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40 8. TOOLBOX

9. Adjoint Functors and the Yoneda Lemma

Theorem 8.9.1. (Yoneda Lemma) Let C be a category. Given a covariant functor
F :C — Set and an object A € C. Then the map

7 : Nat(More (A, -),F) 2 ¢ — ¢(A)(14) € F(A)
is bijective with the inverse map
7" F(A) 3 a— h* € Nat(More(A, -), F),
where h*(B)(f) = F(f)(a).

PROOF. For ¢ € Nat(Morc(A,-), F) we have a map ¢(A) : Morc(A, A) — F(A),
hence 7 with 7(¢) := ¢(A)(14) is a well defined map. For 7! we have to check that
h* is a natural transformation. Given f: B — (C in C. Then the diagram

Mor¢ (A, B) Mor(4,/) Morc (A, C)
h%(B) he(C)
F(B) F(C)

)

F(f
is commutative. In fact if g € Mor¢(A, B) then h*(C )Morc(A,f)(g) = h*(C)(fg) =
F(fg)a)=F(/)F(g)(a)=F(f)h*(B)(a). Thus 7= is well defined.
Let 77'(a) = h*. Then 77 (a) = h*(A)(14) = F(la)(a) = a. Let n(¢) =
¢(A)(14) = a. Then 77'7(¢) = h* and h*(B)(f) = F(f)(a) = F([)(¢(A)(1a)) =
¢(B)More (A, f)(1a) = ¢(B)([), also h* = ¢. O

Corollary 8.9.2. Given A, B € C. Then the following hold

1. Morc(A,B) 3 f — More(f,-) € Nat(More(B,-),Morc(A,-)) is a bijective
map.

2. With the bijective map from 1. the isomorphisms from Morc(A, B) correspond
to natural isomorphisms from Nat(Morc (B, -), Morc(A, -)).

3. For contravariant functors F : C — Set we have Nat(More(-, A), F) = F(A).

4. Mor¢(A, B) 3 f — More(-, f) € Nat(More(-, A), More(-, B)) is a bijective map
that defines a one-to-one correspondence between the isomorphisms from Morc(A, B)
and the natural isomorphisms from Nat(More(-, A), Mor¢(-, B)).

PROOF. 1. follows from the Yoneda Lemma with F = Mor¢(A,-).

2. Observe that 1/ (C)(g) = Morc(A,g)(f) = gf = More(f,C)(g) hence h/ =
More(f,-). Since we have More( f,-)More(g,-) = More(gf,-) and More(f,-) = idnore(4,-)
if and only if f = 14 we get the one-to-one correspondence between the isomorphisms
from 1.

3. and 4. follow by dualizing. O
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Remark 8.9.3. The map 7 is a natural transformation in the arguments A and
F. More precisely: if f: A — B and ¢ : F — G are given then the following
diagrams commute

Nat(More(A,-), F) ——— F(A)

¢(4)

Nat(Mor(A4,-),$) \

Nat(Mor¢(A,-),G) (A)
Nat(Mor¢(A,-), F) —— F(A)

:

Nat(Mor( f,-),F) F(f)

Nat(More(B,-), F) — F(B).
This can be easily checked. Furthermore we have for ¢ : Mor¢(A,-) — F

m Nat(Morc(A,-), ¢)(¢) = () = (¢)(A)(1a) = ¢(A)Y(A)(14) = o(A)7 ()
and

m Nat(More(f,-), F)(¢) = m(yMore(f,-)) = (More(f,-))(B)(1s) = ¥(B)(f)
= ¢(B)More(A, [)(14) = F(S)(A)(La) = F([)m ().

Remark 8.9.4. By the previous corollary the representing object A is uniquely
determined up to isomorphism by the isomorphism class of the functor Mor¢(A,-).

Problem 8.9.1. 1. Determine explicitly all natural endomorphisms from G, to
G, (as defined in Lemma 2.3.5).

2. Determine all additive natural endomorphisms of G, .

3. Determine all natural transformations from G, to G,, (see Lemma 2.3.7).

4. Determine all natural automorphisms of G,),.

Proposition 8.9.5. Let G : C x D — Set be a covariant bifunctor such that
the functor G(C,-) : D — Set is representable for all C € C. Then there exists a
contravariant functor F : C — D such that G = Morp(F-,-) holds. Furthermore F
is uniquely determined by G up to isomorphism.

PROOF. For each €' € C choose an object F(C') € D and an isomorphism &¢ :
G(C,-) = Morp(F(C),-). Given f : C — C"in C then let F(f) : F(C') — F(C)
be the uniquely determined morphism (by the Yoneda Lemma) in D such that the
diagram

G(C,-) =25 Morp(F(C),-)

Mor(}-(f) 7_)
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commutes. Because of the uniqueness F(f) and because of the functoriality of G
it is easy to see that F(fg) = F(g)F(f) and F(l¢) = 17 hold and that F is a
contravariant functor.

If F': C — Dis given with G = Morp(F'-,-) then ¢ : Morp(F-,-) = Morp (F'-,-).
Hence by the Yoneda Lemma ¢ (C') : F(C') = F'(C) is an isomorphism for all C' € C.
With these isomorphisms induced by ¢ the diagram

Morp(F/(C),-) ——2 DD NMorp (F(C), )

Mor(F'(£)-) Mor(F(£),7)

Morp (F'(C"),-)

Morp(F(C"),-)

Mor((C'),~)
commutes. Hence the diagram
F(ery 1D ey
F'(f) F(J)

!
F(O) o FI(C)
commutes. Thus ¢ : F — F' is a natural isomorphism. O

Definition 8.9.6. Let C and D be categories and F : C — D and G : D — C
be covariant functors. F is called leftadjoint to G and G rightadjoint to F if there is
a natural isomorphism of bifunctors ¢ : Morp(F-,-) — Mor¢(-,G-) from C? x D to
Set.

Lemma 8.9.7. If F : C — D s leftadjoint to G : D — C then F is uniquely
determined by G up to isomorphism. Similarly G is uniquely determined by F up to
isomorphism.

PROOF. Now we prove the first claim. Assume that also F' is leftadjoint to G
with ¢ : Morp(F'-,-) — More(-,G-). Then we have a natural isomorphism ¢/~ ¢ :
Morp(F-,-) — Morp(F'-,-). By Proposition 8.9.5 we get F = F'. 0

Lemma 8.9.8. A functor G : D — C has a leftadjoint functor iff all functors
Morc(C,G-) are representable.

Proor. follows from 8.9.5. O
Lemma 8.9.9. Let F:C — D and G : D — C be covariant functors. Then
Nat(Id¢,GF) 3 & — G-®- € Nat(Morp(F-, -), More(-,G-))

is a bijective map with inverse map

Nat(Morp(F-,-), More(-,G-)) 3 ¢ — ¢(-, F-)(1£-) € Nat(Id¢, GF).



9. ADJOINT FUNCTORS AND THE YONEDA LEMMA 43
Furthermore
Nat(FG,1de) 5 ¥ — W-F- € Nat(More(-,G-), Morp(F-, -))
is a bijective map with inverse map
Nat(More(-,G-), Morp(F-, -)) 3 ¢ — (G-, -)(1g-) € Nat(FG, Ide).

PROOF. The natural transformation G-®- is defined as follows. Given C' € C,
D € D and f € Morp(F(C), D) then let (G-®-)(C,D)(f) = G(/)®(C) : C —
GF(C) — G(D). It is easy to check the properties of a natural transformation.

Given @ then one obtains by composition of the two maps G(1rc))®(C) =

GF(1c)®(C) = ®(C). Given ¢ one obtains
G(N(D(C, F(C))(1xcy) = More(C, G(f)o(C, F(C))(17(c))
= ¢(C, D)Morp(F(C), f)(1x(c)) = ¢(C, D)(f).

The second part of the lemma is proved similarly. O
Proposition 8.9.10. Let
¢ : Morp(F-,-) — More(-,G-) and ) : More(-,G-) — Morp(F-, -)

be natural transformations with associated natural transformations (by Lemma 8.9.9)
O :1de — GF resp. V: FG — Idp.
1) Then we have ¢tp = idyjor(-,g-) if and only if (G 2% grg 2% g)=idg.

2) We also have ¢ = idnor(r--y if and only if (F 7% rer Y F) =idr.

Proor. We get

GU(D)eG(D) = GU(D)e(G(D), FG(D))(1rg(p))
= Morc(G(D),G¥(D))o(G(D), FG(D))(1rg(1))
= ¢(G(D), D)Morp(FG(D), ¥(D))(1xg(p)

= ¢(G(D), D)(¥(D))

= Qb(g(D)v D)¢(Q(D)7 D)(lg(D))

= o(G(D), D)(1g(p))-

Similarly we get
ov(C. D)(f) = ¢(C, D) (C, D)(f) = G(Y(D)F([))®(C)
=GU(D)GF(f)®(C) =G (D)PG(D)f. O

Corollary 8.9.11. Let F:C — D and G : D — C be functors. F s leftadjoint
to G if and only if there are natural transformations ® : Ide — GF and ¥ : FG — Idp
such that (GU)(®G) = idg and (VF)(F®) = idr.

Definition 8.9.12. The natural transformations ® : Ide — GF and ¥ : FG —
Idp given in 8.9.11 are called unit and counit resp. for the adjoint functors F and G.



44 8. TOOLBOX

Problem 8.9.2. 1. Let gMgs be a bimodule. Show that the functor M ®g - :
sM — pM is leftadjoint to Hompg(M,-) : pM — sM. Determine the associated
unit and counit.

b) Show that there is a natural isomorphism Map(Ax B, C') = Map(B, Map(A, C)).
Determine the associated unit and counit.

¢) Show that there is a natural isomorphism K-Alg(KG, A) = Gr(G,U(A)).
Determine the associated unit and counit.

d) Show that there is a natural isomorphism K-Alg(U(g), A) = Lie-Alg(g, AY).

Determine the corresponding leftadjoint functor and the associated unit and counit.

Definition 8.9.13. Let G : D — C be a covariant functor. G generates a (co-
Juniversal problem a follows:

Given C' € C. Find an object F(C) € D and a morphism ¢ : €' — G(F(C)) in
C such that there is a unique morphism ¢ : F(C') — D in D for each object D € D
and for each morphism f: C' — G(D) in C such that the diagram

¢ ——g(F(C))
f G(9)
g(D)

commutes.

A pair (F(C),¢) that satisfies the above conditions is called a universal solution
of the (co-)universal problem defined by G and C.

Let F : C — D be a covariant functor. F generates a universal problem a follows:

Given D € D. Find an object G(D) € C and a morphism v : F(G(D)) — D in D
such that there is a unique morphism ¢ : C' — G(D) in C for each object C' € C and
for each morphism f: F(C) — D in D such that the diagram

F(C)
Flg) f

commutes.
A pair (G(D),v) that satisfies the above conditions is called a universal solution
of the (co-)universal problem defined by F and D.

Proposition 8.9.14. Let F : C — D be leftadjoint to G : D — C. Then F(C)
and the unit « = ®(C) : C — GF(C) form a (co-)universal solution for the (co-
Juniversal problem defined by G and C.

Furthermore G(D) and the counit v = V(D) : FG(D) — D form a universal
solution for the universal problem defined by F and D.
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PrROOF. By Theorem 8.9.10 the morphisms ¢ : Morp(F-,-) — More(-,G-) and
Y : More(-,G-) — Morp(F-,-) are inverses of each other. They are defined with unit
and counit as ¢(C, D)(g) = G(g)®(C) resp. (C,D)(f) = W(D)F(f). Hence for
each f: C — G(D) there is a unique g : F(C) — D such that f = ¢(C, D)(g) =
G(g)®(C) = G(g)e.

The second statement follows analogously. O

Remark 8.9.15. If G : D — C and C € C are given then the (co-)universal
solution (F(C),c: C — G(D)) can be considered as the best (co-)approximation of
the object €' in C by an object D in D with the help of a functor G. The object
D € D turns out to be F(C').

If F:C — D and D € D are given then the universal solution (G(D),v :
FG(D) — D) can be considered as the best approximation of the object D in D by
an object C' in C with the help of a functor F. The object ' € C turns out to be
g(D).

Proposition 8.9.16. Given G : D — C. Assume that for each C € C the uni-
versal problem defined by G and C' is solvable. Then there is a leftadjoint functor
F:C—Dtog.

Given F : C — D. Assume that for each D € D the uniwersal problem defined by
F and D is solvable. Then there is a leftadjoint functor G : D — C to F.

PROOF. Assume that the (co-)universal problem defined by G and C' is solved
by ¢ : € — F(C). Then the map Morc(C,G(D)) > f — g € Morp(F(C), D) with
G(g)t = [ is bijective. The inverse map is given by ¢ — G(g)c. This is a natural
transformation since the diagram

Morp(F(C), D) 50).

Morc(C,G(D))

Morp (F(C),h) Mor¢ (C,G(R))

Morp (F(C), D") More(C,G(D"))

G(-)e
commutes for each h € Morp(D, D'). In fact we have

Morc(C,G(h))(G(9)) = G(h)G(g)r = G(hg)e = G(Morc(F(C), h)(g))e.
Hence for all C' € C the functor More(C,G(-)) : D — Set induced by the bifunctor
More(-,G(-)) : C? x D — Set is representable. By Theorem 8.9.5 there is a functor
F : C — D such that Mor¢(-,G(-)) = Morp(F(-),-).

The second statement follows analogously. O

Remark 8.9.17. One can characterize the properties that G : D — C (resp.
F : C — D) must have in order to possess a left-(right-)adjoint functor. One of
the essential properties for this is that G preserves limits (hence direct products and
difference kernels).



