CHAPTER 8

Toolbox
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4. Tensor Products

Definition and Remark 8.4.1. Let Mg and r/N be R-modules, and let A be
an abelian group. A map f: M x N — A is called R-bilinear if

L f(m+m'sn) = f(mon) + f(m'sn).

2 flmon+ ) = fm,m) 4 F(m, ).

3. f(mr,n) = flm,rn)
forallr € R, m,m’ € M, n,n’ € N.

Let Bilg(M, N; A) denote the set of all R-bilinear maps f: M x N — A.

Bilg(M, N; A) is an abelian group with (f + g)(m,n) := f(m,n) + g(m,n).

Definition 8.4.2. Let Mg and g N be R-modules. An abelian group M @r N
together with an R-bilinear map

@:MxN3(mn)—meneMepN

is called a tensor product of M and N over R if for each abelian group A and for
each R-bilinear map f : M x N — A there exists a unique group homomorphism
g: M ®@r N — A such that the diagram

MxNEZMonN

f g

A

commutes. The elements of M @gr N are called tensors, the elements of the form
m @ n are called decomposable tensors.

Warning: If you want to define a homomorphism f : M @r N — A with a tensor
product as domain you must define it by giving an R-bilinear map defined on M x N.

Lemma 8.4.3. A tensor product (M @r N,®) defined by Mg and rN is unique
up to a unique isomorphism.
PROOF. Let (M @r N,®) and (M g N,K) be tensor products. Then
M x N

T e

M®3N+M&R M®3N+M&R
implies k = A~ O

Because of this fact we will henceforth talk about the tensor product of M and N
over R.

Proposition 8.4.4. (Rules of computation in a tensor product) Let (M @r N, ®@)
be the tensor product. Then we have for allr € R, m,m’ € M, n,n’ € N
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M@rN={>,m@n; | mi € M,n;, € N},

(m+m)@n=men+m @n,

m@n+n)=men+men,

mr @n =m @rn (observe in particular, that @ : M x N — M @ N is not
injective in general),

5.4 f: M x N — A is an R-bilinear map and g : M @p N — A is the induced

homomorphism, then

Ll

g(m @n) = f(m,n).
PrROOF. 1. Let B := (m @n) € M @r N denote the subgroup of M @r N
generated by the decomposable tensors m@n. Let j: B — M @prN be the embedding
homomorphism. We get an induced map @' : M x N — B. In the following diagram

!
MxN-2B.maxN

@' \Jddg P|Jp

B—LM@pN
we have idgo®’ = @', pwith pojo® =po® = @ exists since @ is R-bilinear.
Because of jpo® = jo®@ = @ = idyg,no® we get jp = idyg,n, hence the
embedding j is surjective and thus the identity.
2. m+mHean=am+m/ ,n)=a(m,n)+e(m,n)=men+m @n.
3. and 4. analogously.
5. is precisely the definition of the induced homomorphism. O

Remark 8.4.5. To construct tensor products, we use the notion of a free module.
Let X be a set and R be a ring. An R-module RX together with a map ¢ : X —
RX is called a free R-module generated by X, if for every R-module M and for every
map f: X — M there exists a unique homomorphism of R-modules g : RX — M
such that the diagram ,

X

RX
! g

M

commutes.
Free R-modules exist and can be constructed as RX := {a: X — R| for almost
all € X : a(x) =0}.

Proposition 8.4.6. Given R-modules Mgr and rN. Then there exists a tensor
product (M @p N, ®).

PROOF. Define M @ N := Z{M x N}/U where Z{M x N} is a free Z-module
over M x N (the free abelian group) and U is generated by
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tm+m/ n)—m,n) —(m',n)
t(m,m +n')—(m,n) —(m,n’)
t(mr,n) — t(m,rn)
for allr € R, mym’ € M, n,n" € N. Consider
MxN—~7Z{Mx N} Y2~ M@pr N=Z{M x N}/U

P g

A

Let ¢ be given. Then there is a unique p € Hom(Z{M x N}, A) such that pc = .
Since ¢ is R-bilinear we get p(c(m + m/,n) — c(m,n) — «(m'n)) = Y(m + m',n) —
p(m,n) —(m/,n) = 0 and similarly p(¢(m,n + n') — ¢(m,n) — «(m,n’)) = 0 and
p(e(mr,n) —«(m,rn)) = 0. So we get p(U) = 0. This implies that there is a unique
g € Hom(M @gr N, A) such that gv = p (homomorphism theorem). Let @ := v 0.
Then ®@ is bilinear since (m +m’) @n = vom + m',n) = v(eim + m',n)) =
V(L(m + mlv n) - L(mv n) - L(mlv n) + L(mv n) + L(mlv n)) = V(L(mv n) + L(mlv n)) =
voum,n)+rvocm’,n)=m@n+m’'@n. The other two properties are obtained in
an analogous way.

We have to show that (M @g N, @) is a tensor product. The above diagram shows
that for each abelian group A and for each R-bilinear map ¢ : M x N — A there
is a g € Hom(M @gr N, A) such that g o @ = ¢». Given h € Hom(M ®@gr N, A) with
ho®=1. Then hov ot =1. This implieshov =p = go v hence g = h. O

Proposition and Definition 8.4.7. Given two homomorphisms
f € Homp(M.,M'".) and g € Hom g(.N,.N').
Then there is a unique homomorphism
f@rg € Hom(M @r N,M' @p N')
such that f @p g(m @ n) = f(m) @ g(n), i.e. the following diagram commutes

Mx N MonN

fxg f®ryg
M/XN/@M/(@RN/
PROOF. @ o (f X g) is bilinear. O

Notation 8.4.8. We often write f @g N := f @r Iy and M ®gr g := 1y @r g.
We have the following rule of computation:

fOrg=(f@rN')o(M@rg)=(M @rg)o(f@rN)
since f x g=(f X N')o(M xg)= (M xg)o(fxN).
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Proposition 8.4.9. The following define covariant functors
1. -® N : Mod-R — Ab;

2. M ® -: R-Mod — Ab;

3. -®-:Mod-R x R-Mod — Ab.

PROOF. (f % g)o (/' x &) = [1' % g implies (f ©rg)o (/' Ong') = [ * gg"
Furthermore 15 X 1y = 1ysxny implies 1y @p 1y = Lyg - O

Definition 8.4.10. Let R, S be rings and let M be a left R-module and a right S-
module. M is called an R-S-bimodule if (rm)s = r(ms). We define Homp-s(.M.,.N.)
:= Homp(.M,.N) N Homg(M., N.).

Remark 8.4.11. Let Mg be a right S-module and let R x M — M a map. M
is an R-S-bimodule if and only if

L.Yre R: (M >mw~rmée& M) e Homg(M., M.),
2.Vr,rm € Rom e M (r+0r"Ym =rm+r'm,
3.Vr,h € Rome M = (rr')ym = r(r'm),

1. VYmeM:1m=m.

Lemma 8.4.12. Let Mg and s Ny be bimodules. Then r(M@sN )1 is a bimodule
by r(m @n):=rm@n and (m @n)t :=m @ nt.

PROOF. Obviously we have 2.-4. Furthermore (r @gid)(m @ n) = rm @ n =
r(m @ n) is a homomorphism. O

Corollary 8.4.13. Given bimodules pMg, s Ny, pM§, s Ny and homomorphisms
f € Homp-s(.M.,.M'".) and g € Homg-r(.N.,.N".). Then we have f @s g € Homp-r
(M @s N.,.M" @25 N'.).

PROOF. f ®sg(rm @nt) = f(rm) @ g(nt) = r(f @s g)(m @ n)t. O

Remark 8.4.14. Every module M over a commutative ring K and in particular
every vector space over a field K is a K-K-bimodule by Am = mA. So there is an
embedding functor ¢ : K-Mod — K-Mod-K. Observe that there are K-K-bimodules
that do not satisfy Am = mA. Take for example an automorphism o : K — K and a
left K-module M and define mA := a(A)m. Then M is such a K-K-bimodule.

The tensor product M @r N of two K-K-bimodules M and N is again a K-K-
bimodule. If we have, however, K-K-bimodules M and N arising from K-modules as
above, i.e. satisfying Am = mA, then their tensor product M ®@g N also satisfies this
equation, so M @g N comes from a module in K-Mod. Indeed we have Am ® n =
mA®@n=m® An =m ®nA. Thus the following diagram of functors commutes:

K-Mod x K-Mod “2+ K-Mod-K x K-Mod-K

QK QK

K-Mod

K-Mod-K.

L
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So we can consider K-Mod as a (proper) subcategory of K-Mod-K. The tensor
product over K can be restricted to K-Mod.
We write the tensor product of two vector spaces M and N as M @ N.

Theorem 8.4.15. In the category K-Mod there are natural isomorphisms

1. Associativity Law: a: (M @ N)@ P=Z M @ (N @ P).

2. Law of the Left Unit: A\: K@ M = M.

3. Law of the Right Unit: p: M @ K= M.

4. Symmetry Law: 7: M @ N =2 N M.

5. Existence of Inner Hom-Functors: Hom(P @ M, N) = Hom(P, Hom(M, N)).

PrOOF. We only describe the corresponding homomorphisms.

1. Use (8.4.45.) to define a((m @ n) @ p) := m @ (n @ p).

2. Define A\ : K@ M — M by A(r @ m) := rm.

3. Define p: M @ K — M by p(m @ r) := mr.

4. Define 7(m @ n) :=n @ m.

5. For f : P @ M — N define ¢(f) : P — Hom(M,N) by &(f)(p)(m) :=
f(p@m). O

Usually one identifies threefold tensor products along the map « so that we use
MaN@P=(MaN)@P=M®(N® P). For the notion of a monoidal or tensor

category, however, this natural transformation is of central importance.

Problem 8.4.1. 1. Give an explicit proof f M @ (X &Y)ZM 3 XEMaY.
2. Show that for every finite dimensional vector space V' there is a unique element

Yo vi@vr € V@ V* such that the following holds
YvoeV: Zvi*(v)vi = v.
(Hint: Use an isomorphism End(V) = V @ V* and dual bases {v;} of V and {v/} of
V=)
3. Show that the following diagrams (coherence diagrams or constraints) commute

in K-Mod:
(AoB)eC)® D A (B C)® D)
a(A®B,C,D) 1®a(B,C,D)

(A®@B)®(C® D)

a(A,B,C)@1 a(A,BeC,D)

(A (BeC)@ D

a(A,B,CQD)

A®(B®(C®D))

a(AK,B)

A® (K@ B)

p(A)@1 M(B)

A@B
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4. Write 7(A,B): A®@ B— B® Afor 7(A,B): a ® b — b® a. Show that 7 is a

natural transformation (between which functors?). Show that

(AeB)oc X2 (BogA)eC—2 ~Bo (A ()
o 1®7(A,C)
AoBo0) 220 (Boc)oA—2 ~Bo(C o A)

commutes for all A, B,C' € K-Mod and that
T(B,A)T(A, B) = idA®B

for all A, B in K-Mod.
5. Find an example of M, N € K-Mod-K such that M @x N % N @x M.



