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16 8. TOOLBOX

5. Algebras

Let K be a commutative ring. In most of our applications K will be a field. Tensor
products of K-modules will be simply written as M @ N := M @k N. Every such
tensor product is again a K-bimodule since each K-module M resp. N is a K-bimodule

(see 8.4.14).

Definition 8.5.1. A K-algebra is a vector space A together with a multiplication
V:A® A — A that is associative:

A0A0A—YY L 404
V&id v
A® A - A

and a unit n : K — A:

KoAXAY Ao K —297 .

A® A

nQid id \%

A®A s A,

A K-algebra A is commutative if the following diagram commutes

AQA—T>AQ A

\/

Let A and B be K-algebras. A homomorphism of algebras f : A — B is a K-linear

map such that the following diagrams commute:

AoALY. BoB

VA VB
A 7 B
and
K
na nB
f
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Remark 8.5.2. Every K-algebra A is a ring with the multiplication

® v
AxA—-ARQ A — A.

The unit element is n(1), where 1 is the unit element of K.

Obviously the composition of two homomorphisms of algebras is again a homo-
morphism of algebras. Furthermore the identity map is a homomorphism of alge-
bras. Hence the K-algebras form a category K-Alg. The category of commutative
K-algebras will be denoted by K-cAlg.

Problem 8.5.1. 1. Show that Endg (V) is a K-algebra.
2. Show that (A,V : A® A — An: K — A)is a Kalgebra if and only if

v
A with the multiplication A x A =y @ A — A and the unit n(1) is a ring and
n: K — Cent(A) is a ring homomorphism into the center of A.
3. Let V be a K-module. Show that D(V) := K x V with the multiplication

(ri,v1)(re,v2) := (r1re, rivz + rov1) is a commutative K-algebra.

Lemma 8.5.3. Let A and B be algebras. Then A @ B is an algebra with the
multiplication (a1 @ by)(az @ by) 1= ajaz @ bybs.

PRrROOF. Certainly the algebra properties can easily be checked by a simple cal-
culation with elements. We prefer for later applications a diagrammatic proof.

Let V4: A® A — Aand Vg : B® B — B denote the multiplications of the
two algebras. Then the new multiplication is Vg := (V4 @ Vp)(1la @ 7 @ 1) :
AR B@A®B — A® B where 7 : B A — A® B is the symmetry map from

Theorem 8.4.15. Now the following diagrams commute

1RTR1° Veve12
—_— > —_

ARB@A®@B®A®DB ARQAQB®B®A®DB

ISM

12@7®1 A X A X B & A X B & B 1®7BgB,AR1 197®1

1®M N@)ﬁ

A@B@A®A@B®B A9 ARA BB BY Y Ao A0 Bo B

1878, A9A®1

AR B®A®B

1RVeV 10VR1IV vev

A9B®A®B L AR A®B®B vev
In the left upper rectangle of the diagram the quadrangle commutes by the properties
of the tensor product and the two triangles commute by inner properties of 7. The
right upper and left lower rectangles commute since 7 is a natural transformation and
the right lower rectangle commutes by the associativity of the algebras A and B.

A@B
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Furthermore we use the homomorphism n = 45 : K - K@ K — A® B in the
following commutative diagram

Ao BoKoK Y Ao Bo Ao B

KoAoB=2ARB=2A® BoK

10T®1 10T®1

Y

AOK@OBOKZz2A®AQB®B

171
KoK@A@B—K@AQK® B 187167

n@n®12 n®1Q71 vev

vev

A9B2AOBY Y AoA® B9 B A® B.

O

Definition 8.5.4. Let K be a commutative ring. Let V be a K-module. A K-
algebra T'(V) together with a homomorphism of K-modules ¢ : V. — T(V) is called
a tensor algebra over V if for each K-algebra A and for each homomorphism of K-
modules [ : V' — A there exists a unique homomorphism of K-algebras g : T(V) — A
such that the diagram

vV —L—T(V)
f g

A
commutes.
Note: If you want to define a homomorphism g : T'(V) — A with a tensor algebra
as domain you should define it by giving a homomorphism of K-modules defined on

V.

Lemma 8.5.5. A tensor algebra (T'(V),.) defined by V' is unique up to a unique
isomorphism.

PROOF. Let (T'(V),¢) and (T'(V'),!) be tensor algebras over V. Then

implies k = A~ O
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Proposition 8.5.6. (Rules of computation in a tensor algebra) Let (T'(V'),¢) be
the tensor algebra over V.. Then we have
L.o: V. — T(V) is injective (so we may identify the elements «(v) and v for all
veV),
2.T(V)={>, 50 -v. - i li = (i1, ... ,1,) multiindex of length n},
3. f:V — Ais a homomorphism of K-modules, A is a K-algebra, and g :
T(V) — A is the induced homomorphism of K-algebras, then

9> v o) = f(0) e flus).

PRrROOF. 1. Use the embedding homomorphism j : V. — D(V'), where D(V) is
defined as in 8.5.3. to construct g : T(V) — D(V') such that g o« = j. Since j is
injective so 1is ¢.

2. Let B:={}] ;i -...-v,|i = (i1,... ,i,) multiindex of length n}. Obviously
B is the subalgebra of T (V) generated by the elements of V. Let j : B — T(V) be
the embedding homomorphism. Then ¢ : V' — T(V) factors through a linear map
/' V — B. In the following diagram

B T(V)
we have idg ot/ = (/. p with pojot = por =/ exists since ¢/ is a homomorphism
of K-modules. Because of jpot = jo = =idpyy ot we get jp = idy(v), hence the
embedding j is surjective and thus j is the identity.
3. is precisely the definition of the induced homomorphism. O

Proposition 8.5.7. Given a K-module V. Then there exists a tensor algebra
(T(V),0).

PROOF. Define T"(V) :=V @...@V = V" to be the n-fold tensor product of
V. Define T°(V) := K and T*(V) := V. We define

TV)=PT(V)=KaeVae(VaV)a(VaVeV)s....
i>0
The components T"(V') of T'(V) are called homogeneous components.

The canonical isomorphisms T™(V) @ T™(V) = T™*"(V) taken as multiplication
V:T"V)ye T (V) — T (V)
V:T(V)eT(V)—T(V)
and the embedding  : K = T°(V) — T(V) induce the structure of a K-algebra on

T(V). Furthermore we have the embedding ¢ : V' — TY(V) C T(V).
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We have to show that (T'(V),¢) is a tensor algebra. Let f : V — A be a ho-
momorphism of K-modules. Each element in T'(V) is a sum of decomposable ten-
sors v1 @ ... @ v,. Define g : T(V) — A by g(vy @ ... @ v,) := fvy)... f(vn)
(and (g : T°%(V) — A) = (n : K — A)). By induction one sees that g is a
homomorphism of algebras. Since (¢ : THV) — A) = (f : V — A) we get
gocv=f. If h: T(V) — Ais a homomorphism of algebras with h ot = f we
get h(vy @ ... @ v,) = h(vy)...h(v,) = f(v1)... f(v,) hence h = g. O

Proposition 8.5.8. The construction of tensor algebras T(V') defines a functor
T : K-Mod — K-Alg that is left adjoint to the underlying functor U : K-Alg —
K-Mod.

ProOOF. Follows from the universal property and 8.9.16. O

Problem 8.5.2. 1. Let X be a set and V := KX be the free K-module over
X. Show that X — V — T(V) defines a free algebra over X, ie. for every K-
algebra A and every map f : X — A there is a unique homomorphism of K-algebras
g:T(V) — A such that the diagram

X T(V)
f g

A
commutes.

We write K(X) := T(KX) and call it the polynomial ring over K in the non-
commuting variables X.

2. Let T(V)and ¢ : V. — T(V) be a tensor algebra. Regard V as a subset of
T(V) by ¢. Show that there is a unique homomorphism A : T(V) — T(V) @ T(V)
with A(v)=v@ 14+ 1®@v forall ve V.

3. Show that ( A@ DA =1 A)A:T(V)=>TV)a T(V)a T(V).

4. Show that there is a unique homomorphism of algebras ¢ : T(V) — K with
e(v)=0forall ve V.

5. Show that (¢ @ 1)A = (1 ® e)A = idy(vy.

6. Show that there is a unique homomorphism of algebras S : T(V) — T(V)°
with S(v) = —v. (T(V) is the opposite algebra of T'(V') with multiplication s*t := ts
for all s,t € T(V) =T(V)® and where st denotes the product in T'(V).)

7. Show that the diagrams

T(V)—=+K-—"+T(V)

commute.
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Definition 8.5.9. Let K be a commutative ring. Let V' be a K-module. A K-
algebra S(V') together with a homomorphism of K-modules ¢ : V' — S(V'), such that
t(v) - (V) = (V') - o(v) for all v,0" € V, is called a symmetric algebra over V if for
each K-algebra A and for each homomorphism of K-modules f : V — A, such that
fv)- f(v) = f(v') - f(v) for all v,v" € V| there exists a unique homomorphism of
K-algebras ¢ : S(V) — A such that the diagram

VLt S(V)
f g

A

commutes.
Note: If you want to define a homomorphism ¢ : S(V) — A with a symmetric
algebra as domain you should define it by giving a homomorphism of K-modules

f:V — Asatisfying f(v)- f(v") = f(v') - f(v) for all v,0" € V.

Lemma 8.5.10. A symmetric algebra (S(V),¢) defined by V' is unique up to a
unique isomorphism.

PROOF. Let (S(V),¢) and (S'(V), L’) be symmetric algebras over V. Then

implies k = A~ O

Proposition 8.5.11. (Rules of computation in a symmetric algebra) Let (S(V),¢)
be the symmetric algebra over V.. Then we have

¢ Vo— S(V) is injective (we will identify the elements «(v) and v for all
veV),
S(V)y=1{> ;v v i = (i1,... ,i,) multiindex of length n},

3.4 f V. — A is a homomorphism of K-modules satisfying f(v) - f(v') =
f")-fv) forallv,v" € V, A is a K-algebra, and g : S(V) — A is the induced

homomorphism K-algebras, then

g(Zvil-...-vzn Zf Vi) e flu).

.0

PRrROOF. 1. Use the embedding homomorphism j : V. — D(V'), where D(V) is
the commutative algebra defined in 8.5.3. to construct g : S(V) — D(V) such that
g o= j. Since j is injective so is ¢.
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2. Let B:={}] ;vi,-...-v3,|i = (i1,... ,in) multiindex of length n}. Obviously
B is the subalgebra of S(V) generated by the elements of V. Let j : B — S(V) be
the embedding homomorphism. Then ¢ : V' — S(V) factors through a linear map
/' V — B. In the following diagram

B——5(v)
we have idg ot/ = ¢/, p with pojot = por = exists since /' is a homomorphism
of K-modules satisfying /(v) - /(v) = J/(v) - /(v) for all v,v" € V. Because of
Jpot=jou =1 =idgy)or we get jp = idgy), hence the embedding j is surjective
and thus the identity.
3. is precisely the definition of the induced homomorphism. O

Proposition 8.5.12. Let V be a K-module. The symmetric algebra (S(V),¢) is
commutative and satisfies the following universal property:

for each commutative K-algebra A and for each homomorphism of K-modules
[V — A there exists a unique homomorphism of K-algebras g : S(V) — A such

that the diagram
V——5(V)

f g

A

commutes.

PrOOF. Commutativity follows from the commutativity of the generators: vv’ =

v'v which carries over to the elements of the form 7 ‘v -...-v;,. The universal
property follows since the defining condition f(v)- f(v') = f(v')- f(v) for all v, 0" € V
is automatically satisfied. O

Proposition 8.5.13. Given a K-module V. Then there exists a symmetric alge-
bra (S(V),¢).

PROOF. Define S(V) := T(V)/I where [ = (vv' — v'v|v,v" € V) is the two-sided
ideal generated by the elements vo’ — v'v. Let ¢ be the canonical map V — T(V) —
S(V). Then the universal property is easily verified by the homomorphism theorem
for algebras. O

Proposition 8.5.14. The construction of symmetric algebras S(V') defines a
functor S : K-Mod — K-cAlg that is left adjoint to the underlying functor U :
K-cAlg — K-Mod.
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ProOOF. Follows from the universal property and 8.9.16. U

Problem 8.5.3. Let X be a set and V := KX be the free K-module over X.
Show that X — V — S(V) defines a free commutative algebra over X, i.e. for every
commutative K-algebra A and every map f : X — A there is a unique homomorphism

of K-algebras ¢ : S(V) — A such that the diagram
X ——5(V)

f g

A
commutes.

The algebra K[X] := S(KX) is called the polynomial ring over K in the (com-
muting) variables X.

2. Let S(V)and ¢ : V — S(V) be a symmetric algebra. Show that there is a
unique homomorphism A : S(V) — S(V) @ S(V) with A(v) =v®@ 14+ 1 @ v for all
veV.

3. Show that (A@ DA =(1@A)A: S(V) —= S(V)@ S(V)a S(V).

4. Show that there is a unique homomorphism of algebras ¢ : S(V) — K with
e(v)=0forall ve V.

5. Show that (¢ @ 1)A = (1 ® e)A = idg(vy.

6. Show that there is a unique homomorphism of algebras S : S(V) — S(V) with
S(v) = —v.

7. Show that the diagrams

S(V)® S(V) 23 S(V) @ S(V)

commute.

Definition 8.5.15. Let K be a commutative ring. Let V be a K-module. A
K-algebra F(V') together with a homomorphism of K-modules ¢ : V' — E(V'), such
that «(v)? =0 for all v € V| is called an eaterior algebra or Grassmann algebra over
V if for each K-algebra A and for each homomorphism of K-modules f : V. — A,
such that f(v)?* =0 for all v € V, there exists a unique homomorphism of K-algebras
g: E(V) — A such that the diagram

vV —L—~EV)
f g

A
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commutes.

The multiplication in £(V') is usually denoted by u A v.

Note: If you want to define a homomorphism ¢ : E(V) — A with an exterior
algebra as domain you should define it by giving a homomorphism of K-modules

defined on V satisfying f(v)* =0 for all v,v" € V.

Problem 8.5.4. 1. Let f: V — A be a linear map satisfying f(v)* = 0 for all
v € V. Then f(v)f(v') = —f(v")f(v) for all v,0" € V.

2. Let 2 be invertible in K (e.g. K a field of characteristic # 2). Let f:V — A
be a linear map satisfying f(v)f(v') = —f(v')f(v) for all v,v" € V. Then f(v)? =0
for all v € V.

Lemma 8.5.16. An exterior algebra (E(V'),¢) defined by V is unique up to a
unique isomorphism.

PROOF. Let (E(V),¢) and (E'(V),:) be exterior algebras over V. Then

A

implies k = A~ O

Proposition 8.5.17. (Rules of computation in an exterior algebra) Let (FE(V),¢)
be the exterior algebra over V. Then we have

¢ Vo— E(V) is injective (we will identify the elements «(v) and v for all
veV),
V)={>,:va A A v i = (i1,... ,i,) multiindex of length n},
3.4 f V. — A is a homomorphism of K-modules satisfying f(v) - f(v') =
—f(') - f(v) for adll v,v" € V, A is a K-algebra, and g : E(V) — A is the

induced homomorphism K-algebras, then

g(z vi, N AY) Z Foi) oo flo).

.0

PRrROOF. 1. Use the embedding homomorphism j : V. — D(V'), where D(V) is
the algebra defined in 8.5.3. to construct g : E(V) — D(V) such that got = j. Since
7 1s injective so is ¢.

2. Let B:={}_ ;vi,A...Avi,li = (i1,... ,i,) multiindex of length n}. Obviously
B is the subalgebra of E (V') generated by the elements of V. Let j: B — E(V) be
the embedding homomorphism. Then ¢ : V. — FE(V) factors through a linear map
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/' V — B. In the following diagram

/ N\Jdp polap

B~ B(V)
we have idg ot/ = ¢/, p with pojot = por = exists since /' is a homomorphism
of K-modules satisfying /(v) - /(v") = —=/(v) - /(v) for all v,v" € V. Because of

Jpot=joi =1 =idgwy)or we get jp = idg(v), hence the embedding j is surjective
and thus j is the identity.
3. is precisely the definition of the induced homomorphism. O

Proposition 8.5.18. Given a K-module V.. Then there exists an exterior algebra
(E(V),1).

PROOF. Define E(V) := T(V)/I where [ = (v*|v € V) is the two-sided ideal
generated by the elements v?. Let ¢ be the canonical map V — T(V) — E(V).

Then the universal property is easily verified by the homomorphism theorem for
algebras. O

Problem 8.5.5. 1. Let V be a finite dimensional vector space of dimension n.
Show that F(V') is finite dimensional of dimension 2". (Hint: The homogeneous

components £*(V) have dimension ( 7;

2. Show that the symmetric group S, operates (from the left) on T"(V') by
o(v1 @...0v,) = Vom1(1) @ o @ Uy with o € S,, and v; € V.

3. A tensor a € T"(V) is called a symmetric tensor if o(a) = a for all o € S,,.
Let g”(V) be the subspace of symmetric tensors in T"(V).

a) Show that S: T™(V) 2 aw ) . o(a) € T"(V) is a linear map.

b) Show that S has its image in $™(V)).

c¢) Show that Im(S) = S”(V) if n! is invertible in K.

d) Show that S”(V) — T™(V) % S*(V) is an isomorphism if n! is invertible in
Kand v : T"(V) — S™(V) is the restriction of v : T(V) — S(V), the symmetric
algebra.

4. A tensor a € T"(V) is called an antisymmetric tensor if o(a) = e(o)a for all
o € S, where ¢(0) is the sign of the permutation o. Let E”(V) be the subspace of
antisymmetric tensors in 7™ (V).

a) Show that £ : T"(V) > aw Y g c(0)o(a) € T™(V) is a linear map.

b) Show that € has its image in E”(V)

¢) Show that Im(€) = E”(V) if n! is invertible in K.

d) Show that E”(V) — T™(V) 2 E™(V) is an isomorphism if n! is invertible in K
and v : T*(V) — E"(V) is the restriction of v : T(V) — E(V), the exterior algebra.
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Definition 8.5.19. Let A be a K-algebra. A left A-module is a K-module M
together with a homomorphism g : A @ M — M, such that the diagrams

Ao Ao M 2%, Ao M
void L

Ao M . M

and -
M2KaoM-% Ao M
id I
M
commute.

Let 4M and 4N be A-modules and let f : M — N be a K-linear map. The map

f is called a homomorphism of modules if the diagram

Ao M ru M

1ef !

AQN N

AN
commutes.
The left A-modules and their homomorphisms form the category 4 M of A-modules.

Problem 8.5.6. Show that an abelian group M is a left module over the ring A
if and only if M is a K-module and an A-module in the sense of Definition 8.5.19.



