Given a scheme X and a closed subset $Y \subset X$, construct the *reduced* closed subscheme structure Y_{red} on Y.
- (3) State and prove a universal property of Y_{red} .

Exercise 2. Establish the following properties of morphisms of schemes.

- (1) Closed immersions are proper.
- (2) Compositions of proper morphisms are proper.
- (3) Proper morphisms are stable under base change.
- (4) Products of proper morphisms are proper.
- (5) If $g \circ f$ is proper and g is separated, then f is proper.
- (6) Properness is local on the target.

Exercise 3. Let k be an algebraically closed field and $X \subset \mathbb{A}_k^n$ an affine variety which is *proper*. Show that X consists of finitely many points [*Hint:* first treat the case n = 1]. Deduce that a proper affine morphism of schemes is quasi-finite.

Remark: Proper affine morphisms are in fact *finite*. (But this requires more work.)

Exercise 4. Show that an integral domain R is a valuation ring if and only if given ideals I, J we have either $I \subset J$ or $J \subset I$. Deduce that if R is a valuation ring and P is a prime ideal, then R/P and R_P are valuation rings.