Algebraic Geometry 2

Exercises Tutorium 11

Dr. Tom Bachmann

Winter Semester 2020–21

Let $f: X \to Y$ be a morphism of schemes.

Exercise 1. Show that the functor $f_*: \mathcal{O}_X\text{-Mod} \to \mathcal{O}_Y\text{-Mod}$ admits a left adjoint, namely $f^*(-) := f^{-1}(-) \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$.

Exercise 2. Show that the functor f^* from (1) is symmetric monoidal, i.e.

$$f^*(M) \otimes_{\mathcal{O}_X} f^*(N) \simeq f^*(M \otimes_{\mathcal{O}_Y} N).$$

Exercise 3.

- (1) For M an \mathcal{O}_X -module and N an \mathcal{O}_Y -module, construct a natural map $f_*(M) \otimes_{\mathcal{O}_X} N \to f_*(M \otimes_{\mathcal{O}_X} f^*N)$.
- (2) If N is locally free (of finite rank), show that the map is an isomorphism.