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6. Coalgebras

Definition 8.6.1. A K-coalgebra is a K-module C' together with a comultiplica-
tion or diagonal A : C' — C ®@ C that is coassociative:

C = Cod

A Agid
and a counit or augmentation € : C — K
C £ Cec
A id id @e

C@CWK@CQC'EC@K
A K-coalgebra C' is cocommutative if the following diagram commutes
C
CoC——CaC

Let C' and D be K-coalgebras. A homomorphism of coalgebras f : C — D is a
K-linear map such that the following diagrams commute:

c—7L p

AC AD

Col D®D

f&f
and

C

L ..
Ec\ /D
K

Remark 8.6.2. Obviously the composition of two homomorphisms of coalgebras
is again a homomorphism of coalgebras. Furthermore the identity map is a homo-
morphism of coalgebras. Hence the K-coalgebras form a category K-Coalg. The
category of cocommutative K-coalgebras will be denoted by K-cCoalg.
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Problem 8.6.1. 1. Show that V @ V* is a coalgebra for every finite dimensional
vector space V over a field K if the comultiplication is defined by A(v @ v*) :=
Yo v @uf @ v; @v* where {v;} and {vf} are dual bases of V resp. V*.

2. Show that the free K-modules KX with the basis X and the comultiplication
A(x) = x @ x is a coalgebra. What is the counit? Is the counit unique?

3. Show that K@ V with A(1)=1@ 1, A(v) =v @1+ 1 ® v defines a coalgebra.

4. Let C'and D be coalgebras. Then C'@ D is a coalgebra with the comultiplication
Acop = (1le @7 1p)(Ac @Ap): CRODRC®D — C®D and counit ¢ = ecgp :
C@D—K®K — K (The proof is analogous to the proof of Lemma 8.5.3.)

To describe the comultiplication of a K-coalgebra in terms of elements we intro-
duce a notation first introduced by Sweedler similar to the notation V(a @ b) = ab
used for algebras. Instead of A(c) = ¢; ® ¢} we write

Ale) =) ey @ .
Observe that only the complete expression on the right hand side makes sense, not
the components ¢(y) or ¢(3) which are not considered as families of elements of C'. This
notation alone does not help much in the calculations we have to perform later on.
So we introduce a more general notation.

Definition 8.6.3. (Sweedler Notation) Let M be an arbitrary K-module and C
be a K-coalgebra. Then there is a bijection between all multilinear maps

f:OCx...xC—M

and all linear maps

" Co...9C — M.

These maps are associated to each other by the formula

fler, oo ven) =l ®@...@¢,).
For ¢ € C we define
> fleqys o sem) = LA e),
where A"~ denotes the n — 1-fold application of A, for example A"™! = (A @ 1@

L@ o(A®1)oA.
In particular we obtain for the bilinear map @ : €' x C 3 (¢,d) —» c@d e C @ C

Y e @ e = Ale),
and for the multilinear map @2: C x C x C — C @ C @ C
Y e @ ey @ ey = (A 1)A(e) = (1© A)A(e),
With this notation one verifies easily

ZC(l)®...®A(C(i))®...®0(n):ZC(l)®...®C(n+1)
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and
20(1)®...®€(C(Z’))®...®C(n) 220(1)®...®1®...®C(n_1)
= 20(1) @ ... en-1)

This notation and its application to multilinear maps will also be used in more
general contexts like comodules.

Proposition 8.6.4. Let C be a coalgebra and A an algebra. Then the composition
F*g:=Valf @g)Ac defines a multiplication

Hom(C, A) @ Hom(C, A) > f @ g+ f+*g € Hom(C, A),

such that Hom(C, A) becomes an algebra. The unit element is given by K 3 a —
(¢ — n(ae(c))) € Hom(C, A).

PROOF. The multiplication of Hom(C, A) obviously is a bilinear map. The mul-
tiplication is associative since (f*g)*h = V4((Va(f ® 9)Ac) @ h)Ac =Va(V4 @

D((f@g)@h)(Ac@1)Ac = Va1l Va)([@(g@h)(10Ac)Ac = Va(f@(Valg®
h)Ac))Ac = f* (g * h). Farthermore it is unitary with unit lgem(c,4) = nacc since

nNaco * f == VA(UAGC X f)AC == VA(UA X 1A)(1K X f)(éc X 10)AC == f and similarly
f *Naco = f I

Definition 8.6.5. The multiplication * : Hom(C, A) @ Hom(C, A) — Hom(C, A)

is called convolution.

Corollary 8.6.6. Let C be a K-coalgebra. Then C* = Homg(C,K) is an K-
algebra.

PRrROOF. Use that K itself is a K-algebra. O

Remark 8.6.7. If we write the evaluation as C* @ C' 3 ¢ @ ¢ — (a,c) € K then
an element ¢ € C* is completely determined by the values of (a,¢) for all ¢ € C. So
the product of @ and b in C* is uniquely determined by the formula

(axb.c)=(a@b A(c)) =Y alcu))blcw)
The unit element of C* is ¢ € C*.

Lemma 8.6.8. Let K be a field and A be a finite dimensional K-algebra. Then
A* = Homg (A, K) is a K-coalgebra.

PROOF. Define the comultiplication on C* by
A A T (Ae AP A% @ A%
The canonical map can : A*@A* — (A®A)* is invertible, since A is finite dimensional.

By a diagrammatic proof or by calculation with elements it is easy to show that A*
becomes a K-coalgebra. O

Remark 8.6.9. If K is an arbitrary commutative ring, then A* = Homg (A, K)
is a K-coalgebra if A is a finitely generated projective K-module.
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Problem 8.6.2. Find sufficient conditions for an algebra A resp. a coalgebra '
such that Hom(A, C') becomes a coalgebra with co-convolution as comultiplication.

Definition 8.6.10. Let C be a K-coalgebra. A left C'-comodule is a K-module
M together with a homomorphism dy; : M — C @ M, such that the diagrams

M d CoM

) A®id

and
M
§ id
CoM oid Ko M= M.
commute.

Let “M and “N be C-comodules and let f : M — N be a K-linear map. The

map f is called a homomorphism of comodules if the diagram

M Sar CoM

! 1®f

N

- CoN
N

commutes.

The left C-comodules and their homomorphisms form the category “ M of comod-
ules.

Let N be an arbitrary K-module and M be a C-comodule. Then there is a
bijection between all multilinear maps

f:Cx...xM—N
and all linear maps
fC®...0M — N.
These maps are associated to each other by the formula
fler,.ooyen,m) = flle1 @ ... @ ¢, @m).
For m € M we define
Z fmay, - smey, many) == f/(6"(m)),
where 6" denotes the n-fold application of 4, ie. " =(1®...@1®d§)o (1@ §)od.
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In particular we obtain for the bilinear map @ : C' x M — C @ M
>y @ mary = 8(m),
and for the multilinear map @?: C x Cx M - C@C @M
>y @me @ many = (10 6)6(c) = (A @ 1)d(m).

Problem 8.6.3. Show that a finite dimensional vector space V' is a comodule
over the coalgebra V @ V* as defined in problem 8.11.1 with the coaction §(v) :=
Yv@vrev € (VeV )@V where Y vl @ v; is the dual basis of V in V*@ V.

Theorem 8.6.11. (Fundamental Theorem for Comodules) Let K be a field. Let
M be a left C-comodule and let m € M be given. Then there exists a finite dimensional
subcoalgebra C" C C and a finite dimensional C'-comodule M' with m € M' C M
where M' C M is a K-submodule, such that the diagram

M’ & ! ® M’

CoM

commutes.

Corollary 8.6.12. . Fach element ¢ € C of a coalgebra is contained in a finite
dimensional subcoalgebra of C.

2. Fach element m € M of a comodule is contained in a finite dimensional
subcomodule of M.

Corollary 8.6.13. 1. Fach finite dimensional subspace V' of a coalgebra C is
contained in a finite dimensional subcoalgebra C' of C'.

2. Fach finite dimensional subspace V' of a comodule M 1is contained in a finite
dimensional subcomodule M’ of M.

Corollary 8.6.14. 1. Fach coalgebra is a union of finite dimensional subcoalge-
bras.
2. Fach comodule is a union of finite dimensional subcomodules.

PROOF. (of the Theorem) We can assume that m # 0 for else we can use M’ =0
and C' = 0.

Under the representations of §(m) € C'@ M as finite sums of decomposable tensors
pick one

S

d(m) = Zci®mi

=1
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of shortest length s. Then the families (¢;|i = 1,...,s) and (m;]i = 1,...,s) are
linearly independent. Choose coeflicients ¢;; € C' such that

by suitably extending the linearly independent family (¢;|i = 1,...,s) to a linearly
independent family (¢;li = 1,... ,t) and t > s.

We first show that we can choose t = s. By coassociativity we have > 7 ¢ ®
d(my) = 2;21 Aej) @ m; = 2;21 Ele ¢ @ ¢;j @ my. Since the ¢; and the m; are
linearly independent we can compare coefficients and get
(1) 5(mi):Zcij®mj, ‘v’izl,...,s

i=1

and 0 = 2;21 ¢ij @ my for 1+ > s. The last statement implies

;i =0, Vi>s,g=1,...,s.

Hence we get t = s and

Define finite dimensional subspaces C' = (¢;li,7 = 1,...,s) € C and M’ =
(mile = 1,...,8) € M. Then by (1) we get 6 : M’ — C’" @ M’. We show that
m € M’ and that the restriction of A to C’ gives a linear map A : ¢/ — ' ® '
so that the required properties of the theorem are satisfied. First observe that m =
doe(e)m; € M and ¢; =Y e(¢;)e;; € C'. Using coassociativity we get

Z?le ci @ Aleij) @my = E;ja Aler) @ exy @ my
= Zi,j,k:l ¢ @ Cip D cky @ my

hence

(2) A(Cij) = E Cik ® Ck]‘.
k=1
U

Remark 8.6.15. We give a sketch of a second proof which is somewhat more
technical. Since (' is a K-coalgebra, the dual C* is an algebra. The comodule structure
d: M — C @ M leads to a module structure by p = (ev@l)(1® ) : C*@ M —
C*@C®M — M. Consider the submodule N := C*m. Then N is finite dimensional,
since ¢*m = Y -, {c*, ¢;)m; for all ¢* € C* where Y " ¢; @ m; = §(m). Observe that
C*m is a subspace of the space generated by the m;. But it does not depend on
the choice of the m;. Furthermore if we take 6(m) = > ¢; @ m; with a shortest
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representation then the m; are in C*m since ¢*m = > (c*,¢;)m; = m; for ¢ an
element of a dual basis of the ¢;.

N is a C-comodule since §(c*m) = > (", ¢;)d(m;) = D {(c*, ciy)cipy @ mi €
C®C*m

Now we construct a subcoalgebra D of €' such that N is a D-comodule with the
induced coaction. Let D := N @ N*. By 8.13 N is a comodule over the coalgebra
N @ N*. Construct a linear map ¢ : D — C by n @ n* = ) nq)(n*,nu)). By
definition of the dual basis we have n =Y n;(nf,n). Thus we get

(¢@@)Ap(n@n™) =(¢® ¢)(E n@ni @n; @n)

Y. nq < n(Ny) @ niy (", i)

= nq) <n SNy (1

= n(l) ® n<2><"*a nvy) =20 Ac(n)(n™, nw))
= Aco(n @ n*).

Furthermore ecg(n @ n*) = (3 nay(n*,nw)) = (0", 2 clnay)nw)) = (n*,n) =
e(n@n*). Hence ¢ : D — (' is a homomorphism of coalgebras, D is finite dimensional
and the image C’ := ¢(D) is a finite dimensional subcoalgebra of C'. Clearly N is
also a (’"-comodule, since it is a D-comodule.
Finally we show that the D-comodule structure on NN if lifted to the C'-comodule
structure coincides with the one defined on M. We have
do(c™m) = 0¢ (D (e, mu))man) = (e, ma))m) @ mn
=2 (¢, ma))me) @ mi(mi, man) = (" 7m (W) me)(mi, mn) @ m;
= (6@ 1) may)mpny @ mi @mi) = (¢ @ 1)(22 c™m ® m @ mi)
= (¢ @ 1)dp(c™m).



