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It has become obvious during the last twenty five years that the representation theory
of various infinite dimensional Lie groups and Lie algebras contributes in an essential
way to the understanding of quantum field theory. Important examples are the Virasoro
algebra in the context of conformal field theories or the affine Kac-Moody algebras.

In particular, the mathematical description of QED is closely related to the representa-
tion theory of the infinite dimensional (restricted) unitary group and its central extension
by U(1) as has been explained in section 0. To get a better understanding how such a cen-
tral extension can occur in general quantum theories we have discussed the quantization of
symmetries in section 1. In this context and also to obtain a deeper understanding of the
representations of the restricted unitary group we think that it is necessary to know the
”classical” algebra in QED which is second quantized and on which the restricted unitary
group acts as a symmetry group: The CAR algebra (CAR = Canonical Anticommutation
Relations) resp. the closely related Clifford algebra.

In this section we give an introduction to the CAR algebras and their Fock repre-
sentations (second quantizations) by first studying the Clifford algebras and their Fock
representations.

C∗-algebras Let us recall some notions:
A Banach algebra B (over C) is an associative algebra B over C with a norm ‖ ‖ such

that B is a complete normed space and the multiplication satisfies

‖ab‖ ≤ ‖a‖ ‖b‖ (3.1)

for all a, b ∈ B.
A unital Banach algebra is a Banach algebra B with unit 1 ∈ B whose norm is 1.
A ∗-algebra is an associative algebra A over C with a star-involution ∗ : A −→ A , a �→

a∗, i.e. ∗ is a C-antilinear map with (a∗)∗ = a for all a ∈ A, satisfying

(ab)∗ = b∗a∗ (3.2)

for all a, b ∈ A. By definition, ∗ is an antiautomorphism and an involution of the complex
algebra A. A homomorphism between ∗-algebras A,B (also called a star homomorphism)
is an algebra homomorphism – i.e. a complex linear map h : A −→ B with h(aa′) =
h(a)h(a′) for all a, a′ ∈ A (and H(1) = 1 if we have unital algebras) – which respects the
involutions:

h(a)∗ = h(a∗) (3.3)
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for all a ∈ A.
A C∗-algebra is a unital Banach algebra which is a ∗-algebra as well such that the norm

structure is compatible not only with the algebra structure (see 3.1) but also with the
involution ∗:

‖a∗a‖ = ‖a‖2 (3.4)

for all a ∈ B. A (C∗-)homomorphism between C∗-algebras A,B is a continuous star
homomorphism.

By definition, in a C∗-algebra one has ‖a‖ =
√‖a∗a‖ = ‖a∗‖. Hence, the involution ∗

is bounded (and therefore continuous) with norm 1. Similarly one can see that every star
homomorphism h : A −→ B between C∗-algebras A,B is automatically continuous with
norm ≤ 1: h is contractive.

A typical C∗-algebra is given by the algebra B(H) of all bounded (and complex linear)
endomorphisms on a complex Hilbert space H with the involution given by the adjoint
T ∗ of T ∈ B(H). Each C∗-algebra B can be realized as a norm-complete and ∗-closed
subalgebra of such a full endomorphism algebra B(H) for a suitable choice of H.

Another interesting class of C∗-algebras is given by the algebras C(K) of complex-
valued continuous functions on a compact topological space K.

Given any real Banach algebra A the complexification AC := A ⊗R C is in a natural
way a C∗-algebra by defining

(a⊗ λ)∗ := a⊗ λ̄

for a ∈ A and λ ∈ C.

The Clifford algebra Let V be a real vector space with a positive definite scalar
product g = ( , ), i.e. a euclidean space V = (V, g). For a C∗-algebra B a Clifford map is
a (real-) linear map c : V −→ B satisfying

c(u)c(v) + c(v)c(u) = 2(u, v)1 (3.5)

for all u, v ∈ V . Equivalently, one can require c(v)2 = ‖v‖2 1.

Definition 3.1 (Clifford algebra) A (complex C∗-) Clifford algebra over the euclidean
space V = (V, g) is a C∗-algebra C together with a Clifford map ι : V −→ C with the
following universal property: Each Clifford map c : V −→ B into a C∗-algebra B factors
uniquely through a homomorphism h : C −→ B, i.e. c = h ◦ ι.

Of course, a homomorphism in this context is a C∗-homomorphism. Evidently, such a
Clifford algebra is unique up to isomorphisms (of C∗-algebras).

Remark 3.2 (Variants) The definition has several variants.

1. Instead of c(u)c(v) + c(v)c(u) = 2(u, v)1 (in 3.5) we find also c(u)c(v) + c(v)c(u) =
(u, v)1. The first condition is equivalent to c(v)c(v) = ‖v‖2 1, while the second
resembles the anticommutation condition for CAR-algebras (see below). The original
condition introduced by Clifford is c(v)c(v) = −‖v‖2 1 which is still used in many
mathematical articles and books. All these requirements lead to equivalent Clifford
algebras.
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2. A different Clifford algebra (and theory) is given if in the definition 3.1 the Clifford
algebra itself is supposed to be only an algebra over R with unit and the universal
property is required for all algebras over R with unit.

3. Again different Clifford algebras arise if in the definition 3.1 the Clifford algebra
itself is supposed to be only a complex algebra with unit and the universal property
is required for all complex algebras with unit.

4. Again different Clifford algebras seem to arise if in the definition 3.1 the Clifford
algebra itself is supposed to be only a unital complex ∗-algebra and the universal
property is required for all unital complex ∗-algebras.

5. One can replace the euclidean V with a complex vector space Z equipped with a
complex symmetric bilinear form as e.g. in the case of the complexification VC = Z of
a euclidean space V = (V, g) where the bilinear form is the complex-linear extension
gC of g (see below 3.10). In this case one gets the same Clifford algebras as in the
real euclidean case as is explained in 3.11.

6. Starting with a complex Hilbert space W and requiring the anticommutation relations
to match with the Hermitian scalar product (instead of a symmetric complex bilinear
form as in 5.) immediately leads to the concept of a CAR algebra (see 3.18 below).
We show in this section that the theory of CAR algebras parallels the theory of
Clifford algebras.

7. Yet another theory appears if the inner product is no longer positive definite but still
non degenerate like e.g. a Lorentz inner product. We do not treat this case.

Theorem 3.3 (Existence of the Clifford algebra) To each euclidean space V = (V, g)
there corresponds a Clifford algebra C�(V ) = C�(V, g) unique up to isomorphism.

In the following we outline a construction of a Clifford algebra over V with the inten-
tion to present several natural properties and at the same time explaining some of the
consequences in the use of the various different definitions discussed in the remark 3.2.

Since Clifford algebras and CAR algebras are essentially isomorphic we also obtain a
construction and description of the CAR algebras (see theorem 3.19).

First of all, we start with the tensor algebra TV =
⊕

T rV where T rV = V ⊗V ⊗. . .⊗V
is the r-fold tensor product of V with itself. With respect to the tensor multiplication
st := s⊗ t for s, t ∈ TV , TV is an associative algebra over R with unit 1 ∈ R = T 0V , and
V is naturally embedded in TV by V ∼= T 1V . Moreover, T 1V generates TV . Let I(V ) be
the bilateral ideal in TV generated by {u⊗ v+ v⊗ u− 2(u, v)1 : u, v ∈ V }. The quotient
algebra C(V ) := TV/I(V ) together with the map ι : V −→ C(V ) , v �→ [v] = vmod I(V )
is a first candidate for a Clifford algebra of V : C(V ) is generated bei im ι = ι(V ) and to
every Clifford map c : V −→ B into an associative R-algebra B corresponds the unique
homomorphism h : C(V ) −→ B, induced by ι(v) �→ c(v) := h(ι(v)) for v ∈ V . Clearly,
c(v) = h ◦ ι(v).

3



Thus C(V ) turns out to be a Clifford algebra over V with respect to the variant 2 in
3.2.

The universal property implies the following important result:

Theorem 3.4 If g : V −→ V ′ is an isometric R-linear map then there exists a unique
algebra homomorphism θg : C(V ) −→ C(V ′) satisfying

θg ◦ ι = ι′ ◦ g .

Proof: ι′ ◦ g is a Clifford map since g preserves the inner products. Hence there is a
unique algebra homomorphism h : C(V ) −→ C(V ′) with h◦ ι = ι′ ◦ g and the result is true
for θg := h.

�

In the same way one can show that θg◦h = θg ◦ θh for isometries g, h. In particular, in
the case V = V ′ and an isometric isomorphism g : V −→ V (i.e. an orthogonal map) the
map θg : C(V ) −→ C(V ) is an automorphism of algebras (called Bogoliubov automorphism
related to g) and θg defines a representation

θ : O(V ) −→ Aut(C(V )) , g �→ θg

of the orthogonal group

O(V ) := {g : V −→ V | (gu, gv) = (u, v) for all u, v ∈ V and g is invertible} .
A Bogoliubov automorphism of particular interest is the one corresponding to the

isometric map −id V : V −→ V . It is called the grading operator und denoted by γ := θ−1.
We have γ2 = id C(V ):

Lemma 3.5 (Grading operator) There exists a unique automorphism γ : C(V ) −→
C(V ) satisfying γ2 = id C(V ) and γ|V = −id V .

Here and in the following we often suppress ι in the embedding ι : V −→ C(V ) and
regard it as an inclusion V ⊂ C(V ) in order to get simpler formulas. The condition
γ|V = −id V has the form γ ◦ ι = −ι when ι is used and emphasized.

An element ξ ∈ C(V ) is called even (resp. odd) if γ(ξ) = ξ (resp. γ(ξ) = −ξ). C(V )
decomposes into even an odd elements: C(V ) = C+(V ) ⊕ C−(V ) where C+(V ) (resp.
C−(V )) is the even (resp. odd) part of the Clifford algebra C(V ). C+(V ) is an algebra
whereas C−(V ) is only a vector space and ⊕ in this formula denotes the direct sum de-
composition of real vector spaces.

Now, C(V ) is in general neither a complex algebra nor a ∗-algebra. Complexifying C(V )
gives a C-algebra C(V )C = C(V ) ⊗R C which can also be understood as the quotient of
the complex tensor algebra T (VC) = TVC : C(V )C = TVC/I(V )C. C(V )C is a unital C-
algebra and it serves as a good candidate for a Clifford algebra since it has the universal
property with respect to all C-algebras and therefore is the Clifford algebra in the sense
of variant 3 in the remark 3.2.
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In addition, C(V )C has a natural involution which makes it to a ∗-algebra. To introduce
this ∗-structure we need another canonical map C(V ) −→ C(V ), the main antiautomor-
phism α which is defined as follows. Let C(V )◦

C
be the algebra opposite to C(V )C, i.e.

C(V )◦
C

is the algebra with the same underlying vector space as C(V )C but with the op-
posite multiplication: ab in C(V )◦

C
is defined to be ba in C(V )C. Then the identity is an

antiautomorphism C(V )C −→ C(V )◦
C
. Of course, idC(V )C

◦ ι : V −→ C(V )◦
C

is a Clifford
map. Hence, there is a unique C-algebra homomorphism α : C(V )C −→ C(V )◦

C
with

idC(V )C
◦ ι : V −→ C(V )◦

C
= α ◦ ι. This means that α : C(V )C −→ C(V )C is an anti-

automorphism, i.e. (here) a C-linear isomorphism with α(ab) = ba for all a, b ∈ C(V )C.
Of course, α reverses the tensor products in the following sense: For s, t ∈ TVC one has
α([s⊗ t]) = [t⊗ s].

Lemma 3.6 (Main antiautomorphism) There exists a unique antiautomorphism α :
C(V )C −→ C(V )C reversing all the tensor products in TVC.

The involution ∗ : C(V )C −→ C(V )C is now defined by a∗ := α(a). Thus, C(V )C is a
∗-algebra and satisfies the following universal property. To each Clifford map c : V −→ B
into a ∗-algebra B with c(v)∗ = c(v) (such a map is called self-adjoint) for all v ∈ V there
exists a unique star homomorphism h : C(V )C −→ B with c = h ◦ ι. Hence, C(V )C is a
Clifford algebra over V in the sense of variant 4 in 3.2.

If V is finite dimensional this algebra C(V )C is also a Banach algebra and a C∗-algebra.
C(V )C is therefore a Clifford algebra over V in the sense of our definiton 3.1.

Example 3.7 In the case of the euclidean plane V with an orthonormal basis {x1, y1}
a Clifford algebra C(V )C is the C∗-algebra C(2) of all 2 × 2-complex matrices if we set
ιx1 = σ2 , ιy1 = σ3 using the usual Pauli-matrices:

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Example 3.8 (The even dimensional case) Similarly, in case of a 2n-dimensional
euclidean space V a Clifford algebra C(V )C is the C∗-algebra C(2n) of all 2n×2n-complex
matrices when we define ι appropriately.

However, we are not content with the construction of a Clifford algebra for finite
dimensional spaces V .

In the infinite dimensional case we need to complete C(V )C appropriately in order to
obtain a C∗-algebra with the universal property of the definition 3.1. If V is separable
(and this is the case we are interested in) this can be done using a sequence (Vn) of 2n-
dimensional subspaces Vn ⊂ Vn+1 ⊂ V of V whose union is dense in V and exploiting
the corresponding sequence of finite dimensional Clifford algebras C(Vn)C ⊂ C(Vn+1)C ⊂
C(V )C (see, e.g. in the books of Kadison-Ringrose or Pedersen).

We want to follow a different path to complete C(V )C by using the trace of C(V )C.
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Let σ : C(V )C −→ C a complex linear functional. σ is called
– central if σ(ab) = σ(ba) for all a, b ∈ C(V )C,
– normalized if σ(1) = 1 and
– even if σ ◦ γ = σ. (γ extends naturally to C(V )C as a complex-linear automorphism

which we denote by the same symbol.)

Lemma 3.9 (Trace) There exists a unique even, normalized and central complex linear
functional τ : C(V )C −→ C called the trace of C(V )C.

The trace is a star homomorphism, i.e. τ(a∗) = τ(a) for all a ∈ C(V )C.

The existence is first proved for finite dimensional V (in the case of an even dimen-
sional V one can use the example 3.8 by taking the usual trace of matrices). In the
infinite dimensional case one uses the fact that C(V )C can be described as the union of all
C(M)C , M ⊂ V a finite dimensional subspace. The proof of uniqueness requires some
lines but is standard.

If now τ is the trace then σ(a) := τ(a∗) defines an even, normalized and central complex
linear functional, and it follows σ = τ by the first part of the lemma. This establishes
that the trace is a star homomorphism.

We now define
〈a, b〉τ := τ(a∗b)

for a, b ∈ C(V )C to obtain a positive definite Hermitian scalar product on C(V )C. (We
follow the convention used in the physics literature which requires that the scalar product
is complex linear in the second argument and complex antilinear in the first.)

Let Hτ be the completion of C(V )C with respect to this scalar product. Every a ∈
C(V )C acts on C(V )C by multiplication b �→ ab := l(a)b (left representation) and a �→ l(a)
is involution preserving:

〈l(a)ξ, η〉τ = τ((aξ)∗η) = τ(ξ∗a∗η) = 〈ξ, a∗η〉τ = 〈ξ, l(a∗)η〉τ
Hence l(a)∗ = l(a∗). One can now deduce that l(a) is bounded with respect to 〈 , 〉τ . A
direct proof goes as follows: Since the unitary elements of C(V )C generate C(V )C it is
enough to restrict to unitary a, i.e. a−1 = a∗ or a∗a = 1:

‖l(a)b‖2 = 〈ab, ab〉τ = τ((ab)∗ab) = τ(b∗a∗ab) = τ(b∗b) = 〈b, b〉τ = ‖b‖2 ,

hence the operator norm ‖l(a)‖ of l(a) is 1.
As a result, for each a ∈ C(V )C the algebra homomorphism l(a) : C(V )C −→ C(V )C

can be continued to a bounded linear map Hτ −→ Hτ which we denote by the same symbol
l(a). Therefore C(V )C is represented on the complex Hilbert space Hτ by bounded linear
functions, the representation being an injective ∗-algebra homomorphism

l : C(V )C −→ B(Hτ )

into the C∗-algebra B(Hτ ).
The completion of C(V )C with respect to the induced norm is now the Clifford algebra

C�(V ) we wanted to describe. It has the required universal property and it is a C∗-algebra,
since it is isomorphic to the closure of l(C(V )C) in B(Hτ ).
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In particular, we have (by continuation) the left regular representation of the final
Clifford algebra C�(V ) over the euclidean space V :

l : C�(V ) −→ B(Hτ ) with l (C�(V )) = l (C(V )C)

�

We have now established the existence of a Clifford algebra C�(V ) over V together with
the left regular representation. We should mention that the results which we explained
for C(V ) and C(V )C are valid also for this Clifford algebra: We have the grading operator
γ : C�(V ) −→ C�(V ) and the main antiautomorphism α. Similarly, there is the trace and
to each g ∈ O(V ) we obtain the Bogoliubov automorphism

θg : C�(V ) −→ C�(V )

defining a representation of the orthogonal group O(V )

θ : O(V ) −→ Aut C�(V ) .

In particular, each θg is a bounded C-linear star homomorphism and the group homomor-
phism θ is continuous with respect to the natural norm topology on the orthogonal group
O(V ) and the norm topology on the Clifford algebra C�(V ).

We observe that there is basically no difference whether the euclidean space V is com-
plete or not. The Clifford algebra C�(V ) over V is a Clifford algebra over the completion
V̂ as well. And the embedding ι : V −→ C�(V ) has a natural continuation ι̂ : V̂ −→ C�(V ).

Hence it is reasonable to assume that V is complete in the following.

Conjugation and complexification A key structure in the study of representations
of CAR and Clifford algebras and its application to QED is the conjugation of a complex
Hilbert space. We treat the conjugation in the context of the complexification of a eu-
clidean space and show later the connections to complex structures.

–
[Dieser Unterabschnitt ’Conjugation and complexification’ (wie auch der in Kürze folgende zu kom-

plexen Strukturen) ist ein wenig elementarer und ausführlicher als die anderen, weil ’Konjugationen im
Hilbertraum’ in der einschlägigen Literatur stiefmütterlich behandelt werden, und nicht alles, was wir
brauchen können, leicht bzw. überhaupt zu finden ist. Das liegt möglicherweise daran, dass diese Be-
trachtungen in ein Standardbuch über Hilberträume thematisch nicht hineinpassen. Tatsächlich sind
die folgenden Ausführungen dieses Unterabschnitts eher durch geometrische Vorstellungen geprägt,
und meine Darstellung lehnt sich an die Grundlagen von (fast-) komplexen Mannigfaltigkeiten und
hermiteschen Vektorbündeln an. Auch wenn das alles ziemlich trivial aussieht, so scheint es in dieser
Form nirgends dargestellt zu sein.

–
Let us begin with an explicit description of the Hermitian structure of a complex

Hilbert space H with its Hermitian scalar product h = 〈 , 〉 in relation to its underlying
euclidean and symplectic structures. h has a decomposition h = g + iω into its real and
imaginary parts: g = Reh = 1

2
(h+ h) and ω := Imh = − i

2
(h− h).
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Lemma 3.10 g determines a euclidean structure on H (more precisely on the underlying
real space) while ω defines a symplectic structure.

g and ω are related to the complex multiplication in the following way

ω(z, z′) = g(iz, z′) and g(z, z′) = ω(z, iz′) (3.6)

for z, z′ ∈ H. Moreover, g and ω are invariant with respect to the multiplication (as is
h): h(iz, iz′) = h(z, z′) implies

g(z, z′) = g(iz, iz′) and ω(z, z′) = ω(iz, iz′) . (3.7)

The Hermitian structure on H is determined by the euclidean in the following sense: If
g : H×H −→ R is an invariant euclidean inner product on a complex vector space H (as
a real vector space) then the definition

h(z, z′) = g(z, z′) + ig(iz, z′) (3.8)

for z, z′ ∈ H determines a positive definite Hermitian scalar product h with Reh = g.
A corresponding result holds for non-degenerate invariant symplectic forms ω on H:
h(z, z′) = ω(z, iz′) + iω(z, z′).

Let now V be a complete euclidean space (over R) with inner product g = ( , ). The
complexification VC := V ⊗R C will also be denoted by VC = V ⊕ iV since every z =
w⊗λ , w ∈ V , λ = ξ+iη ∈ C has the unique decomposition z = x+iy with x = w⊗ξ, y =
w ⊗ η ∈ V where V is identified with {v ⊗ 1 : v ∈ V } ⊂ V ⊗R C. The inner product
g : V × V −→ R can be extended to a complex-bilinear symmetric gC : VC × VC −→ C by

gC(u+ iv, x+ iy) := g(u, x) − g(v, y) + i(g(u, y) + g(v, x)) (3.9)

for u, v, x, y ∈ V .
gC defines a natural positive definite Hermitian scalar product on the complex vector

space VC by

〈u+ iv, x+ iy〉 := gC(u− iv, x+ iy) = g(u, x) + g(v, y) + i(g(u, y)− g(v, x)) (3.10)

for u, v, x, y ∈ V . VC with this scalar product h := 〈 , 〉 is a complex Hilbert space such
that h|V×V = g.

Observe that the direct decomposition VC = V ⊕ iV is not orthogonal with respect to
this scalar product; but it is an orthogonal decompostion with respect to the euclidean
structure Reh on VC induced by g.

Every complex Hilbert space H can be represented as the complexification of a eu-
clidean space V ⊂ H in many different and non-canonical ways: Choose an orthonormal
(Schauder) basis (ej)j∈I of the Hilbert space H and set V := spanR{ej : j ∈ I }. It is
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easy to see that V ⊕ iV = H as Hilbert spaces.

VC carries a natural conjugation

¯ : VC −→ VC , v ⊗ λ �→ v ⊗ λ (3.11)

or u+ iv = u − iv for u, v ∈ V . Using this conjugation, the scalar product has also the
description

〈z, z′〉 = gC(z, z′) . (3.12)

We obtain immediately the following result which is of interest for the investigation of
CAR algebras (see the definiton 3.18 below) and which is related to the variant 5. in the
remark 3.2.

Remark 3.11 The complexification VC is in a natural way embedded into C�(V ) by the
complex linear extension ιC of ι to the complexification of V : ιC : VC −→ C�(V ). The
anticommutation rules are now described by the complex bilinear and symmetric form
gC : VC × VC −→ C:

ιC(z)ιC(z′) + ιC(z′)ιC(z) = 2gC(z, z′)1 (3.13)

ιC(z) = ιC(z)∗ (3.14)

for all z, z′ ∈ VC.

Definition 3.12 A conjugation Σ : H −→ H of a complex Hilbert space H is an antiuni-
tary map with Σ2 = idH.

Here, an antiunitary map is a complex-antilinear map with 〈Σ(z),Σ(z′)〉 = 〈z, z′〉 for
z, z′ ∈ H.

Example 3.13 The complexification of a euclidean space V comes with a natural conju-
gation, see 3.11.

Example 3.14 Charge conjugation as e.g. in Thaller is a conjugation. Here, H =
L2(Rn,Cm) and Σ(ψ) := UC(ψ), ψ ∈ H, where UC : H −→ H is a suitable unitary
operator.

Example 3.15 Let (ej)j∈I be an orthonormal (Schauder) basis of the Hilbert space H .

Define Σ(
∑

j∈I λ
jej) :=

∑
j∈I λ

jej , λ
j ∈ C. Then Σ is a conjugation (and each conjuga-

tion is of this form, see 3.15 below).

Example 3.16 Let W be a complex Hilbert space and let W be the conjugated Hilbert
space (cf. section 0). As a set and a real vector space W is the same as W , but with the
scalar multiplication (λ, z) �→ λz and inner product 〈w,w′〉 = 〈w,w′〉. Then the identity
W −→ W is the canonical complex-antilinear isomorphism σ : W −→ W preserving the
scalar products in the sense of 〈σ(w), σ(w′)〉 = 〈w,w′〉 also denoted by w = σ(w). Now,
the orthogonal sum H := W ⊕W has the conjugation Σ(w+w′) := w′ +w for w,w′ ∈W .
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The last example has an obvious generalization to the case of a complex-antilinear
isomorphism σ : W −→ Z of Hilbert spaces preserving the scalar products in the sense
of 〈σ(w), σ(w′)〉 = 〈w,w′〉 for w,w′ ∈ W : On H := W ⊕ σW = W ⊕ Z we have the
conjugation Σ(w + σ(w′)) = w′ + σ(w) or Σ(w + z) = σ−1(z) + σw for w,w′ ∈ W and
z ∈ Z.

We have seen that a complexification of a complete euclidean space V leads to a
natural conjugation on the complex Hilbert space VC : u + iv �→ u − iv. Conversely, a
given conjugation Σ in a complex Hilbert space H with Hermitian scalar product 〈 , 〉 = h
determines a unique way to represent H as a complexification of a euclidean space V .

Lemma 3.17 Let H be a complex Hilbert space with a conjugation Σ. Then there exists
a unique real subspace V ⊂ H such that the complexification VC = V ⊕ iV is the Hilbert
space H and the conjugation Σ is the natural conjugation induced by the complexification
(cf. 3.11): Σ(u+ iv) = u− iv for u, v ∈ V .

Proof Let h = g + iω be the Hermitian scalar product of H with g = Reh and
ω = Imh as above. The real subspace V := Fix Σ = {z ∈ H : Σ(z) = z } is euclidean
with respect to g|V×V (cf. lemma 3.10). Because of z = 1

2
(z + Σ(z)) + i i

2
(Σ(z) − z)

and 1
2
(z + Σ(z)) , i

2
(Σ(z) − z) ∈ V for z ∈ H, we have VC = V + iV = H as complex

vector spaces. V is isotropic with respect to the symplectic form ω: For u, v ∈ V we
have h(u, v) = h(Σ(u),Σ(v)) = h(u, v), hence h(u, v) is real and ω(u, v) = 0. Now, the
complex bilinear extension gC of g|V×V is gC(u + iv, x + iy) = Re(h(u, x) − h(v, y)) +
i (Re(h(u, y) + h(v, x))) = h(u, x) − h(v, y) + i ((h(u, y) + h(v, x))) = h(u − iv, x + iy).
Hence, h(z, z′) = gC(z, z′) which shows that the two spaces also agree as Hilbert spaces.
Moreover, the conjugation Σ is the natural conjugation¯: VC −→ VC because of Σ(u+iv) =
Σ(u) − iΣ(v) = u− iv = u+ iv for u, v ∈ V = Fix Σ.

�

In particular, we conclude that every conjugation can be represented as the natural
conjugation of a unique complexification. Thus the collection of conjugations on H is in
one-to-one correspondence with the set of euclidean subspaces V ⊂ H such that VC = H
as Hilbert spaces.

Moreover, a conjugation Σ can be described by a suitable basis as in example 3.15: If
(ej)j∈I is a basis of V = Fix Σ over R then (ej)j∈I is a basis of VC = H over C and

Σ(
∑
j∈I

λjej) :=
∑
j∈I

λjej , λ
j ∈ C . (3.15)

The CAR algebra Let W be a complex Hilbert space with positive definite Hermitian
scalar product 〈 , 〉 (being complex antilinear in the first argument). A CAR map into
a C∗-algebra B is a complex antilinear map a : W −→ B satisfying the canonical
anticommutation relations

a(w)a(w′)∗ + a(w′)∗a(w) = 〈w,w′〉 1 (3.16)

a(w)a(w′) + a(w′)a(w) = 0 (3.17)
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for all w,w′ ∈W .
Two remarks are in order:
1. If one uses the convention that the scalar product of a Hilbert space is complex

linear in the first argument and complex antilinear in the second, then a CAR map a as
in 3.16 will be required to be complex linear. But the requirement here is in accordance
with the majority of the physics literature.

2. Another way of introducing the canonical anticommutation relations requires two
maps a and a∗ (complex antilinear resp. complex linear) with

a(w)a∗(w′) + a∗(w′)a(w) = 〈w,w′〉 1 (3.18)

a(w)a(w′) + a(w′)a(w) = 0 (3.19)

a∗(w)a∗(w′) + a∗(w′)∗a(w) = 0 (3.20)

and then proving a(w)∗ = a∗(w).

Definition 3.18 (CAR algebra) A CAR algebra over the complex Hilbert space W is a
C∗-algebra C together with a CAR map ι : W −→ C with the following universal property:
Each CAR map a : V −→ B into a C∗-algebra B factors through a unique homomorphism
h : C −→ B, i.e. a = h ◦ ι.

Compare with the definition 3.1 of a Clifford algebra. Again we have uniqueness up to
isomorphism.

The similarity of the CAR 3.16 with the complex version of the Clifford relations
3.13 and the euclidean Clifford relations 3.5 are obvious. As a consequence, the Clifford
algebras and the CAR algebras are essentially the same.

In fact, let W be a complex Hilbert space. We use the conjugated Hilbert space W
(see the example ??) with the complex antilinear isomorphism σ : W −→ W,w �→ w,
to define the Hilbert space H := W ⊕W . H carries the natural conjugation Σ : H −→
H , w + σ(w′) �→ w′ + σ(w). Hence V := {x ∈ H : Σ(x) = x} = {w + σ(w) : w ∈ W }
is a real subspace such that VC = H as Hilbert spaces (cf. Lemma 3.17). In particular,
with the notation w := σ(w) the Hermitian scalar product 〈 , 〉 on H can be described by
the euclidean inner product g = ( , ) on V by

〈x, y〉 = gC (x, y) (3.21)

for x, y ∈ H. For later use we point out that

β : W −→ V , w �→ 2−
1
2 (w + σ(w)), (3.22)

is a real linear isomorphism which induces on V a complex structure (to be defined below).
Define ι : W −→ C�(V ) by

ι(w) := 2−
1
2 ιC(w)∗ ,

w ∈ W . ι is complex antilinear with a natural antilinear extension to all of H which we
denote by ι as well: ι(z) := 2−

1
2 ιC(z)∗ = 2−

1
2 ιC(z) (cf. 3.14, z ∈ H.
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Theorem 3.19 ι : W −→ C�(V ) is a CAR algebra over W .

Proof In addition to being complex antilinear ι is also a CAR map:
ι(w)ι(w′) + ι(w′)ι(w) = 2−1(ιC(w′)ιC(w) + ιC(w)ιC(w′))∗ = (gC(w′, w)1)∗ = gC(w′, w)1 for

all w,w′ ∈ VC according to 3.13. Because of ι(w′)∗ = 2−
1
2 ιC(w′)∗∗ = 2−

1
2 ιC(w′) and ι(w) =

2−
1
2 ιC(w) (see 3.14) one obtains ι(w)ι(w′)∗+ι(w′)∗ι(w) = 1

2
(ιC(w)ιC(w′) + ιC(w′)ιC(w)) =

gC(w,w′)1 = 〈w,w′〉 1 (see 3.21) and moreover ι(w)ι(w′) + ι(w′)ι(w) = gC(w,w′)1 =〈
w,w′〉 1 = 0 for all w,w′ ∈W since w⊥w′.

Now let a : W −→ B a CAR map into a C∗-algebra B. We define a Clifford map
c : V −→ B by c(v) := 2

1
2 (a(w)∗ + a(w)) if v = w + w ∈ V (each v ∈ V has a unique

decomposition as v = w + w with w ∈ W ). Certainly, c is R-linear. Moreover, c(v)2 =
2(a(w)∗ + a(w))(a(w)∗ + a(w)) = 2(a(w)∗a(w)∗ + a(w)a(w) + a(w)a(w)∗ + a(w)∗a(w)) =
2 〈w,w〉 1 (cf. 3.18ff). Since ‖v‖2 = 〈w + w,w + w〉 = 2 〈w,w〉 we deduce c(v)2 = ‖v‖2 1,
i.e. c is indeed a Clifford map inducing a unique homomorphism h : C�(V ) −→ B with
c = h ◦ ι.

For the complex-linear extension cC we get cC = h ◦ ιC. And for w ∈ W we can
write w = 1

2
(w + w) + i1

2
(−iw + −iw) with w + w,−iw + −iw ∈ V , hence, we obtain

cC(w) = 1
2
c(w+w)+i1

2
c(−iw+−iw) = 2

1
2

1
2
(a(w)∗+a(w)+ia(−iw)∗+ia(−iw)) = 2

1
2a(w)∗

since a is complex antilinear on W . Finally, we deduce a(w) = a(w)∗∗ = 2−
1
2 cC(w)∗ =

2−
1
2 (h ◦ ιC(w))∗ = h(2−

1
2 ιC(w)∗) = h ◦ ι(w) since h is a star homomorphism.

�

With A(W )we shall denote the CAR algebra over the Hilbert space W (uniquely deter-
mined up to C∗-algebra isomorphisms) which can be identified with the Clifford algebra
C�(V ) for a suitable euclidean V .

Conversely,
A variant

The complex structure in its different disguises We have encountered a complex
structure of the basic euclidean space V already in the last paragraph. As a basis for the
proof of Theorem 3.19 we constructed to a given complex Hilbert space another Hilbert
space H = W ⊕ W = VC with a canonical real isomorphism β : W −→ V (see 3.22)
inducing a complex scalar multiplication (i.e. complex structure) on the real vector space
V .

Definition 3.20 (Complex structure) A complex structure on a real vector space V
is a (real) linear map J : V −→ V such that J2 = 1.

Defining iv := Jv for v ∈ V gives indeed a scalar multiplication such that V becomes
a complex vector space which we shall denote by VJ in the following. On the other hand
for a given complex vector space W the map J : W −→W , w �→ iw (or −iw) is of course
a complex structure with respect to the underlying real vector space.

12



We are mainly interested in complex structures J on a euclidean vector space V with
an inner product g = ( , ) which are orthogonal, i.e. satisfying (Jv, Jv′) = (v, v′). Such a
complex structure defines a positive definite Hermitian scalar product on VJ by

〈v, v′〉J := (v, v′) + i (Jv, v′) (3.23)

or
hJ(v, v

′) = g(v, v′) + ig(Jv, v′)

for v, v′ ∈ V .
Let J (V ) denote the set of all orthogonal complex structures on the euclidean space

V = (V, g). Any two such complex structures J, J ′ lead to isomorphic and isomet-
ric complex Hilbert spaces VJ and VJ ′. Each such isometry g : VJ ′ −→ VJ satisfies
〈gv, gv′〉 = (gv, gv′) + i (Jgv, gv′) = (v, v′) + i (J ′v, v′). Hence, g is orthogonal with
respect to the original inner product ( , ) and J ′ = g−1Jg. As a consequence, the or-
thogonal group O(V ) acts on J (V ) by J �→ g−1Jg. The isotropy group of this action
at a point J ∈ J (V ) is the unitary group U(VJ). The space of inequivalent orthogonal
complex structures is therefore the homogeneous space O(V )/U(VJ) which is similar in
many aspects to the grassmannian as we will see later.

In order to describe different and inequivalent representations of the CAR and Clifford
algebras we are interested in orthogonal decompositions VC = W ⊕Z of the complexifica-
tion of the complete euclidean space V = (V, g) and relate them to complex structures on
V . The Hilbert space VC has a canonical conjugation (cf. 3.11) Σ : VC −→ VC , v ⊗ λ �→
v ⊗ λ = Σ(v ⊗ λ) := v ⊗ λ with V = {w ∈ VC : Σ(w) = w }.
Lemma 3.21 Let VC = W + Z be a direct decomposition into closed subspaces, i.e.
W ∩ Z = ∅. Then any two of the following three conditions

1. W and Z are conjugate, i.e. W = Z (with respect to the natural conjugation induced
on V C)

2. W and Z are orthogonal: VC = W ⊕ Z

3. W and Z are isotropic (with respect to gC)

imply the third.

Proof
2.,3. ⇒ 1.

We have to show: w ∈ W ⇒ w ∈ Z. w ∈ W has the unique decomposition w = x + y
with x ∈ W, y ∈ Z. ‖x‖2 = 〈x, x+ y〉 − 〈x, y〉 = 〈x, w〉 since 〈x, y〉 = 0 by 2. It follows
that ‖x‖2 = gC(x, w) = 0 because of 3. (since x, w ∈ W ). Consequently, x = 0 and
w = y ∈ Z.

1.,2. ⇒ 3.
To show that W is isotropic, we consider x, y ∈ W : gC(x, y) = 〈x, y〉 = 0 since y ∈ Z by
2. and then x⊥y.

1.,3. ⇒ 2.
Given x ∈W and y ∈ Z we have 〈x, y〉 = gC(x, y) = 0 since y ∈W and W is isotropic.
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�

The situation in the lemma can best be described be writing VC = W ⊕W .

Lemma 3.22 (Induced complex structure) Let H be a complex Hilbert space with
a conjugation Σ which determines a euclidean subspace V = Fix Σ with VC = H. Let
H = W ⊕ΣW be an orthogonal decompositon. Then β : W −→ V , β(w) := 2−

1
2 (w+ Σw),

w ∈ W , (see 3.22) is an isometry with respect to the euclidean structures on V and
W induced by the Hermitian scalar product h and Jv := β(iβ−1(v)), v ∈ V defines an
orthogonal complex structure on V such that β : W −→ VJ becomes a complex-linear
isometry.

Proof In fact, β is not only a real-linear isomorphism but also an isometry since for
w,w′ ∈ W we have (denoting Σ(z) = z as before) 〈β(w), β(w′)〉 = 2−1

〈
w + w,w′ + w′〉 =

2−1(〈w,w′〉 + 〈w,w′〉 + 〈w,w′〉 + 〈w,w′〉) = 2−1(〈w,w′〉 + 〈w,w′〉) = 2−12Re 〈w,w′〉 =
(w,w′) (W is orthogonal to W ) which implies (β(w), β(w′)) = (w,w′). Now, β induces on
V an orthogonal complex structure by Jv := β(iβ−1(v)) , v ∈ V : J2 = βiβ−1 ◦ βiβ−1 =
βi2β−1 = −1 and J is an orthogonal map as a composition of orthogonal mappings. By
definition of the new complex structure, iβ(w) = J(β(w)) = β(iw), therefore β is complex
linear and thus an isometry of Hilbert spaces: β : W −→ VJ .

Any complex structure J on V can be continued to a complex linear map JC : VC −→ VC.
JC is unitary and satisfies JC

2 = −1. The two eigenspaces V + := ker(JC − i idVC
) and

V − := ker(JC + i idVC
) define an orthogonal decomposition VC = V + ⊕ V − where V +, V −

are isotropic and conjugate to each other: V + = V −.

Conversely, a decompositon VC = W + Z as in lemma 3.21 and satisfying two and
hence all three of the conditions there defines a complex structure J and is induced
by J in the following way: Define JC = iEW − iEZ where EW denotes the orthogonal
projection onto W (and EZ correspondingly the orthogonal projection onto Z, note that
EW + EZ = 1). JC is unitary with (JC)2 = −1. Then J := JC|V maps V into V
(since V = {w + w : w ∈ W } and J(w + w) = iw − iw = iw + iw ∈ V ) and J
is orthogonal satisfying J2 = −1. Therefore, J is a complex structure on V such that
W = ker(JC − i1) = V + and Z = ker(JC + i1) = V −. The inverse of β has the following
form

β−1(v) = 2−
1
2 (v − iJv) , v ∈ V . (3.24)

This follows from JC(v − iJv) = Jv + iv = i(v − iJv), i.e. v − iJv ∈ V + = W for v ∈ V

and β(2−
1
2 (v − iJv)) = 2−1(v − iJv + v − iJv) = v.

Note that in the finite dimensional case, V has to be even-dimensional in order to
admit a complex structure. In that case the complex structures are parametrized by the
homogeneous manifold O(2n)/U(n).
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Fock space of the Clifford algebra Let V be as before a complete euclidean space
and let J be a complex structure on V .

The Hermitian scalar product 〈 , 〉J on the Hilbert space VJ induces on the exterior al-
gebra ΛVJ a Hermitian scalar product such that it is a pre-Hilbert space. The completion
is the Fock space F(VJ).

Define for v ∈ V :
dv(ξ) := v ∧ ξ , , ξ ∈ ΛVJ (3.25)

iv(v0 ∧ v1 · · · ∧ vm) =

j=m∑
j=0

(−1)j 〈v, vj〉J v0 ∧ v1 · · · ∧ v̂j ∧ . . . ∧ vm (3.26)

Lemma 3.23 dv and iv are bounded complex-linear operators satisfying

‖dvξ‖2 + ‖ivξ‖2 = ‖v‖2 ‖ξ‖2

〈dvξ, η〉J = 〈ξ, ivη〉J
dv ◦ dv = 0 , iv ◦ iv = 0

ivdv′ + dv′iv = 〈v, v′〉
for v, v′ ∈ V .

Hence, the operators dv, iv have continuous complex-linear extensions to F(VJ) and
they are mutually adjoint. Let a(v) : F(VJ) −→ F(VJ) denote the extension of iv, then
a∗(v) = a(v)∗ is the extension of dv. We obtain the canonical anticommutation relations
from lemma 3.23:

a(v)a∗(v′) + a∗(v′)a(v) = 〈v, v′〉J 1

a(v)a(v′) + a(v)a(v′) = 0 = a∗(v)a∗(v′) + a∗(v)a∗(v′)

Note that a∗ : VJ −→ B(F(VJ)) is complex-linear and a : VJ −→ B(F(VJ)) is complex
antilinear.

Theorem 3.24 C�(V ) has a natural representation πJ : C�(V ) −→ B(F(VJ)) on the Fock
space F(VJ) induced by

c(v) := a∗(v) + a(v) , v ∈ V .

Proof Clearly, c(v) is a bounded complex-linear operator on the Fock space F(VJ) and
c : V −→ C�(V ) is linear over R. Moreover, the canonical anticommutation relations imply
c(v)2 = (a∗(v) + a(v))(a∗(v) + a(v)) = a∗(v)a∗(v) + a(v)a(v) + a∗(v)a(v) + a(v)a∗(v) =
〈v, v〉 = (v, v) = ‖v‖2 1. Hence, c is a Clifford map inducing a homomorphism (of C∗-
algebras) h : C�(V ) −→ B(F(VJ)) with c = h ◦ ι. This h is the representation map
πJ := h.

�
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Lemma 3.25 The representation of the theorem is irreducible and any Ω ∈ Λ0VJ ∼= C,
Ω �= 0, is cyclic.

Proof. Evidently, spanC {a∗(v1)a
∗(v2) . . . a

∗(vm)Ω : vk ∈ VJ } which is the same as
spanC {v1 ∧ v2) . . . ∧ vm : vk ∈ VJ } is dense in F(VJ), hence Ω is cyclic and πJ is irre-
ducible.

�

Theorem 3.26 Let J,K be orthogonal complex structures on the complete euclidean space
V . Then πJ and πK are unitarily equivalent if and only if J − K is a Hilbert Schmidt
operator.

As a consequence, in case of J − K being Hilbert Schmidt there is an intertwining
unitary operator T : F(VJ) −→ F(VK) such that T ◦ πJ(c) = πK(c) ◦ T for all c ∈ C�(V ).
This is the original result of Shale-Stinespring (cf. Theorem 0.4) and it has to do with
the implementation problem: By definition, an operator g ∈ O(V ) can be implemented
on F(VJ) (or in πJ) if there exists a unitary operator g∼ : F(VJ) −→ F(VJ) such that

g∼ ◦ πJ(c) = πJθg(c) ◦ g∼ , for all c ∈ C�(V ) . (3.27)

Theorem 3.27 g ∈ O(V ) has an implementation in πJ if and only if [g, J ] is Hilbert
Schmidt. If it exists it is unique up to a scalar factor of modulus 1.

This follows from the observation, that [g, J ] is Hilbert Schmidt for g ∈ O(V ) if and only
if g−1[g, J ] = J − g−1Jg is Hilbert Schmidt, i.e. iff for the orthogonal complex structure
K = g−1Jg the condition of the theorem is fulfilled: J −K is Hilbert Schmidt. Moreover,
πJ ◦θg = πK . Hence the intertwining unitary operator T satisfies T ◦πJ(c) = πJ (θg(c))◦T
and is an implementation g∼ = T of g.

�

Definition 3.28 The restricted orthogonal group is

Ores(V, J) = Ores(V ) := {g ∈ O(V ) : [g, J ] Hilbert Schmidt } .
As discussed before, the last theorem induces a projective representation

ρJ : Ores(V, J) −→ Aut (PF(VJ))

which leads to a representation on the Fock space F(VJ) of a central extension Ores
∼(V, J )

of the restricted orthogonal group.

ρJ can be shown to be continuous.

To understand the Hilbert Schmidt condition it is helpful to decompose a given or-
thogonal map g ∈ O(V ) into its complex-linear part Cg := 1

2
(g − JgJ) and its antilinear

part Ag := 1
2
(g+JgJ) with respect to J : g = Cg +Ag. Since CgJ = JCg, i.e. [Cg, J ] = 0,

and AgJ = −JAg we get [g, J ] = 2AgJ and deduce:
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Lemma 3.29 [g, J ] Hilbert Schmidt ⇐⇒ Ag Hilbert Schmidt.

The C-linear extension gC of g from V to VC is unitary with respect to the induced
Hermitian scalar product on VC. Regarding the decomposition VC = V +⊕V − and writing
gC as a block matrix one gets

gC =

(
Cg

C
Ag

C

Ag
C

Cg
C

)

using the C-linear extensions Cg
C
, Ag

C
of Cg, Ag.

This observation gives an immediate connection to the discussion of the restricted uni-
tary group (cf. section 0 and the following subsection).

Ores(V, J) has a natural structure of a real Banach Lie group with respect to the norm
‖g‖r := ‖Cg‖ + ‖Ag‖HS. It has two connected components, both of which are simply
connected.

Fock space of the CAR algebra For a general complex Hilbert space H with scalar
product h = 〈 , 〉 we can use the construction of the last subsection to obtain the wave
representation π of the CAR algebra A(H) on the Fock space F(H). Here, F(H) is
(again) the Hilbert space completion of the pre-Hilbert space ΛH with the obvious scalar
product and to construct the representation π = πH one first considers the complex-linear
extension a∗(z) : F(H) −→ F(H) of the operator dz : ΛH −→ ΛH, ξ �→ z ∧ ξ, for each
z ∈ H. Thus we have a complex-linear map a∗ : H −→ B(F(H)) with the following
anticommutation relations for a(z) := a∗(z)∗ , z ∈ H and a∗:

a(z)a∗(z′) + a∗(z′)a(z) = 〈z, z′〉 1

a(z)a(z′) + a(z)a(z′) = 0 = a∗(z)a∗(z′) + a∗(z)a∗(z′)

By the universal property of the CAR algebra A(H) there exists a unique homomorphism
π : A(H) −→ B(F(H)) with a = π ◦ ι. π is the wave representation.

To produce other irreducible representations of the CAR algebra A(H) suitable addi-
tional properties of H are exploited. In the light of the example QED it appears reasonable
to require the existence of a conjugation Σ : H −→ H as a basic structure of our Hilbert
space which is the same as to describe H as the complexification VC of a real euclidean
subspace V ⊂ H. In addition, we need an orthogonal decomposition H = H+ ⊕ H−

(for example given by the eigen spaces of positive resp. negative eigenvalues of the Dirac
operator, cf. section 0) respecting the conjugation, i.e. Σ(H+) = H− and consequently
Σ(H−) = H+ as well. Then H+ isotropic (cf. lemma 3.21). Such an orthogonal de-
composition is given by a self adjoint projection P = P+ satisfying 1H = P + ΣPΣ, or
equivalently by an orthogonal complex structure J on V such that H+ = ker(JC − i1H)
and H− = ker(JC + i1H) (cf. lemma 3.22).
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Under these circumstances one regards the identification

A(H+ ⊕H−) ∼= A(H+)⊗̂A(H−) ∼= A(H+)⊗̂A(ΣH−) ∼= A(PH)⊗̂A(Σ(1 − P )H)

and mixes the wave representations of A(H+) and A(ΣH−) appropriately to obtain the
following ansatz:

The Fock space is now the Hilbert space

FP = F(H,Σ, P ) := ΛH+⊗̂ΛΣH−

where the Hermitian scalar product on ΛH+⊗ΛΣH− is the natural one induced from H+

and ΣH−, and the Fock space FP = F(H,Σ, P ) is the completion with respect to this
scalar product (indicated by the ˆ on ⊗). On FP we define the following natural actions
a∗(z) := a∗(z+) + a∗(z−), a(z) := a(z+) + a(z−) for z = z+ + z−, z+ ∈ H+, z− ∈ H−:

a∗(z+)ξ ⊗ η := (z+ ∧ ξ) ⊗ η (3.28)

a∗(z−)(ξ(n) ⊗ z′1 ∧ . . . z′m) := (−1)nξ(n) ⊗
j=n∑
j=1

(−1)j+1
〈
z−, z′j

〉
z′1 ∧ · · ·∧ ẑ′j ∧ . . .∧ z′m (3.29)

a(z+)(z1 ∧ z2 . . . ∧ zn) ⊗ η :=

j=n∑
j=1

(−1)j+1
〈
z+, zj

〉
z1 ∧ z2 · · · ∧ ẑj ∧ . . . ∧ zn (3.30)

a(z−)(ξ(n) ⊗ η := (−1)nξ(n) ⊗ z− ∧ η (3.31)

for ξ ∈ ΛH+ , ξ(n) ∈ ΛnH+, η ∈ ΛΣH− and z1, z2, . . . zn ∈ H+, z′1, z
′
2, . . . , z

′
m ∈ H−.

In the physics literature, a, a∗ are also denoted by Ψ,Ψ∗ and known as the ’field oper-
ators’. Only a (or equivalently a∗) has to be defined because of a(z)∗ = a∗(z).

a : H −→ B(FP ) is complex antilinear and satisfies the canonical anticommutation
relations (CAR):

a(z)a(w)∗ + a∗(w)a(z) = 〈z, w〉
a(z)a(w) + a(w)a(z) = 0

for z, w ∈ H.

Consequently, according to theorem 3.19 there exists a unique homomorphism πP :
A(H) −→ B(FP ) extending a in the sense of a = πP ◦ ι. πP is a representation of the CAR
algebra A(H) with a cyclic vector Ω = ΩP := 1 ∈ FP : {πP (a)ΩP : a ∈ A(H) } is dense
in FP . Therefore, πP is irreducible.

Moreover, ΩP is uniquely defined (up to scalar multiples) as the vector Ξ ∈ FP with

a(z+)Ξ = 0 , a∗(z−)Ξ = 0
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for all z+ ∈ H+ and z− ∈ H−.

The following theorem corresponds to the similar theorem 3.26 for Fock representations
πJ of the Clifford algebra C�(V ) and shows that we obtain in fact essentially different
representations by varying the projections P (which is the same as varying the complex
structures J of V = FixΣ).

Theorem 3.30 Let H be a Hilbert space with a conjugation Σ and let P,Q be orthogonal
Σ-invariant projections on H. Then πP and πQ are unitarily equivalent if and only if
P −Q is a Hilbert Schmidt operator.

Proof.
Under construction

�

As a consequence, in case of P − Q being Hilbert Schmidt there is an intertwining
unitary operator T : FP −→ FQ such that T ◦ πP (a) = πQ(a) ◦ T for all a ∈ A(H). This
is a version of the result of Shale-Stinespring (cf. Theorem 0.4) and it has to do with the
implementation problem: By definition, a unitary operator U ∈ U(H) can be implemented
on FP (or in πP ) if there exists a unitary operator U∼ : FP −→ FP such that

U∼ ◦ πP (a) = πP θU(a) ◦ U∼ , for all a ∈ A(H) . (3.32)

Theorem 3.31 U ∈ U(H) has an implementation in πP if and only if [U, P − P⊥] is
Hilbert Schmidt. If it exists it is unique up to a scalar factor of modulus 1.

This follows immediately from the preceding theorem as in the orthogonal case.

Note, that [U, P −P⊥] is Hilbert-Schmidt if and only if in the block matrix description
of U with respect to the decomposition H = H+ ⊕ H− the off-diagonal terms U+− and
U−+ are Hilbert-Schmidt operators.

Definition 3.32 The restricted unitary group is

Ures(H, P ) = Ures(H) := {U ∈ U(H) : [U, P − P⊥] Hilbert Schmidt } .
As discussed before, the preceding theorem induces a projective representation

ρP : Ures(H, P ) −→ Aut (PFP )

which leads to a representation on the Fock space FP of a central extension Ures
∼(H, P )

of the restricted unitary group.

ρP can be shown to be continuous.

Ures(H, P ) has a natural structure of a real Banach Lie group with respect to the
norm ‖U‖r := ‖U+‖ + ‖U−‖ + ‖U+−‖HS + ‖U−+‖HS. It has countably many connected
components. The component of the identity is simply connected.
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The GNS construction We compare the Fock representations of the last subsections
with a class of more general representations of C∗-algebras known as GNS representations.

A state of a C∗-algebra A (or an expectation value functional) is a complex-linear form
ω : A −→ C satisfying ω(a∗a) ≥ 0 for a ∈ A and ω(1) = 1. Such a state is continuous with
norm equal to 1.

For example, regarding the algebra B(H) of bounded linear operators T : H −→ H on a
Hilbert space H as the C∗-algebra of observables of a quantum mechanical system, each
ψ ∈ H defines a state by the expectation value

Eψ(T ) :=
〈ψ, Tψ〉
〈ψ, ψ〉 , T ∈ B(H) .

For a CAR algebra A(H) with its embedding ι : H −→ A(H) every self adjoint (i.e.
orthogonal) projection E ∈ B(H) induces a state by

ωE(ι∗(z′)ι(z)) := 〈z, Ez′〉

and satisfying

ωE(ι∗(z′1)ι
∗(z′2) . . . ι

∗(z′m)ι(z1) . . . ι(zm)) = det(
〈
zi, Ez

′
j

〉
) .

In general, a state ω of A induces the following representation: Iω := {a ∈ A :
ω(a∗a) = 0 } is a closed left ideal, because ω(a∗b) = ω(b∗a) and ω(a∗b)ω(a∗b) ≤ ω(a∗a)ω(b∗b)
for a, b ∈ A. The quotient

Gω := A/Iω
comes with a natural positive definite Hermitian scalar product

〈ψa, ψb〉ω := ω(a∗b)

where ψa ∈ Gω denotes the equivalence class ψa := amodIω. Hence, the completion of
Gω is a Hilbert space which we denote with the same symbol. It comes with the natural
action πω on Gω given by

πω(a)(ψb) := ψab

for a, b ∈ A. Of course, πω is a linear homomorphism (e.g. πω(ab)(ψc) = ψ(ab)c =
πω(a)(ψbc) = πω(a)πω(b)(ψc)) and a star homomorphism: 〈πω(a)(ψb), ψc〉ω = 〈ψab, ψc〉ω =
ω((ab)∗c) = ω(b∗(a∗c)) = 〈ψb, πω(a∗)ψc〉ω, hence (πω(a))

∗ = πω(a
∗). Note, that π(a) is a

kind of creation operator since for the vector ξω := ψ1 we have ψa = πω(a)ξω.

As a consequence πω : A −→ B(Gω) is an irreducible representation of the C∗-algebra
A with cyclic vector ξω. It is called the GNS representation for ω and ξω is called the
GNS-vacuum. The state ω can be reconstructed from π = πω , ξ = ξω as the vacuum
expectation value ω(a) = 〈ξ, π(a)ξ〉.
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Coming back to our CAR algebra A(H) with the projection E we get the GNS repre-
sentation πωE

: A(H) −→ GωE
for ωE with cyclic vector ξωE

.

The Fock representation produces to each orthogonal projection P another irreducible
representation πP on FP with cyclic vector ΩP . To show that πP is unitarily equivalent
to the GNS representation πωE

with E := P⊥ we use the result that two representations
of a C∗-algebra are unitarily equivalent if and only if there vacuum expectation value
functionals agree.

Theorem 3.33 Let H be a Hilbert space with a fixed conjugation and a conjugation in-
variant orthogonal decomposition H = H+ ⊕H−. Let P denote the orthogonal projection
onto H+ and E = 1 − P = ΣPΣ the corresponding orthogonal projection onto the or-
thogonal complement. Then the Fock representation πP is unitarily equivalent to the GNS
representation πωE

.

Proof. By definition ωE(ι∗(z)ι(w)) = 〈w,Ez〉H for z, w ∈ H. For the Fock rep-
resentation we get ωFP

(ι∗(z)ι(w)) = 〈ΩP , a
∗(z)a(w)ΩP 〉FP

= 〈 a(z)ΩP , a(w)ΩP 〉FP
=

〈 a(Ez)ΩP , a(Ew)ΩP 〉FP
=

〈
Ez,Ew

〉
H = 〈Ez,Ew〉H = 〈Ew,Ez〉H = 〈w,Ez〉H =

ωE(ι∗(z)ι(w)). Hence ωFP
= ωE .

�
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