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16 8. TOOLBOX

5. Algebras

Let K be a commutative ring. In most of our applications K will be a �eld. Tensor
products of K-modules will be simply written as M 
 N := M 
K N . Every such
tensor product is again a K-bimodule since each K-moduleM resp.N is a K-bimodule
(see 8.4.14).

De�nition 8.5.1. A K-algebra is a vector space A together with a multiplication
r : A
A �! A that is associative:

A
A A-
r

A
A
A A
A-id
r

?

r
id

?

r

and a unit � : K �! A:

K 
A �= A �= A
 K A
A-id
�

?

�
id

?

r

A
A A:-
r

id

HHHHHHHHHj

A K-algebra A is commutative if the following diagram commutes

A
A A
A-�

A:

r

A
A
A
AAU

r

�
�
�
���

Let A and B be K-algebras. A homomorphism of algebras f : A �! B is a K-linear
map such that the following diagrams commute:

A B-
f

A
A B 
B-f
f

?

rA

?

rB

and
K

�A

�
�
�
���

�B

A
A
A
AAU

A B:-f
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Remark 8.5.2. Every K-algebra A is a ring with the multiplication

A�A



�! A
A
r

�! A:

The unit element is �(1), where 1 is the unit element of K.
Obviously the composition of two homomorphisms of algebras is again a homo-

morphism of algebras. Furthermore the identity map is a homomorphism of alge-
bras. Hence the K-algebras form a category K-Alg. The category of commutative
K-algebras will be denoted by K-cAlg.

Problem 8.5.1. 1. Show that EndK(V ) is a K-algebra.
2. Show that (A;r : A 
 A �! A; � : K �! A) is a K-algebra if and only if

A with the multiplication A � A



�! A 
 A
r

�! A and the unit �(1) is a ring and
� : K �! Cent(A) is a ring homomorphism into the center of A.

3. Let V be a K-module. Show that D(V ) := K � V with the multiplication
(r1; v1)(r2; v2) := (r1r2; r1v2 + r2v1) is a commutative K-algebra.

Lemma 8.5.3. Let A and B be algebras. Then A 
 B is an algebra with the
multiplication (a1 
 b1)(a2 
 b2) := a1a2 
 b1b2.

Proof. Certainly the algebra properties can easily be checked by a simple cal-
culation with elements. We prefer for later applications a diagrammatic proof.

Let rA : A 
 A �! A and rB : B 
 B �! B denote the multiplications of the
two algebras. Then the new multiplication is rA
B := (rA 
 rB)(1A 
 � 
 1B) :
A 
 B 
 A 
 B �! A 
 B where � : B 
 A �! A 
 B is the symmetry map from
Theorem 8.4.15. Now the following diagrams commute

A
B 
A
B 
A
B A
A
B 
B 
A
B-1
�
13
A
B 
A
B-r
r
12

A
B 
A
A
B 
B A
A
A
B 
B 
B-
1
�B;A
A
1

3
A
A
B 
B-r
1
r
1

?

13
�
1

?

1
�B
B;A
1

?

1
�
1A
A
B 
A
B 
B

1
�
13

��
��

��*

13
�
1

�������

12
�
12
HHHHHHj

A
B 
A
B A
A
B 
B-1
�
1
A
B-r
r

?

1
r
r

?

1
r
1
r

?

r
r

In the left upper rectangle of the diagram the quadrangle commutes by the properties
of the tensor product and the two triangles commute by inner properties of � . The
right upper and left lower rectangles commute since � is a natural transformation and
the right lower rectangle commutes by the associativity of the algebras A and B.
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Furthermore we use the homomorphism � = �A
B : K �! K 
K �! A
B in the
following commutative diagram

K 
A
B �= A
B �= A
B 
 K A
B 
 K 
 K- A
B 
A
B-12
�
�

1

HHHHHHHHHHHHHHHHHHHHHHHHHHHj

HHHHHHHHHj
A
 K 
B 
 K A
A
B 
B-

1
�
1
�

?

1
�
1

?

1
�
1

?

r
r

HHHHHHHHHj
K 
 K 
A
B K 
A
 K 
B-1
�
1

?

A
B 
A
B A
A
B 
B-1
�
1
A
B:-r
r

?

�
�
12

?

�
1
�
1

De�nition 8.5.4. Let K be a commutative ring. Let V be a K-module. A K-
algebra T (V ) together with a homomorphism of K-modules � : V �! T (V ) is called
a tensor algebra over V if for each K-algebra A and for each homomorphism of K-
modules f : V �! A there exists a unique homomorphism of K-algebras g : T (V ) �! A
such that the diagram

V T (V )-�

f
@
@
@
@@R

A
?

g

commutes.
Note: If you want to de�ne a homomorphism g : T (V ) �! A with a tensor algebra

as domain you should de�ne it by giving a homomorphism of K-modules de�ned on
V .

Lemma 8.5.5. A tensor algebra (T (V ); �) de�ned by V is unique up to a unique
isomorphism.

Proof. Let (T (V ); �) and (T 0(V ); �0) be tensor algebras over V . Then

V

�

����������

�0
�

�
�

��	

�
@
@
@
@@R

�0

HHHHHHHHHj
T (V ) T 0(V )-h -k T (V ) T 0(V )-h

implies k = h�1.
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Proposition 8.5.6. (Rules of computation in a tensor algebra) Let (T (V ); �) be
the tensor algebra over V . Then we have

1. � : V �! T (V ) is injective (so we may identify the elements �(v) and v for all
v 2 V ),

2. T (V ) = f
P

n;�i vi1 � : : : � vinj
�i = (i1; : : : ; in) multiindex of length ng;

3. if f : V �! A is a homomorphism of K-modules, A is a K-algebra, and g :
T (V ) �! A is the induced homomorphism of K-algebras, then

g(
X

n;�i

vi1 � : : : � vin) =
X

n;�i

f(vi1) � : : : � f(vin):

Proof. 1. Use the embedding homomorphism j : V �! D(V ), where D(V ) is
de�ned as in 8.5.3. to construct g : T (V ) �! D(V ) such that g � � = j. Since j is
injective so is �.

2. Let B := f
P

n;�i vi1 � : : : � vinj
�i = (i1; : : : ; in) multiindex of length ng. Obviously

B is the subalgebra of T (V ) generated by the elements of V . Let j : B �! T (V ) be
the embedding homomorphism. Then � : V �! T (V ) factors through a linear map
�0 : V �! B. In the following diagram

V B-�0 T (V )-j

B T (V )-j

�0
@
@
@
@@R ?

idB

?

jpp
�

�
�

��	

we have idB ��0 = �0. p with p � j � �0 = p � � = �0 exists since �0 is a homomorphism
of K-modules. Because of jp � � = j � �0 = � = idT (V ) �� we get jp = idT (V ), hence the
embedding j is surjective and thus j is the identity.

3. is precisely the de�nition of the induced homomorphism.

Proposition 8.5.7. Given a K-module V . Then there exists a tensor algebra
(T (V ); �).

Proof. De�ne T n(V ) := V 
 : : :
 V = V 
n to be the n-fold tensor product of
V . De�ne T 0(V ) := K and T 1(V ) := V . We de�ne

T (V ) :=
M

i�0

T i(V ) = K � V � (V 
 V )� (V 
 V 
 V )� : : : :

The components T n(V ) of T (V ) are called homogeneous components.
The canonical isomorphisms Tm(V )
 T n(V ) �= Tm+n(V ) taken as multiplication

r : Tm(V )
 T n(V ) �! Tm+n(V )
r : T (V )
 T (V ) �! T (V )

and the embedding � : K = T 0(V ) �! T (V ) induce the structure of a K-algebra on
T (V ). Furthermore we have the embedding � : V �! T 1(V ) � T (V ).
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We have to show that (T (V ); �) is a tensor algebra. Let f : V �! A be a ho-
momorphism of K-modules. Each element in T (V ) is a sum of decomposable ten-
sors v1 
 : : : 
 vn. De�ne g : T (V ) �! A by g(v1 
 : : : 
 vn) := f(v1) : : : f(vn)
(and (g : T 0(V ) �! A) = (� : K �! A)). By induction one sees that g is a
homomorphism of algebras. Since (g : T 1(V ) �! A) = (f : V �! A) we get
g � � = f . If h : T (V ) �! A is a homomorphism of algebras with h � � = f we
get h(v1 
 : : :
 vn) = h(v1) : : : h(vn) = f(v1) : : : f(vn) hence h = g.

Proposition 8.5.8. The construction of tensor algebras T (V ) de�nes a functor
T : K-Mod �! K-Alg that is left adjoint to the underlying functor U : K-Alg �!
K-Mod.

Proof. Follows from the universal property and 8.9.16.

Problem 8.5.2. 1. Let X be a set and V := KX be the free K-module over
X. Show that X �! V �! T (V ) de�nes a free algebra over X, i.e. for every K-
algebra A and every map f : X �! A there is a unique homomorphism of K-algebras
g : T (V ) �! A such that the diagram

X T (V )-

f
@
@
@
@@R

A
?

g

commutes.
We write KhXi := T (KX) and call it the polynomial ring over K in the non-

commuting variables X.
2. Let T (V ) and � : V �! T (V ) be a tensor algebra. Regard V as a subset of

T (V ) by �. Show that there is a unique homomorphism � : T (V ) �! T (V ) 
 T (V )
with �(v) = v 
 1 + 1 
 v for all v 2 V .

3. Show that (�
 1)� = (1
�)� : T (V ) �! T (V )
 T (V )
 T (V ).
4. Show that there is a unique homomorphism of algebras " : T (V ) �! K with

"(v) = 0 for all v 2 V .
5. Show that ("
 1)� = (1
 ")� = idT (V ).
6. Show that there is a unique homomorphism of algebras S : T (V ) �! T (V )op

with S(v) = �v. (T (V )op is the opposite algebra of T (V ) with multiplication s�t := ts
for all s; t 2 T (V ) = T (V )op and where st denotes the product in T (V ).)

7. Show that the diagrams

T (V ) K-" T (V )-�

T (V )
 T (V ) T (V )
 T (V )-1
S
S
1

?
�

6
r

commute.



5. ALGEBRAS 21

De�nition 8.5.9. Let K be a commutative ring. Let V be a K-module. A K-
algebra S(V ) together with a homomorphism of K-modules � : V �! S(V ), such that
�(v) � �(v0) = �(v0) � �(v) for all v; v0 2 V , is called a symmetric algebra over V if for
each K-algebra A and for each homomorphism of K-modules f : V �! A, such that
f(v) � f(v0) = f(v0) � f(v) for all v; v0 2 V , there exists a unique homomorphism of
K-algebras g : S(V ) �! A such that the diagram

V S(V )-�

f
@
@
@
@@R

A
?

g

commutes.
Note: If you want to de�ne a homomorphism g : S(V ) �! A with a symmetric

algebra as domain you should de�ne it by giving a homomorphism of K-modules
f : V �! A satisfying f(v) � f(v0) = f(v0) � f(v) for all v; v0 2 V .

Lemma 8.5.10. A symmetric algebra (S(V ); �) de�ned by V is unique up to a
unique isomorphism.

Proof. Let (S(V ); �) and (S0(V ); �0) be symmetric algebras over V . Then

V

�

����������

�0
�

�
�

��	

�
@
@
@
@@R

�0

HHHHHHHHHj
S(V ) S0(V )-h -k S(V ) S0(V )-h

implies k = h�1.

Proposition 8.5.11. (Rules of computation in a symmetric algebra) Let (S(V ); �)
be the symmetric algebra over V . Then we have

1. � : V �! S(V ) is injective (we will identify the elements �(v) and v for all
v 2 V ),

2. S(V ) = f
P

n;�i vi1 � : : : � vinj
�i = (i1; : : : ; in) multiindex of length ng;

3. if f : V �! A is a homomorphism of K-modules satisfying f(v) � f(v0) =
f(v0) �f(v) for all v; v0 2 V , A is a K-algebra, and g : S(V ) �! A is the induced
homomorphism K-algebras, then

g(
X

n;�i

vi1 � : : : � vin) =
X

n;�i

f(vi1) � : : : � f(vin):

Proof. 1. Use the embedding homomorphism j : V �! D(V ), where D(V ) is
the commutative algebra de�ned in 8.5.3. to construct g : S(V ) �! D(V ) such that
g � � = j. Since j is injective so is �.
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2. Let B := f
P

n;�i vi1 � : : : � vinj
�i = (i1; : : : ; in) multiindex of length ng. Obviously

B is the subalgebra of S(V ) generated by the elements of V . Let j : B �! S(V ) be
the embedding homomorphism. Then � : V �! S(V ) factors through a linear map
�0 : V �! B. In the following diagram

V B-�0 S(V )-j

B S(V )-j

�0
@
@
@
@@R ?

idB

?

jpp
�

�
�

��	

we have idB ��0 = �0, p with p � j � �0 = p � � = �0 exists since �0 is a homomorphism
of K-modules satisfying �0(v) � �0(v0) = �0(v0) � �0(v) for all v; v0 2 V . Because of
jp � � = j � �0 = � = idS(V ) �� we get jp = idS(V ), hence the embedding j is surjective
and thus the identity.

3. is precisely the de�nition of the induced homomorphism.

Proposition 8.5.12. Let V be a K-module. The symmetric algebra (S(V ); �) is
commutative and satis�es the following universal property:

for each commutative K-algebra A and for each homomorphism of K-modules
f : V �! A there exists a unique homomorphism of K-algebras g : S(V ) �! A such
that the diagram

V S(V )-�

f
@
@
@
@@R

A
?

g

commutes.

Proof. Commutativity follows from the commutativity of the generators: vv0 =
v0v which carries over to the elements of the form

P
n;�i vi1 � : : : � vin. The universal

property follows since the de�ning condition f(v) �f(v0) = f(v0) �f(v) for all v; v0 2 V
is automatically satis�ed.

Proposition 8.5.13. Given a K-module V . Then there exists a symmetric alge-
bra (S(V ); �).

Proof. De�ne S(V ) := T (V )=I where I = hvv0 � v0vjv; v0 2 V i is the two-sided
ideal generated by the elements vv0� v0v. Let � be the canonical map V �! T (V ) �!
S(V ). Then the universal property is easily veri�ed by the homomorphism theorem
for algebras.

Proposition 8.5.14. The construction of symmetric algebras S(V ) de�nes a
functor S : K-Mod �! K-cAlg that is left adjoint to the underlying functor U :
K-cAlg �! K-Mod.
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Proof. Follows from the universal property and 8.9.16.

Problem 8.5.3. Let X be a set and V := KX be the free K-module over X.
Show that X �! V �! S(V ) de�nes a free commutative algebra over X, i.e. for every
commutativeK-algebra A and every map f : X �! A there is a unique homomorphism
of K-algebras g : S(V ) �! A such that the diagram

X S(V )-

f
@
@
@
@@R

A
?

g

commutes.
The algebra K[X] := S(KX) is called the polynomial ring over K in the (com-

muting) variables X.
2. Let S(V ) and � : V �! S(V ) be a symmetric algebra. Show that there is a

unique homomorphism � : S(V ) �! S(V ) 
 S(V ) with �(v) = v 
 1 + 1 
 v for all
v 2 V .

3. Show that (�
 1)� = (1
�)� : S(V ) �! S(V )
 S(V )
 S(V ).
4. Show that there is a unique homomorphism of algebras " : S(V ) �! K with

"(v) = 0 for all v 2 V .
5. Show that ("
 1)� = (1
 ")� = idS(V ).
6. Show that there is a unique homomorphism of algebras S : S(V ) �! S(V ) with

S(v) = �v.
7. Show that the diagrams

S(V ) K-" S(V )-�

S(V )
 S(V ) S(V )
 S(V )-1
S
S
1

?
�

6
r

commute.

De�nition 8.5.15. Let K be a commutative ring. Let V be a K-module. A
K-algebra E(V ) together with a homomorphism of K-modules � : V �! E(V ), such
that �(v)2 = 0 for all v 2 V , is called an exterior algebra or Grassmann algebra over
V if for each K-algebra A and for each homomorphism of K-modules f : V �! A,
such that f(v)2 = 0 for all v 2 V , there exists a unique homomorphism of K-algebras
g : E(V ) �! A such that the diagram

V E(V )-�

f
@
@
@
@@R

A
?

g
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commutes.
The multiplication in E(V ) is usually denoted by u ^ v.
Note: If you want to de�ne a homomorphism g : E(V ) �! A with an exterior

algebra as domain you should de�ne it by giving a homomorphism of K-modules
de�ned on V satisfying f(v)2 = 0 for all v; v0 2 V .

Problem 8.5.4. 1. Let f : V �! A be a linear map satisfying f(v)2 = 0 for all
v 2 V . Then f(v)f(v0) = �f(v0)f(v) for all v; v0 2 V .

2. Let 2 be invertible in K (e.g. K a �eld of characteristic 6= 2). Let f : V �! A
be a linear map satisfying f(v)f(v0) = �f(v0)f(v) for all v; v0 2 V . Then f(v)2 = 0
for all v 2 V .

Lemma 8.5.16. An exterior algebra (E(V ); �) de�ned by V is unique up to a
unique isomorphism.

Proof. Let (E(V ); �) and (E0(V ); �0) be exterior algebras over V . Then

V

�

����������

�0
�

�
�

��	

�
@
@
@
@@R

�0

HHHHHHHHHj
E(V ) E0(V )-h -k E(V ) E0(V )-h

implies k = h�1.

Proposition 8.5.17. (Rules of computation in an exterior algebra) Let (E(V ); �)
be the exterior algebra over V . Then we have

1. � : V �! E(V ) is injective (we will identify the elements �(v) and v for all
v 2 V ),

2. E(V ) = f
P

n;�i vi1 ^ : : : ^ vinj�i = (i1; : : : ; in) multiindex of length ng;

3. if f : V �! A is a homomorphism of K-modules satisfying f(v) � f(v0) =
�f(v0) � f(v) for all v; v0 2 V , A is a K-algebra, and g : E(V ) �! A is the
induced homomorphism K-algebras, then

g(
X

n;�i

vi1 ^ : : : ^ vin) =
X

n;�i

f(vi1) � : : : � f(vin):

Proof. 1. Use the embedding homomorphism j : V �! D(V ), where D(V ) is
the algebra de�ned in 8.5.3. to construct g : E(V ) �! D(V ) such that g � � = j. Since
j is injective so is �.

2. LetB := f
P

n;�i vi1^: : :^vin j
�i = (i1; : : : ; in) multiindex of length ng. Obviously

B is the subalgebra of E(V ) generated by the elements of V . Let j : B �! E(V ) be
the embedding homomorphism. Then � : V �! E(V ) factors through a linear map
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�0 : V �! B. In the following diagram

V B-�0 E(V )-j

B E(V )-j

�0
@
@
@
@@R ?

idB

?

jpp
�

�
�

��	

we have idB ��0 = �0, p with p � j � �0 = p � � = �0 exists since �0 is a homomorphism
of K-modules satisfying �0(v) � �0(v0) = ��0(v0) � �0(v) for all v; v0 2 V . Because of
jp � � = j � �0 = � = idE(V ) �� we get jp = idE(V ), hence the embedding j is surjective
and thus j is the identity.

3. is precisely the de�nition of the induced homomorphism.

Proposition 8.5.18. Given a K-module V . Then there exists an exterior algebra
(E(V ); �).

Proof. De�ne E(V ) := T (V )=I where I = hv2jv 2 V i is the two-sided ideal
generated by the elements v2. Let � be the canonical map V �! T (V ) �! E(V ).
Then the universal property is easily veri�ed by the homomorphism theorem for
algebras.

Problem 8.5.5. 1. Let V be a �nite dimensional vector space of dimension n.
Show that E(V ) is �nite dimensional of dimension 2n. (Hint: The homogeneous

components Ei(V ) have dimension
�

n

i

�
.

2. Show that the symmetric group Sn operates (from the left) on T n(V ) by
�(v1 
 : : :
 vn) = v��1(1) 
 : : :
 v��1(n) with � 2 Sn and vi 2 V .

3. A tensor a 2 T n(V ) is called a symmetric tensor if �(a) = a for all � 2 Sn.

Let Ŝn(V ) be the subspace of symmetric tensors in T n(V ).
a) Show that S : T n(V ) 3 a 7!

P
�2Sn

�(a) 2 T n(V ) is a linear map.

b) Show that S has its image in Ŝn(V ).

c) Show that Im(S) = Ŝn(V ) if n! is invertible in K.

d) Show that Ŝn(V ) ,! T n(V )
�
! Sn(V ) is an isomorphism if n! is invertible in

K and � : T n(V ) �! Sn(V ) is the restriction of � : T (V ) �! S(V ), the symmetric
algebra.

4. A tensor a 2 T n(V ) is called an antisymmetric tensor if �(a) = "(�)a for all

� 2 Sn where "(�) is the sign of the permutation �. Let Ên(V ) be the subspace of
antisymmetric tensors in T n(V ).

a) Show that E : T n(V ) 3 a 7!
P

�2Sn
"(�)�(a) 2 T n(V ) is a linear map.

b) Show that E has its image in Ên(V ).

c) Show that Im(E) = Ên(V ) if n! is invertible in K.

d) Show that Ên(V ) ,! T n(V )
�
! En(V ) is an isomorphism if n! is invertible in K

and � : T n(V ) �! En(V ) is the restriction of � : T (V ) �! E(V ), the exterior algebra.
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De�nition 8.5.19. Let A be a K-algebra. A left A-module is a K-module M
together with a homomorphism �M : A
M �!M , such that the diagrams

A
M M-
�

A
A
M A
M-id
�

?

r
id

?

�

and
M �= K 
M A
M-�
id

M
?

�id

HHHHHHHHHj

commute.
Let AM and AN be A-modules and let f :M �! N be a K-linear map. The map

f is called a homomorphism of modules if the diagram

A
N N-
�N

A
M M-�M

?

1
f

?

f

commutes.
The leftA-modules and their homomorphisms form the category AM of A-modules.

Problem 8.5.6. Show that an abelian group M is a left module over the ring A
if and only if M is a K-module and an A-module in the sense of De�nition 8.5.19.


