Algebraic Geometry 1 Exercises Tutorium 3

Dr. Tom Bachmann

Winter Semester 2020–21

Throughout k is an algebraically closed field.

Exercise 1. Let $Z = Z(x^2 - yz, xz - x) \subset \mathbb{A}^3(k)$. Show that Z is a union of three irreducible components, describe them, and determine their prime ideals.

Exercise 2.

- (1) Let $Z \subset \mathbb{A}^n(k)$ be closed and irreducible, and $H \subset \mathbb{A}^n(k)$ a hypersurface. Suppose that $Z \not\subset H$. Show that every irreducible component of $Z \cap H$ has dimension dim Z - 1.
- (2) Let $I \subset k[\mathbb{A}^n]$ be generated by r elements. Show that every irreducible component of Z(I) has dimension $\geq n r$.

[*Hint:* You may use Krull's principal ideal theorem.]

Exercise 3. Let Y be a closed subset of $\mathbb{A}^{n+1}(k) \setminus \{0\}$. Show that the following statements are equivalent.

- (1) Y is k^{\times} -invariant.
- (2) For each $f \in I(Y) \subset k[X_0, \ldots, X_n]$ and $t \in k^{\times}$ we have $f(tX_0, \ldots, tX_n) \in I(Y)$.
- (3) I(Y) is a homogeneous ideal.

Exercise 4. Show that $\mathbb{P}^n(k)$ is a noetherian topological space of dimension n.

Exercise 5. Extra problem: Let n, d > 0 and let M_0, \ldots, M_N be all the monomials of degree d in n + 1 variables x_0, \ldots, x_n . Show that the assignment

$$(x_0:\cdots:x_n)\mapsto (M_0:\cdots:M_N)$$

defines a morphism $\mathbb{P}^n(k) \to \mathbb{P}^N(k)$ which is a homeomorphism onto a closed subset, and identify its ideal.

Exercise 6. Extra problem: Let $Y \subset \mathbb{A}^3(k)$ be the curve given parametrically by (t^3, t^4, t^5) . Show that I(Y) is a prime ideal of height 2 that cannot be generated by 2 elements.