Algebraic Geometry 2

Exercises Tutorium 12

Dr. Tom Bachmann

Winter Semester 2020–21

Exercise 1. Let S_{\bullet} be a graded ring and M_{\bullet} a graded module. Construct a quasi-coherent sheaf \widetilde{M}_{\bullet} on $\operatorname{\mathbf{Proj}}(S_{\bullet})$ such that $\widetilde{M}_{\bullet}|_{D_{+}(f)} \simeq \widetilde{M}_{(f)}$.

Exercise 2.

- (1) Let X be a scheme, \mathcal{L} an invertible sheaf on X and $\alpha : \mathcal{O}_X^{n+1} \to \mathcal{L}$ be a surjection. Let $U_i \subset X$ be the open subset where the section $\alpha(e_i)$ of \mathcal{L} does not vanish (make precise what this means!). Here e_i is the canonical basis section of \mathcal{O}_X^{n+1} . Show that the U_i form an open cover of X, and that we have canonical isomorphisms $\mathcal{L}|_{U_i} \simeq \mathcal{O}_X$.
- (2) On $\mathbb{P}^n_{\mathbb{Z}}$ consider the sheaf $\mathcal{O}(1) := \widetilde{M}_{\bullet}$, where $M_i = \mathbb{Z}[T_0, \ldots, T_n]_{i+1}$. Show that $\mathcal{O}(1)$ is invertible and construct a surjection $\mathcal{O}^{n+1} \to \mathcal{O}(1)$.
- (3) Consider the functor $F : Sch^{op} \to Set$ such that F(X) is the set of invertible sheaves on X together with a surjection from \mathcal{O}_X^{n+1} (make this precise!). Show that F is isomorphic to the functor represented by $\mathbb{P}^n_{\mathbb{Z}}$.

1