
CHAPTER 8

Toolbox

1. Categories

De�nition 8.1.1. Let C consist of

1. a class Ob C whose elements A;B;C; : : : 2 Ob C are called objects,
2. a family fMorC(A;B)jA;B 2 Ob Cg of mutually disjoint sets whose elements
f; g; : : : 2 MorC(A;B) are called morphisms, and

3. a family fMorC(A;B) � MorC(B;C) 3 (f; g) 7! gf 2 MorC(A;C)jA;B;C 2
Ob Cg of maps called compositions.

C is called a category if the following axioms hold for C

1. Associative Law:
8A;B;C;D 2 Ob C; f 2 MorC(A;B); g 2 MorC(B;C); h 2 MorC(C;D) :

h(gf) = (hg)f ;

2. Identity Law:
8A 2 Ob C 91A 2 MorC(A;A) 8B;C 2 Ob C; 8f 2 MorC(A;B); 8g 2
MorC(C;A) :

1Ag = g and f1A = f:

Examples 8.1.2. 1. The category of sets Set.
2. The categories of R-modules R-Mod, k-vector spaces k-Vec or k-Mod, groups

Gr, abelian groups Ab, monoidsMon, commutative monoids cMon, rings Ri, �elds
Fld, topological spaces Top.

Since modules are highly important for all what follows, we recall the de�nition
and some basic properties.

De�nition and Remark 8.1.3. Let R be a ring (always associative with unit).
A left R-module RM is an (additively written) abelian group M together with an
operation R �M 3 (r;m) 7! rm 2M such that

1. (rs)m = r(sm),
2. (r + s)m = rm+ sm,
3. r(m+m0) = rm+ rm0,
4. 1m = m

for all r; s 2 R, m;m0 2M .
Each abelian group is a Z-module in a unique way.
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A homomorphism of left R-modules f : RM �! RN is a group homomorphism
such that f(rm) = rf(m).

Analogously we de�ne right R-modules MR and their homomorphisms.
We denote by HomR(:M; :N) the set of homomorphisms of leftR-modules RM and

RN . Similarly HomR(M:;N:) denotes the set of homomorphisms of right R-modules
MR and NR. Both sets are abelian groups by (f + g)(m) := f(m) + g(m).

For arbitrary categories we adopt many of the customary notations.

Notation 8.1.4. f 2 MorC(A;B) will be written as f : A �! B or A
f

�! B. A is
called the domain, B the range of f .

The composition of two morphisms f : A �! B and g : B �! C is written as
gf : A �! C or as g � f : A �! C.

De�nition and Remark 8.1.5. A morphism f : A �! B is called an isomor-
phism if there exists a morphism g : B �! A in C such that fg = 1B and gf = 1A.
The morphism g is uniquely determined by f since g0 = g0fg = g. We write f�1 := g.

An object A is said to be isomorphic to an object B if there exists an isomorphism
f : A �! B. If f is an isomorphism the so is f�1. If f : A �! B and g : B �! C
are isomorphisms in C then so is gf : A �! C. We have: (f�1)�1 = f and (gf)�1 =
f�1g�1. The relation of being isomorphic between objects is an equivalence relation.

Example 8.1.6. In the categories Set, R-Mod, k-Vec, Gr, Ab, Mon, cMon,
Ri, Fld the isomorphisms are exactly those morphisms which are bijective as set
maps.

In Top the set M = fa; bg with T1 = f;; fag; fbg; fa; bgg and with T2 = f;;Mg
de�nes two di�erent topological spaces. The map f = id : (M;T1) �! (M;T2) is
bijective and continuous. The inverse map, however, is not continuous, hence f is no
isomorphism (homeomorphism).

Many well known concepts can be de�ned for arbitrary categories. We are going
to apply some of them. Here are two examples.

De�nition 8.1.7. 1. A morphism f : A �! B is called a monomorphism if
8C 2 Ob C; 8g; h 2 MorC(C;A) :

fg = fh =) g = h (f is left cancellable):

2. A morphism f : A �! B is called an epimorphism if 8C 2 Ob C; 8g; h 2
MorC(B;C) :

gf = hf =) g = h (f is right cancellable):

De�nition 8.1.8. Given A;B 2 C. An object A � B in C together with mor-
phisms pA : A � B �! A and pB : A � B �! B is called a (categorical) product of
A and B if for every object T 2 C and every pair of morphisms f : T �! A and
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g : T �! B there exists a unique morphism (f; g) : T �! A�B such that the diagram

T

f

�
�

�
��	

g

@
@
@
@@R

A A�B�pA
B-pB

?

(f;g)

commutes.
An object E 2 C is called a �nal object if for every object T 2 C there exists a

unique morphism e : T �! E (i.e. MorC(T;E) consists of exactly one element).
A category C which has a product for any two objects A and B and which has a

�nal object is called a category with �nite products.

Remark 8.1.9. If the product (A�B; pA; pB) of two objects A and B in C exists
then it is unique up to isomorphism.

If the �nal object E in C exists then it is unique up to isomorphism.

Problem 8.1.1. Let C be a category with �nite products. Give a de�nition of a
product of a family A1; : : : ; An (n � 0). Show that products of such families exist in
C.

De�nition and Remark 8.1.10. Let C be a category. Then Cop with the fol-
lowing data Ob Cop := Ob C, MorCop(A;B) := MorC(B;A), and f �op g := g �f de�nes
a new category, the dual category to C.

Remark 8.1.11. Any notion expressed in categorical terms (with objects, mor-
phisms, and their composition) has a dual notion, i.e. the given notion in the dual
category.

Monomorphisms f in the dual category Cop are epimorphisms in the original cat-
egory C and conversely. A �nal objects I in the dual category Cop is an initial object
in the original category C.

De�nition 8.1.12. The coproduct of two objects in the category C is de�ned to
be a product of the objects in the dual category Cop.

Remark 8.1.13. Equivalent to the preceding de�nition is the following de�ni-
tion.

Given A;B 2 C. An object AqB in C together with morphisms jA : A �! AqB
and jB : B �! AqB �! B is a (categorical) coproduct of A and B if for every object
T 2 C and every pair of morphisms f : A �! T and g : B �! T there exists a unique
morphism [f; g] : Aq B �! T such that the diagram

T

f

@
@
@
@@R

g

�
�

�
��	

A Aq B-jA
B�jB

?

[f;g]
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commutes.
The category C is said to have �nite coproducts if Cop is a category with �nite

products. In particular coproducts are unique up to isomorphism.
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2. Functors

De�nition 8.2.1. Let C and D be categories. Let F consist of

1. a map Ob C 3 A 7! F(A) 2 ObD;
2. a family of maps

fFA;B : MorC(A;B) 3 f 7! FA;B(f) 2 MorD(F(A);F(B))jA;B 2 Cg

[or fFA;B : MorC(A;B) 3 f 7! FA;B(f) 2 MorD(F(B);F(A))jA;B 2 Cg]

F is called a covariant [contravariant ] functor if

1. FA;A(1A) = 1F(A) for all A 2 Ob C,
2. FA;C(gf) = FB;C(g)FA;B(f) for all A;B;C 2 Ob C:

[FA;C(gf) = FA;B(f)FB;C(g) for all A;B;C 2 Ob C].

Notation: We write
A 2 C instead of A 2 Ob C
f 2 C instead of f 2 MorC(A;B)
F(f) instead of FA;B(f).

Examples 8.2.2. 1. Id : Set �! Set
2. Forget : R-Mod �! Set
3. Forget : Ri �! Ab
4. Forget : Ab �! Gr
5. P : Set �! Set;P(M) := power set of M . P(f)(X) := f�1(X) for f : M �!
N;X � N is a contravariant functor.

6. Q : Set �! Set;Q(M) := power set of M . Q(f)(X) := f(X) for f : M �!
N;X �M is a covariant functor.

Lemma 8.2.3. 1. Let X 2 C. Then

Ob C 3 A 7! MorC(X;A) 2 ObSet

MorC(A;B) 3 f 7!MorC(X; f) 2 MorSet(MorC(X;A);MorC(X;B));

with MorC(X; f) : MorC(X;A) 3 g 7! fg 2 MorC(X;B) or MorC(X; f)(g) =
fg is a covariant functor MorC(X; -).

2. Let X 2 C. Then

Ob C 3 A 7! MorC(A;X) 2 ObSet

MorC(A;B) 3 f 7! MorC(f;X) 2 MorSet(MorC(B;X);MorC(A;X))

with MorC(f;X) : MorC(B;X) 3 g 7! gf 2 MorC(A;X) or MorC(f;X)(g) = gf
is a contravariant functor MorC(-;X).

Proof. 1. MorC(X; 1A)(g) = 1Ag = g = id(g); MorC(X; f)MorC(X; g)(h) =
fgh = MorC(X; fg)(h).

2. analogously.
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Remark 8.2.4. The preceding lemma shows that MorC(-; -) is a functor in both
arguments. A functor in two arguments is called a bifunctor. We can regards the
bifunctor MorC(-; -) as a covariant functor

MorC(-; -) : C
op � C �! Set:

The use of the dual category removes the fact that the bifunctor MorC(-; -) is con-
travariant in the �rst variable.

Obviously the composition of two functors is again a functor and this composition
is associative. Furthermore for each category C there is an identity functor IdC.

Functors of the form MorC(X; -) resp. MorC(-;X) are called representable functors
(covariant resp. contravariant) and X is called the representing object (see also section
8.8).
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3. Natural Transformations

De�nition 8.3.1. Let F : C �! D and G : C �! D be two functors. A
natural transformation or a functorial morphism ' : F �! G is a family of morphisms
f'(A) : F(A) �! G(A)jA 2 Cg such that the diagram

F(B) G(B)-
'(B)

F(A) G(A)-'(A)

?

F(f)

?

G(f)

commutes for all f : A �! B in C, i.e. G(f)'(A) = '(B)F(f).

Lemma 8.3.2. Given covariant functors F = IdSet : Set �! Set and G =
MorSet(MorSet(�; A); A) : Set �! Set for a set A. Then ' : F �! G with

'(B) : B 3 b 7! (MorSet(B;A) 3 f 7! f(b) 2 A) 2 G(B)

is a natural transformation.

Proof. Given g : B �! C. Then the following diagram commutes

B MorSet(MorSet(B;A); A)-'(B)

C MorSet(MorSet(C;A); A)-'(C)?

g

?

MorSet(MorSet(g;A); A)

since

'(C)F(g)(b)(f) = '(C)g(b)(f) = fg(b) = '(B)(b)(fg)
= ['(B)(b)MorSet(g;A)](f) = [MorSet(MorSet(g;A); A)'(A)(b)](f):

Lemma 8.3.3. Let f : A �! B be a morphism in C. Then MorC(f; -) : MorC(B; -) �!
MorC(A; -) given by MorC(f;C) : MorC(B;C) 3 g 7! gf 2 MorC(A;C) is a natural
transformation of covariant functors.

Let f : A �! B be a morphism in C. Then MorC(-; f) : MorC(-; A) �! MorC(-; B)
given by MorC(C; f) : MorC(C;A) 3 g 7! fg 2 MorC(C;B) is a natural transformation
of contravariant functors.
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Proof. Let h : C �! C 0 be a morphism in C. Then the diagrams

MorC(B;C 0) MorC(A;C 0)-
MorC(f;C

0)

MorC(B;C) MorC(A;C)-MorC(f;C)

?

MorC(B;h)

?

MorC(A;h)

and

MorC(C;A) MorC(C;B)-
MorC(C;f)

MorC(C 0; A) MorC(C 0; B)-MorC(C
0;f)

?

MorC(h;A)

?

MorC(h;B)

commute.

Remark 8.3.4. The composition of two natural transformations is again a nat-
ural transformation. The identity idF(A) := 1F(A) is also a natural transformation.

De�nition 8.3.5. A natural transformation ' : F �! G is called a natural iso-
morphism if there exists a natural transformation  : G �! F such that ' �  = idG
and  � ' = idF . The natural transformation  is uniquely determined by '. We
write '�1 :=  .

A functor F is said to be isomorphic to a functor G if there exists a natural
isomorphism ' : F �! G.

Problem 8.3.2. 1. Let F ;G : C �! D be functors. Show that a natural trans-
formation ' : F �! G is a natural isomorphism if and only if '(A) is an isomorphism
for all objects A 2 C.

2. Let (A� B; pA; pB) be the product of A and B in C. Then there is a natural
isomorphism

Mor(-; A�B) �= MorC(-; A)�MorC(-; B):

3. Let C be a category with �nite products. For each object A in C show that
there exists a morphism �A : A �! A�A satisfying p1�A = 1A = p2�A. Show that
this de�nes a natural transformation. What are the functors?

4. Let C be a category with �nite products. Show that there is a bifunctor
- � - : C � C �! C such that (-� -)(A;B) is the object of a product of A and B. We
denote elements in the image of this functor by A�B := (-� -)(A;B) and similarly
f � g.

5. With the notation of the preceding problem show that there is a natural
transformation �(A;B;C) : (A � B) � C �= A � (B � C). Show that the diagram
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(coherence or constraints)

((A�B)�C)�D (A� (B � C))�D-�(A;B;C)�1
A� ((B � C)�D)-�(A;B�C;D)

?
�(A�B;C;D)

?
1��(B;C;D)

(A�B)� (C �D) A� (B � (C �D))-�(A;B;C�D)

commutes.
6. With the notation of the preceding problem show that there are a natural

transformations �(A) : E � A �! A and �(A) : A � E �! A such that the diagram
(coherence or constraints)

(A� E)�B A� (E �B)-�(A;E;B)

A�B

�(A)�1

Q
Q
Q
QQs

1��(B)

�
�

�
��+

De�nition 8.3.6. Let C and D be categories. A covariant functor F : C �! D is
called an equivalence of categories if there exists a covariant functor G : D �! C and
natural isomorphisms ' : GF �= IdC and  : FG �= IdD.

A contravariant functor F : C �! D is called a duality of categories if there exists
a contravariant functor G : D �! C and natural isomorphisms ' : GF �= IdC and
 : FG �= IdD.

A category C is said to be equivalent to a category D if there exists an equivalence
F : C �! D. A category C is said to be dual to a category D if there exists a duality
F : C �! D.

Problem 8.3.3. 1. Show that the dual category Cop is dual to the category C.
2. Let D be a category dual to the category C. Show that D is equivalent to the

dual category Cop.
3. Let F : C �! D be an equivalence with respect to G : D �! C, ' : GF �= IdC,

and  : FG �= IdD. Show that G : D �! C is an equivalence. Show that G is uniquely
determined by F up to a natural isomorphism.
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4. Tensor Products

De�nition and Remark 8.4.1. Let MR and RN be R-modules, and let A be
an abelian group. A map f :M �N �! A is called R-bilinear if

1. f(m+m0; n) = f(m;n) + f(m0; n);
2. f(m;n+ n0) = f(m;n) + f(m;n0);
3. f(mr; n) = f(m; rn)

for all r 2 R; m;m0 2M; n; n0 2 N .
Let BilR(M;N ;A) denote the set of all R-bilinear maps f :M �N �! A.
BilR(M;N ;A) is an abelian group with (f + g)(m;n) := f(m;n) + g(m;n).

De�nition 8.4.2. Let MR and RN be R-modules. An abelian group M 
R N
together with an R-bilinear map


 :M �N 3 (m;n) 7! m
 n 2M 
R N

is called a tensor product of M and N over R if for each abelian group A and for
each R-bilinear map f : M � N �! A there exists a unique group homomorphism
g :M 
R N �! A such that the diagram

M �N M 
R N-


f
@
@
@
@@R

A
?

g

commutes. The elements of M 
R N are called tensors, the elements of the form
m
 n are called decomposable tensors.

Warning: If you want to de�ne a homomorphism f :M 
RN �! A with a tensor
product as domain you must de�ne it by giving an R-bilinear map de�ned onM �N .

Lemma 8.4.3. A tensor product (M 
R N;
) de�ned by MR and RN is unique
up to a unique isomorphism.

Proof. Let (M 
R N;
) and (M �R N;�) be tensor products. Then

M �N




����������

�

�
�

�
��	



@
@
@
@@R

�

HHHHHHHHHj
M 
R N M �R N-h -k M 
R N M �R N-h

implies k = h�1.

Because of this fact we will henceforth talk about the tensor product of M and N
over R.

Proposition 8.4.4. (Rules of computation in a tensor product) Let (M
RN;
)
be the tensor product. Then we have for all r 2 R, m;m0 2M , n; n0 2 N
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1. M 
R N = f
P

imi 
 ni j mi 2M;ni 2 Ng;
2. (m+m0)
 n = m
 n+m0 
 n;
3. m
 (n+ n0) = m
 n+m
 n0;
4. mr 
 n = m 
 rn (observe in particular, that 
 : M � N �! M 
 N is not

injective in general),
5. if f :M �N �! A is an R-bilinear map and g :M 
R N �! A is the induced

homomorphism, then
g(m
 n) = f(m;n):

Proof. 1. Let B := hm 
 ni � M 
R N denote the subgroup of M 
R N
generated by the decomposable tensors m
n. Let j : B �!M
RN be the embedding
homomorphism. We get an induced map 
0 :M �N �! B. In the following diagram

M �N B-

0

M 
R N-j

B M 
R N-j


0

@
@
@
@@R ?

idB

?

jpp
�

�
�

��	

we have idB �
0 = 
0, p with p � j � 
0 = p � 
 = 
0 exists since 
0 is R-bilinear.
Because of jp � 
 = j � 
0 = 
 = idM
RN �
 we get jp = idM
RN , hence the
embedding j is surjective and thus the identity.

2. (m+m0)
 n = 
(m+m0; n) = 
(m;n) +
(m0; n) = m
 n+m0 
 n.
3. and 4. analogously.
5. is precisely the de�nition of the induced homomorphism.

Remark 8.4.5. To construct tensor products, we use the notion of a free module.
Let X be a set and R be a ring. An R-module RX together with a map � : X �!

RX is called a free R-module generated by X, if for every R-module M and for every
map f : X �! M there exists a unique homomorphism of R-modules g : RX �! M
such that the diagram

X RX-�

f
@
@
@
@@R
M
?

g

commutes.
Free R-modules exist and can be constructed as RX := f� : X �! Rj for almost

all x 2 X : �(x) = 0g.

Proposition 8.4.6. Given R-modules MR and RN . Then there exists a tensor
product (M 
R N;
).

Proof. De�ne M 
R N := ZfM �Ng=U where ZfM �Ng is a free Z-module
over M �N (the free abelian group) and U is generated by
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�(m+m0; n)� �(m;n)� �(m0; n)
�(m;m+ n0)� �(m;n)� �(m;n0)
�(mr; n)� �(m; rn)

for all r 2 R, m;m0 2 M , n; n0 2 N . Consider

M �N ZfM �Ng-� M 
R N-� =ZfM �Ng=U

A

 

PPPPPPPPPPPPPq

�

Q
Q
Q
Q
Q
QQs ?

g

Let  be given. Then there is a unique � 2 Hom(ZfM � Ng; A) such that �� =  .
Since  is R-bilinear we get �(�(m + m0; n) � �(m;n) � �(m0n)) =  (m + m0; n) �
 (m;n) �  (m0; n) = 0 and similarly �(�(m;n + n0) � �(m;n) � �(m;n0)) = 0 and
�(�(mr; n)� �(m; rn)) = 0. So we get �(U) = 0. This implies that there is a unique
g 2 Hom(M 
R N;A) such that g� = � (homomorphism theorem). Let 
 := � � �.
Then 
 is bilinear since (m + m0) 
 n = � � �(m + m0; n) = �(�(m + m0; n)) =
�(�(m + m0; n) � �(m;n) � �(m0; n) + �(m;n) + �(m0; n)) = �(�(m;n) + �(m0; n)) =
� � �(m;n) + � � �(m0; n) = m
 n+m0
 n. The other two properties are obtained in
an analogous way.

We have to show that (M
RN;
) is a tensor product. The above diagram shows
that for each abelian group A and for each R-bilinear map  : M � N �! A there
is a g 2 Hom(M 
R N;A) such that g � 
 =  . Given h 2 Hom(M 
R N;A) with
h � 
 =  . Then h � � � � =  . This implies h � � = � = g � � hence g = h.

Proposition and De�nition 8.4.7. Given two homomorphisms

f 2 HomR(M:;M 0:) and g 2 HomR(:N; :N
0):

Then there is a unique homomorphism

f 
R g 2 Hom(M 
R N;M
0 
R N

0)

such that f 
R g(m
 n) = f(m)
 g(n), i.e. the following diagram commutes

M 0 �N 0 M 0 
R N
0-




M �N M 
R N-


?

f � g

?

f 
R g

Proof. 
 � (f � g) is bilinear.

Notation 8.4.8. We often write f 
R N := f 
R 1N and M 
R g := 1M 
R g.
We have the following rule of computation:

f 
R g = (f 
R N
0) � (M 
R g) = (M 0 
R g) � (f 
R N)

since f � g = (f �N 0) � (M � g) = (M 0 � g) � (f �N).



4. TENSOR PRODUCTS 13

Proposition 8.4.9. The following de�ne covariant functors

1. - 
N :Mod-R �! Ab;
2. M 
 - : R-Mod �! Ab;
3. - 
 - :Mod-R�R-Mod �! Ab.

Proof. (f � g) � (f 0 � g0) = ff 0 � gg0 implies (f 
R g) � (f 0 
R g
0) = ff 0 � gg0.

Furthermore 1M � 1N = 1M�N implies 1M 
R 1N = 1M
RN .

De�nition 8.4.10. Let R, S be rings and letM be a leftR-module and a right S-
module. M is called an R-S-bimodule if (rm)s = r(ms). We de�ne HomR-S(:M:; :N:)
:= HomR(:M; :N) \HomS(M:;N:).

Remark 8.4.11. Let MS be a right S-module and let R �M �!M a map. M
is an R-S-bimodule if and only if

1. 8r 2 R : (M 3 m 7! rm 2M) 2 HomS(M:;M:),
2. 8r; r0 2 R;m 2M : (r + r0)m = rm+ r0m,
3. 8r; r0 2 R;m 2M : (rr0)m = r(r0m),
4. 8m 2M : 1m = m:

Lemma 8.4.12. Let RMS and SNT be bimodules. Then R(M
SN)T is a bimodule
by r(m
 n) := rm
 n and (m
 n)t := m
 nt.

Proof. Obviously we have 2.-4. Furthermore (r 
S id)(m 
 n) = rm 
 n =
r(m
 n) is a homomorphism.

Corollary 8.4.13. Given bimodules RMS , SNT , RM 0
S , SN

0
T and homomorphisms

f 2 HomR-S(:M:; :M 0:) and g 2 HomS-T (:N:; :N 0:). Then we have f 
S g 2 HomR-T
(:M 
S N:; :M

0 
S N
0:):

Proof. f 
S g(rm
 nt) = f(rm) 
 g(nt) = r(f 
S g)(m
 n)t:

Remark 8.4.14. Every module M over a commutative ring K and in particular
every vector space over a �eld K is a K-K -bimodule by �m = m�. So there is an
embedding functor � : K-Mod �! K-Mod-K. Observe that there are K-K -bimodules
that do not satisfy �m = m�. Take for example an automorphism � : K �! K and a
left K-module M and de�ne m� := �(�)m. Then M is such a K-K -bimodule.

The tensor product M 
K N of two K-K -bimodules M and N is again a K-K -
bimodule. If we have, however, K-K -bimodules M and N arising from K-modules as
above, i.e. satisfying �m = m�, then their tensor product M 
KN also satis�es this
equation, so M 
K N comes from a module in K-Mod. Indeed we have �m 
 n =
m�
 n = m
 �n = m
 n�. Thus the following diagram of functors commutes:

K-Mod K-Mod-K:-
�

K-Mod� K-Mod K-Mod-K � K-Mod-K-�� �

?


K

?


K
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So we can consider K-Mod as a (proper) subcategory of K-Mod-K. The tensor
product over K can be restricted to K-Mod.

We write the tensor product of two vector spaces M and N as M 
N .

Theorem 8.4.15. In the category K-Mod there are natural isomorphisms

1. Associativity Law: � : (M 
N)
 P �=M 
 (N 
 P ).
2. Law of the Left Unit: � : K 
M �=M .
3. Law of the Right Unit: � :M 
 K �=M .
4. Symmetry Law: � :M 
N �= N 
M .
5. Existence of Inner Hom-Functors: Hom(P 
M;N) �= Hom(P;Hom(M;N)).

Proof. We only describe the corresponding homomorphisms.
1. Use (8.4.45.) to de�ne �((m
 n)
 p) := m
 (n
 p).
2. De�ne � : K 
M �!M by �(r 
m) := rm.
3. De�ne � :M 
 K �!M by �(m
 r) := mr.
4. De�ne � (m
 n) := n
m.
5. For f : P 
 M �! N de�ne �(f) : P �! Hom(M;N) by �(f)(p)(m) :=

f(p 
m).

Usually one identi�es threefold tensor products along the map � so that we use
M 
N 
P = (M 
N)
P =M 
 (N 
P ). For the notion of a monoidal or tensor
category, however, this natural transformation is of central importance.

Problem 8.4.4. 1. Give an explicit proof of M 
 (X � Y ) �=M 
X �M 
 Y .
2. Show that for every �nite dimensional vector space V there is a unique elementPn

i=1 vi 
 v�i 2 V 
 V � such that the following holds

8v 2 V :
X

i

v�i (v)vi = v:

(Hint: Use an isomorphism End(V ) �= V 
 V � and dual bases fvig of V and fv�i g of
V �.)

3. Show that the following diagrams (coherence diagrams or constraints) commute
in K-Mod:

((A
B)
 C)
D (A
 (B 
C))
D-�(A;B;C)
1
A
 ((B 
 C)
D)-�(A;B
C;D)

?
�(A
B;C;D)

?
1
�(B;C;D)

(A
B)
 (C 
D) A
 (B 
 (C 
D))-�(A;B;C
D)

(A
 K) 
B A
 (K 
B)-�(A;K;B)

A
B

�(A)
1

Q
Q
Q
QQs

1
�(B)

�
�

�
��+
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4. Write � (A;B) : A
B �! B 
A for � (A;B) : a
 b 7! b
 a. Show that � is a
natural transformation (between which functors?). Show that

(A
B)
 C (B 
A)
 C-�(X;B)
1
B 
 (A
 C)-�

?

�

?

1
�(A;C)

A
 (B 
 C) (B 
 C)
A-�(A;B
C)
B 
 (C 
A)-�

commutes for all A;B;C 2 K-Mod and that

� (B;A)� (A;B) = idA
B

for all A, B in K-Mod.
5. Find an example of M , N 2 K-Mod-K such that M 
K N 6�= N 
KM .
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5. Algebras

Let K be a commutative ring. In most of our applications K will be a �eld. Tensor
products of K-modules will be simply written as M 
 N := M 
K N . Every such
tensor product is again a K-bimodule since each K-moduleM resp.N is a K-bimodule
(see 8.4.14).

De�nition 8.5.1. A K-algebra is a vector space A together with a multiplication
r : A
A �! A that is associative:

A
A A-
r

A
A
A A
A-id
r

?

r
id

?

r

and a unit � : K �! A:

K 
A �= A �= A
 K A
A-id
�

?

�
id

?

r

A
A A:-
r

id

HHHHHHHHHj

A K-algebra A is commutative if the following diagram commutes

A
A A
A-�

A:

r

A
A
A
AAU

r

�
�
�
���

Let A and B be K-algebras. A homomorphism of algebras f : A �! B is a K-linear
map such that the following diagrams commute:

A B-
f

A
A B 
B-f
f

?

rA

?

rB

and
K

�A

�
�
�
���

�B

A
A
A
AAU

A B:-f
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Remark 8.5.2. Every K-algebra A is a ring with the multiplication

A�A



�! A
A
r

�! A:

The unit element is �(1), where 1 is the unit element of K.
Obviously the composition of two homomorphisms of algebras is again a homo-

morphism of algebras. Furthermore the identity map is a homomorphism of alge-
bras. Hence the K-algebras form a category K-Alg. The category of commutative
K-algebras will be denoted by K-cAlg.

Problem 8.5.5. 1. Show that EndK(V ) is a K-algebra.
2. Show that (A;r : A 
 A �! A; � : K �! A) is a K-algebra if and only if

A with the multiplication A � A



�! A 
 A
r

�! A and the unit �(1) is a ring and
� : K �! Cent(A) is a ring homomorphism into the center of A.

3. Let V be a K-module. Show that D(V ) := K � V with the multiplication
(r1; v1)(r2; v2) := (r1r2; r1v2 + r2v1) is a commutative K-algebra.

Lemma 8.5.3. Let A and B be algebras. Then A 
 B is an algebra with the
multiplication (a1 
 b1)(a2 
 b2) := a1a2 
 b1b2.

Proof. Certainly the algebra properties can easily be checked by a simple cal-
culation with elements. We prefer for later applications a diagrammatic proof.

Let rA : A 
 A �! A and rB : B 
 B �! B denote the multiplications of the
two algebras. Then the new multiplication is rA
B := (rA 
 rB)(1A 
 � 
 1B) :
A 
 B 
 A 
 B �! A 
 B where � : B 
 A �! A 
 B is the symmetry map from
Theorem 8.4.15. Now the following diagrams commute

A
B 
A
B 
A
B A
A
B 
B 
A
B-1
�
13
A
B 
A
B-r
r
12

A
B 
A
A
B 
B A
A
A
B 
B 
B-
1
�B;A
A
1

3 A
A
B 
B-r
1
r
1
?

13
�
1

?

1
�B
B;A
1

?

1
�
1A
A
B 
A
B 
B

1
�
13

��
��

��*

13
�
1

�������

12
�
12
HHHHHHj

A
B 
A
B A
A
B 
B-1
�
1
A
B-r
r

?

1
r
r

?

1
r
1
r

?

r
r

In the left upper rectangle of the diagram the quadrangle commutes by the properties
of the tensor product and the two triangles commute by inner properties of � . The
right upper and left lower rectangles commute since � is a natural transformation and
the right lower rectangle commutes by the associativity of the algebras A and B.
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Furthermore we use the homomorphism � = �A
B : K �! K 
K �! A
B in the
following commutative diagram

K 
A
B �= A
B �= A
B 
 K A
B 
 K 
 K- A
B 
A
B-12
�
�

1

HHHHHHHHHHHHHHHHHHHHHHHHHHHj

HHHHHHHHHj
A
 K 
B 
 K A
A
B 
B-

1
�
1
�

?

1
�
1

?

1
�
1

?

r
r

HHHHHHHHHj
K 
 K 
A
B K 
A
 K 
B-1
�
1

?

A
B 
A
B A
A
B 
B-1
�
1
A
B:-r
r

?

�
�
12

?

�
1
�
1

De�nition 8.5.4. Let K be a commutative ring. Let V be a K-module. A K-
algebra T (V ) together with a homomorphism of K-modules � : V �! T (V ) is called
a tensor algebra over V if for each K-algebra A and for each homomorphism of K-
modules f : V �! A there exists a unique homomorphism of K-algebras g : T (V ) �! A
such that the diagram

V T (V )-�

f
@
@
@
@@R

A
?

g

commutes.
Note: If you want to de�ne a homomorphism g : T (V ) �! A with a tensor algebra

as domain you should de�ne it by giving a homomorphism of K-modules de�ned on
V .

Lemma 8.5.5. A tensor algebra (T (V ); �) de�ned by V is unique up to a unique
isomorphism.

Proof. Let (T (V ); �) and (T 0(V ); �0) be tensor algebras over V . Then

V

�

����������

�0
�

�
�

��	

�
@
@
@
@@R

�0

HHHHHHHHHj
T (V ) T 0(V )-h -k T (V ) T 0(V )-h

implies k = h�1.
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Proposition 8.5.6. (Rules of computation in a tensor algebra) Let (T (V ); �) be
the tensor algebra over V . Then we have

1. � : V �! T (V ) is injective (so we may identify the elements �(v) and v for all
v 2 V ),

2. T (V ) = f
P

n;�i vi1 � : : : � vinj
�i = (i1; : : : ; in) multiindex of length ng;

3. if f : V �! A is a homomorphism of K-modules, A is a K-algebra, and g :
T (V ) �! A is the induced homomorphism of K-algebras, then

g(
X

n;�i

vi1 � : : : � vin) =
X

n;�i

f(vi1) � : : : � f(vin):

Proof. 1. Use the embedding homomorphism j : V �! D(V ), where D(V ) is
de�ned as in 8.5.3. to construct g : T (V ) �! D(V ) such that g � � = j. Since j is
injective so is �.

2. Let B := f
P

n;�i vi1 � : : : � vinj
�i = (i1; : : : ; in) multiindex of length ng. Obviously

B is the subalgebra of T (V ) generated by the elements of V . Let j : B �! T (V ) be
the embedding homomorphism. Then � : V �! T (V ) factors through a linear map
�0 : V �! B. In the following diagram

V B-�0 T (V )-j

B T (V )-j

�0
@
@
@
@@R ?

idB

?

jpp
�

�
�

��	

we have idB ��0 = �0. p with p � j � �0 = p � � = �0 exists since �0 is a homomorphism
of K-modules. Because of jp � � = j � �0 = � = idT (V ) �� we get jp = idT (V ), hence the
embedding j is surjective and thus j is the identity.

3. is precisely the de�nition of the induced homomorphism.

Proposition 8.5.7. Given a K-module V . Then there exists a tensor algebra
(T (V ); �).

Proof. De�ne T n(V ) := V 
 : : :
 V = V 
n to be the n-fold tensor product of
V . De�ne T 0(V ) := K and T 1(V ) := V . We de�ne

T (V ) :=
M

i�0

T i(V ) = K � V � (V 
 V )� (V 
 V 
 V )� : : : :

The components T n(V ) of T (V ) are called homogeneous components.
The canonical isomorphisms Tm(V )
 T n(V ) �= Tm+n(V ) taken as multiplication

r : Tm(V )
 T n(V ) �! Tm+n(V )
r : T (V )
 T (V ) �! T (V )

and the embedding � : K = T 0(V ) �! T (V ) induce the structure of a K-algebra on
T (V ). Furthermore we have the embedding � : V �! T 1(V ) � T (V ).
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We have to show that (T (V ); �) is a tensor algebra. Let f : V �! A be a ho-
momorphism of K-modules. Each element in T (V ) is a sum of decomposable ten-
sors v1 
 : : : 
 vn. De�ne g : T (V ) �! A by g(v1 
 : : : 
 vn) := f(v1) : : : f(vn)
(and (g : T 0(V ) �! A) = (� : K �! A)). By induction one sees that g is a
homomorphism of algebras. Since (g : T 1(V ) �! A) = (f : V �! A) we get
g � � = f . If h : T (V ) �! A is a homomorphism of algebras with h � � = f we
get h(v1 
 : : :
 vn) = h(v1) : : : h(vn) = f(v1) : : : f(vn) hence h = g.

Proposition 8.5.8. The construction of tensor algebras T (V ) de�nes a functor
T : K-Mod �! K-Alg that is left adjoint to the underlying functor U : K-Alg �!
K-Mod.

Proof. Follows from the universal property and 8.9.16.

Problem 8.5.6. 1. Let X be a set and V := KX be the free K-module over
X. Show that X �! V �! T (V ) de�nes a free algebra over X, i.e. for every K-
algebra A and every map f : X �! A there is a unique homomorphism of K-algebras
g : T (V ) �! A such that the diagram

X T (V )-

f
@
@
@
@@R

A
?

g

commutes.
We write KhXi := T (KX) and call it the polynomial ring over K in the non-

commuting variables X.
2. Let T (V ) and � : V �! T (V ) be a tensor algebra. Regard V as a subset of

T (V ) by �. Show that there is a unique homomorphism � : T (V ) �! T (V ) 
 T (V )
with �(v) = v 
 1 + 1 
 v for all v 2 V .

3. Show that (�
 1)� = (1
�)� : T (V ) �! T (V )
 T (V )
 T (V ).
4. Show that there is a unique homomorphism of algebras " : T (V ) �! K with

"(v) = 0 for all v 2 V .
5. Show that ("
 1)� = (1
 ")� = idT (V ).
6. Show that there is a unique homomorphism of algebras S : T (V ) �! T (V )op

with S(v) = �v. (T (V )op is the opposite algebra of T (V ) with multiplication s�t := ts
for all s; t 2 T (V ) = T (V )op and where st denotes the product in T (V ).)

7. Show that the diagrams

T (V ) K-" T (V )-�

T (V )
 T (V ) T (V )
 T (V )-1
S
S
1

?
�

6
r

commute.
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De�nition 8.5.9. Let K be a commutative ring. Let V be a K-module. A K-
algebra S(V ) together with a homomorphism of K-modules � : V �! S(V ), such that
�(v) � �(v0) = �(v0) � �(v) for all v; v0 2 V , is called a symmetric algebra over V if for
each K-algebra A and for each homomorphism of K-modules f : V �! A, such that
f(v) � f(v0) = f(v0) � f(v) for all v; v0 2 V , there exists a unique homomorphism of
K-algebras g : S(V ) �! A such that the diagram

V S(V )-�

f
@
@
@
@@R

A
?

g

commutes.
Note: If you want to de�ne a homomorphism g : S(V ) �! A with a symmetric

algebra as domain you should de�ne it by giving a homomorphism of K-modules
f : V �! A satisfying f(v) � f(v0) = f(v0) � f(v) for all v; v0 2 V .

Lemma 8.5.10. A symmetric algebra (S(V ); �) de�ned by V is unique up to a
unique isomorphism.

Proof. Let (S(V ); �) and (S0(V ); �0) be symmetric algebras over V . Then

V

�

����������

�0
�

�
�

��	

�
@
@
@
@@R

�0

HHHHHHHHHj
S(V ) S0(V )-h -k S(V ) S0(V )-h

implies k = h�1.

Proposition 8.5.11. (Rules of computation in a symmetric algebra) Let (S(V ); �)
be the symmetric algebra over V . Then we have

1. � : V �! S(V ) is injective (we will identify the elements �(v) and v for all
v 2 V ),

2. S(V ) = f
P

n;�i vi1 � : : : � vinj
�i = (i1; : : : ; in) multiindex of length ng;

3. if f : V �! A is a homomorphism of K-modules satisfying f(v) � f(v0) =
f(v0) �f(v) for all v; v0 2 V , A is a K-algebra, and g : S(V ) �! A is the induced
homomorphism K-algebras, then

g(
X

n;�i

vi1 � : : : � vin) =
X

n;�i

f(vi1) � : : : � f(vin):

Proof. 1. Use the embedding homomorphism j : V �! D(V ), where D(V ) is
the commutative algebra de�ned in 8.5.3. to construct g : S(V ) �! D(V ) such that
g � � = j. Since j is injective so is �.
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2. Let B := f
P

n;�i vi1 � : : : � vinj
�i = (i1; : : : ; in) multiindex of length ng. Obviously

B is the subalgebra of S(V ) generated by the elements of V . Let j : B �! S(V ) be
the embedding homomorphism. Then � : V �! S(V ) factors through a linear map
�0 : V �! B. In the following diagram

V B-�0 S(V )-j

B S(V )-j

�0
@
@
@
@@R ?

idB

?

jpp
�

�
�

��	

we have idB ��0 = �0, p with p � j � �0 = p � � = �0 exists since �0 is a homomorphism
of K-modules satisfying �0(v) � �0(v0) = �0(v0) � �0(v) for all v; v0 2 V . Because of
jp � � = j � �0 = � = idS(V ) �� we get jp = idS(V ), hence the embedding j is surjective
and thus the identity.

3. is precisely the de�nition of the induced homomorphism.

Proposition 8.5.12. Let V be a K-module. The symmetric algebra (S(V ); �) is
commutative and satis�es the following universal property:

for each commutative K-algebra A and for each homomorphism of K-modules
f : V �! A there exists a unique homomorphism of K-algebras g : S(V ) �! A such
that the diagram

V S(V )-�

f
@
@
@
@@R

A
?

g

commutes.

Proof. Commutativity follows from the commutativity of the generators: vv0 =
v0v which carries over to the elements of the form

P
n;�i vi1 � : : : � vin. The universal

property follows since the de�ning condition f(v) �f(v0) = f(v0) �f(v) for all v; v0 2 V
is automatically satis�ed.

Proposition 8.5.13. Given a K-module V . Then there exists a symmetric alge-
bra (S(V ); �).

Proof. De�ne S(V ) := T (V )=I where I = hvv0 � v0vjv; v0 2 V i is the two-sided
ideal generated by the elements vv0� v0v. Let � be the canonical map V �! T (V ) �!
S(V ). Then the universal property is easily veri�ed by the homomorphism theorem
for algebras.

Proposition 8.5.14. The construction of symmetric algebras S(V ) de�nes a
functor S : K-Mod �! K-cAlg that is left adjoint to the underlying functor U :
K-cAlg �! K-Mod.
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Proof. Follows from the universal property and 8.9.16.

Problem 8.5.7. Let X be a set and V := KX be the free K-module over X.
Show that X �! V �! S(V ) de�nes a free commutative algebra over X, i.e. for every
commutativeK-algebra A and every map f : X �! A there is a unique homomorphism
of K-algebras g : S(V ) �! A such that the diagram

X S(V )-

f
@
@
@
@@R

A
?

g

commutes.
The algebra K[X] := S(KX) is called the polynomial ring over K in the (com-

muting) variables X.
2. Let S(V ) and � : V �! S(V ) be a symmetric algebra. Show that there is a

unique homomorphism � : S(V ) �! S(V ) 
 S(V ) with �(v) = v 
 1 + 1 
 v for all
v 2 V .

3. Show that (�
 1)� = (1
�)� : S(V ) �! S(V )
 S(V )
 S(V ).
4. Show that there is a unique homomorphism of algebras " : S(V ) �! K with

"(v) = 0 for all v 2 V .
5. Show that ("
 1)� = (1
 ")� = idS(V ).
6. Show that there is a unique homomorphism of algebras S : S(V ) �! S(V ) with

S(v) = �v.
7. Show that the diagrams

S(V ) K-" S(V )-�

S(V )
 S(V ) S(V )
 S(V )-1
S
S
1

?
�

6
r

commute.

De�nition 8.5.15. Let K be a commutative ring. Let V be a K-module. A
K-algebra E(V ) together with a homomorphism of K-modules � : V �! E(V ), such
that �(v)2 = 0 for all v 2 V , is called an exterior algebra or Grassmann algebra over
V if for each K-algebra A and for each homomorphism of K-modules f : V �! A,
such that f(v)2 = 0 for all v 2 V , there exists a unique homomorphism of K-algebras
g : E(V ) �! A such that the diagram

V E(V )-�

f
@
@
@
@@R

A
?

g
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commutes.
The multiplication in E(V ) is usually denoted by u ^ v.
Note: If you want to de�ne a homomorphism g : E(V ) �! A with an exterior

algebra as domain you should de�ne it by giving a homomorphism of K-modules
de�ned on V satisfying f(v)2 = 0 for all v; v0 2 V .

Problem 8.5.8. 1. Let f : V �! A be a linear map satisfying f(v)2 = 0 for all
v 2 V . Then f(v)f(v0) = �f(v0)f(v) for all v; v0 2 V .

2. Let 2 be invertible in K (e.g. K a �eld of characteristic 6= 2). Let f : V �! A
be a linear map satisfying f(v)f(v0) = �f(v0)f(v) for all v; v0 2 V . Then f(v)2 = 0
for all v 2 V .

Lemma 8.5.16. An exterior algebra (E(V ); �) de�ned by V is unique up to a
unique isomorphism.

Proof. Let (E(V ); �) and (E0(V ); �0) be exterior algebras over V . Then

V

�

����������

�0
�

�
�

��	

�
@
@
@
@@R

�0

HHHHHHHHHj
E(V ) E0(V )-h -k E(V ) E0(V )-h

implies k = h�1.

Proposition 8.5.17. (Rules of computation in an exterior algebra) Let (E(V ); �)
be the exterior algebra over V . Then we have

1. � : V �! E(V ) is injective (we will identify the elements �(v) and v for all
v 2 V ),

2. E(V ) = f
P

n;�i vi1 ^ : : : ^ vinj
�i = (i1; : : : ; in) multiindex of length ng;

3. if f : V �! A is a homomorphism of K-modules satisfying f(v) � f(v0) =
�f(v0) � f(v) for all v; v0 2 V , A is a K-algebra, and g : E(V ) �! A is the
induced homomorphism K-algebras, then

g(
X

n;�i

vi1 ^ : : : ^ vin) =
X

n;�i

f(vi1) � : : : � f(vin):

Proof. 1. Use the embedding homomorphism j : V �! D(V ), where D(V ) is
the algebra de�ned in 8.5.3. to construct g : E(V ) �! D(V ) such that g � � = j. Since
j is injective so is �.

2. LetB := f
P

n;�i vi1^: : :^vin j
�i = (i1; : : : ; in) multiindex of length ng. Obviously

B is the subalgebra of E(V ) generated by the elements of V . Let j : B �! E(V ) be
the embedding homomorphism. Then � : V �! E(V ) factors through a linear map
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�0 : V �! B. In the following diagram

V B-�0 E(V )-j

B E(V )-j

�0
@
@
@
@@R ?

idB

?

jpp
�

�
�

��	

we have idB ��0 = �0, p with p � j � �0 = p � � = �0 exists since �0 is a homomorphism
of K-modules satisfying �0(v) � �0(v0) = ��0(v0) � �0(v) for all v; v0 2 V . Because of
jp � � = j � �0 = � = idE(V ) �� we get jp = idE(V ), hence the embedding j is surjective
and thus j is the identity.

3. is precisely the de�nition of the induced homomorphism.

Proposition 8.5.18. Given a K-module V . Then there exists an exterior algebra
(E(V ); �).

Proof. De�ne E(V ) := T (V )=I where I = hv2jv 2 V i is the two-sided ideal
generated by the elements v2. Let � be the canonical map V �! T (V ) �! E(V ).
Then the universal property is easily veri�ed by the homomorphism theorem for
algebras.

Problem 8.5.9. 1. Let V be a �nite dimensional vector space of dimension n.
Show that E(V ) is �nite dimensional of dimension 2n. (Hint: The homogeneous

components Ei(V ) have dimension
�

n

i

�
.

2. Show that the symmetric group Sn operates (from the left) on T n(V ) by
�(v1 
 : : :
 vn) = v��1(1) 
 : : :
 v��1(n) with � 2 Sn and vi 2 V .

3. A tensor a 2 T n(V ) is called a symmetric tensor if �(a) = a for all � 2 Sn.

Let Ŝn(V ) be the subspace of symmetric tensors in T n(V ).
a) Show that S : T n(V ) 3 a 7!

P
�2Sn

�(a) 2 T n(V ) is a linear map.

b) Show that S has its image in Ŝn(V ).

c) Show that Im(S) = Ŝn(V ) if n! is invertible in K.

d) Show that Ŝn(V ) ,! T n(V )
�
! Sn(V ) is an isomorphism if n! is invertible in

K and � : T n(V ) �! Sn(V ) is the restriction of � : T (V ) �! S(V ), the symmetric
algebra.

4. A tensor a 2 T n(V ) is called an antisymmetric tensor if �(a) = "(�)a for all

� 2 Sn where "(�) is the sign of the permutation �. Let Ên(V ) be the subspace of
antisymmetric tensors in T n(V ).

a) Show that E : T n(V ) 3 a 7!
P

�2Sn
"(�)�(a) 2 T n(V ) is a linear map.

b) Show that E has its image in Ên(V ).

c) Show that Im(E) = Ên(V ) if n! is invertible in K.

d) Show that Ên(V ) ,! T n(V )
�
! En(V ) is an isomorphism if n! is invertible in K

and � : T n(V ) �! En(V ) is the restriction of � : T (V ) �! E(V ), the exterior algebra.
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De�nition 8.5.19. Let A be a K-algebra. A left A-module is a K-module M
together with a homomorphism �M : A
M �!M , such that the diagrams

A
M M-�

A
A
M A
M-id
�

?

r
id

?

�

and
M �= K 
M A
M-�
id

M
?

�id

HHHHHHHHHj

commute.
Let AM and AN be A-modules and let f :M �! N be a K-linear map. The map

f is called a homomorphism of modules if the diagram

A
N N-�N

A
M M-
�M

?

1
f

?

f

commutes.
The leftA-modules and their homomorphisms form the category AM of A-modules.

Problem 8.5.10. Show that an abelian group M is a left module over the ring
A if and only if M is a K-module and an A-module in the sense of De�nition 8.5.19.
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6. Coalgebras

De�nition 8.6.1. A K-coalgebra is a K-module C together with a comultiplica-
tion or diagonal � : C �! C 
 C that is coassociative:

C 
 C C 
 C 
 C-
id
�

C C 
 C-�

?

�

?

�
id

and a counit or augmentation � : C �! K:

C C 
 C-�

?

�

?

id
�

C 
 C K 
 C �= C �= C 
 K:-
�
id

id

HHHHHHHHHj

A K-coalgebra C is cocommutative if the following diagram commutes

C 
 C C 
 C-�

C

�

�
�
�
���

�

A
A
A
AAU

Let C and D be K-coalgebras. A homomorphism of coalgebras f : C �! D is a
K-linear map such that the following diagrams commute:

C 
 C D 
D-
f
f

C D-f

?

�C

?

�D

and

K

�C

A
A
A
AAU

�D

�
�
�
���

C D:-f

Remark 8.6.2. Obviously the composition of two homomorphisms of coalgebras
is again a homomorphism of coalgebras. Furthermore the identity map is a homo-
morphism of coalgebras. Hence the K-coalgebras form a category K-Coalg. The
category of cocommutative K-coalgebras will be denoted by K-cCoalg.
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Problem 8.6.11. 1. Show that V 
V � is a coalgebra for every �nite dimensional
vector space V over a �eld K if the comultiplication is de�ned by �(v 
 v�) :=Pn

i=1 v 
 v�i 
 vi 
 v� where fvig and fv�i g are dual bases of V resp. V �.
2. Show that the free K-modules KX with the basis X and the comultiplication

�(x) = x
 x is a coalgebra. What is the counit? Is the counit unique?
3. Show that K � V with �(1) = 1
 1, �(v) = v
 1+ 1
 v de�nes a coalgebra.
4. Let C and D be coalgebras. Then C
D is a coalgebra with the comultiplication

�C
D := (1C 
 � 
 1D)(�C 
�D) : C 
D
C 
D �! C
D and counit " = "C
D :
C 
D �! K 
K �! K. (The proof is analogous to the proof of Lemma 8.5.3.)

To describe the comultiplication of a K-coalgebra in terms of elements we intro-
duce a notation �rst introduced by Sweedler similar to the notation r(a
 b) = ab
used for algebras. Instead of �(c) =

P
ci 
 c0i we write

�(c) =
X

c(1) 
 c(2):

Observe that only the complete expression on the right hand side makes sense, not
the components c(1) or c(2) which are not considered as families of elements of C. This
notation alone does not help much in the calculations we have to perform later on.
So we introduce a more general notation.

De�nition 8.6.3. (Sweedler Notation) Let M be an arbitrary K-module and C
be a K-coalgebra. Then there is a bijection between all multilinear maps

f : C � : : :� C �!M

and all linear maps

f 0 : C 
 : : :
 C �!M:

These maps are associated to each other by the formula

f(c1; : : : ; cn) = f 0(c1 
 : : :
 cn):

For c 2 C we de�ne X
f(c(1); : : : ; c(n)) := f 0(�n�1(c));

where �n�1 denotes the n � 1-fold application of �, for example �n�1 = (� 
 1 

: : :
 1) � (�
 1) ��.

In particular we obtain for the bilinear map 
 : C �C 3 (c; d) 7! c 
 d 2 C 
 C
X

c(1) 
 c(2) = �(c);

and for the multilinear map 
2 : C � C � C �! C 
 C 
C
X

c(1) 
 c(2) 
 c(3) = (�
 1)�(c) = (1 
�)�(c):

With this notation one veri�es easily
X

c(1) 
 : : :
�(c(i))
 : : :
 c(n) =
X

c(1) 
 : : :
 c(n+1)
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and P
c(1) 
 : : :
 �(c(i))
 : : :
 c(n) =

P
c(1) 
 : : :
 1
 : : :
 c(n�1)

=
P
c(1) 
 : : :
 c(n�1)

This notation and its application to multilinear maps will also be used in more
general contexts like comodules.

Proposition 8.6.4. Let C be a coalgebra and A an algebra. Then the composition
f � g := rA(f 
 g)�C de�nes a multiplication

Hom(C;A)
Hom(C;A) 3 f 
 g 7! f � g 2 Hom(C;A);

such that Hom(C;A) becomes an algebra. The unit element is given by K 3 � 7!
(c 7! �(��(c))) 2 Hom(C;A).

Proof. The multiplication of Hom(C;A) obviously is a bilinear map. The mul-
tiplication is associative since (f � g) � h = rA((rA(f 
 g)�C)
 h)�C = rA(rA 

1)((f 
g)
h)(�C
1)�C = rA(1
rA)(f
 (g
h))(1
�C)�C = rA(f 
 (rA(g

h)�C))�C = f � (g � h). Furthermore it is unitary with unit 1Hom(C;A) = �A�C since
�A�C � f = rA(�A�C 
 f)�C = rA(�A 
 1A)(1K 
 f)(�C 
 1C)�C = f and similarly
f � �A�C = f .

De�nition 8.6.5. The multiplication � : Hom(C;A)
Hom(C;A) �! Hom(C;A)
is called convolution.

Corollary 8.6.6. Let C be a K-coalgebra. Then C� = HomK(C;K) is an K-
algebra.

Proof. Use that K itself is a K-algebra.

Remark 8.6.7. If we write the evaluation as C� 
 C 3 a
 c 7! ha; ci 2 K then
an element a 2 C� is completely determined by the values of ha; ci for all c 2 C. So
the product of a and b in C� is uniquely determined by the formula

ha � b; ci = ha
 b;�(c)i =
X

a(c(1))b(c(2)):

The unit element of C� is � 2 C�.

Lemma 8.6.8. Let K be a �eld and A be a �nite dimensional K-algebra. Then
A� = HomK(A;K) is a K-coalgebra.

Proof. De�ne the comultiplication on C� by

� : A�
r�

�! (A
A)�
can�1

�! A� 
A�:

The canonical map can : A�
A� �! (A
A)� is invertible, sinceA is �nite dimensional.
By a diagrammatic proof or by calculation with elements it is easy to show that A�

becomes a K-coalgebra.

Remark 8.6.9. If K is an arbitrary commutative ring, then A� = HomK(A;K)
is a K-coalgebra if A is a �nitely generated projective K-module.
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Problem 8.6.12. Find su�cient conditions for an algebra A resp. a coalgebra C
such that Hom(A;C) becomes a coalgebra with co-convolution as comultiplication.

De�nition 8.6.10. Let C be a K-coalgebra. A left C-comodule is a K-module
M together with a homomorphism �M :M �! C 
M , such that the diagrams

C 
M C 
 C 
M-
id
�

M C 
M-�

?

�

?

�
id

and
M

?

�

C 
M K 
M �=M:-
�
id

id

HHHHHHHHHj

commute.
Let CM and CN be C-comodules and let f : M �! N be a K-linear map. The

map f is called a homomorphism of comodules if the diagram

N C 
N-
�N

M C 
M-�M

?

f

?

1
f

commutes.
The left C-comodules and their homomorphisms form the category CM of comod-

ules.
Let N be an arbitrary K-module and M be a C-comodule. Then there is a

bijection between all multilinear maps

f : C � : : :�M �! N

and all linear maps

f 0 : C 
 : : :
M �! N:

These maps are associated to each other by the formula

f(c1; : : : ; cn;m) = f 0(c1 
 : : :
 cn 
m):

For m 2M we de�ne
X

f(m(1); : : : ;m(n);m(M)) := f 0(�n(m));

where �n denotes the n-fold application of �, i.e. �n = (1 
 : : :
 1
 �) � (1
 �) � �.
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In particular we obtain for the bilinear map 
 : C �M �! C 
M
X

m(1) 
m(M) = �(m);

and for the multilinear map 
2 : C � C �M �! C 
 C 
M
X

m(1) 
m(2) 
m(M) = (1 
 �)�(c) = (�
 1)�(m):

Problem 8.6.13. Show that a �nite dimensional vector space V is a comodule
over the coalgebra V 
 V � as de�ned in problem 8.11.1 with the coaction �(v) :=P
v 
 v�i 
 vi 2 (V 
 V �)
 V where

P
v�i 
 vi is the dual basis of V in V � 
 V .

Theorem 8.6.11. (Fundamental Theorem for Comodules) Let K be a �eld. Let
M be a left C-comodule and let m 2M be given. Then there exists a �nite dimensional
subcoalgebra C 0 � C and a �nite dimensional C 0-comodule M 0 with m 2 M 0 � M
where M 0 �M is a K-submodule, such that the diagram

M C 
M-
�

M 0 C 0 
M 0-�0

? ?

commutes.

Corollary 8.6.12. 1. Each element c 2 C of a coalgebra is contained in a �nite
dimensional subcoalgebra of C.

2. Each element m 2 M of a comodule is contained in a �nite dimensional
subcomodule of M .

Corollary 8.6.13. 1. Each �nite dimensional subspace V of a coalgebra C is
contained in a �nite dimensional subcoalgebra C 0 of C.

2. Each �nite dimensional subspace V of a comodule M is contained in a �nite
dimensional subcomodule M 0 of M .

Corollary 8.6.14. 1. Each coalgebra is a union of �nite dimensional subcoalge-
bras.

2. Each comodule is a union of �nite dimensional subcomodules.

Proof. (of the Theorem) We can assume that m 6= 0 for else we can use M 0 = 0
and C 0 = 0.

Under the representations of �(m) 2 C
M as �nite sums of decomposable tensors
pick one

�(m) =

sX

i=1

ci 
mi
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of shortest length s. Then the families (ciji = 1; : : : ; s) and (miji = 1; : : : ; s) are
linearly independent. Choose coe�cients cij 2 C such that

�(cj) =

tX

i=1

ci 
 cij; 8j = 1; : : : ; s;

by suitably extending the linearly independent family (ciji = 1; : : : ; s) to a linearly
independent family (ciji = 1; : : : ; t) and t � s.

We �rst show that we can choose t = s. By coassociativity we have
Ps

i=1 ci 

�(mi) =

Ps

j=1�(cj) 
 mj =
Ps

j=1

Pt

i=1 ci 
 cij 
mj. Since the ci and the mj are
linearly independent we can compare coe�cients and get

�(mi) =
sX

j=1

cij 
mj; 8i = 1; : : : ; s(1)

and 0 =
Ps

j=1 cij 
mj for i > s. The last statement implies

cij = 0; 8i > s; j = 1; : : : ; s:

Hence we get t = s and

�(cj) =

sX

i=1

ci 
 cij; 8j = 1; : : : ; s:

De�ne �nite dimensional subspaces C 0 = hcij ji; j = 1; : : : ; si � C and M 0 =
hmiji = 1; : : : ; si � M . Then by (1) we get � : M 0 �! C 0 
M 0. We show that
m 2 M 0 and that the restriction of � to C 0 gives a linear map � : C 0 �! C 0 
 C 0

so that the required properties of the theorem are satis�ed. First observe that m =P
"(ci)mi 2M 0 and cj =

P
"(ci)cij 2 C 0. Using coassociativity we get

Pn

i;j=1 ci 
�(cij)
mj =
Ps

k;j=1�(ck)
 ckj 
mj

=
Ps

i;j;k=1 ci 
 cik 
 ckj 
mj

hence

�(cij) =
sX

k=1

cik 
 ckj :(2)

Remark 8.6.15. We give a sketch of a second proof which is somewhat more
technical. SinceC is a K-coalgebra, the dual C� is an algebra. The comodule structure
� : M �! C 
M leads to a module structure by � = (ev
1)(1 
 �) : C� 
M �!
C�
C
M �!M . Consider the submodule N := C�m. Then N is �nite dimensional,
since c�m =

Pn

i=1hc
�; ciimi for all c

� 2 C� where
Pn

i=1 ci 
mi = �(m). Observe that
C�m is a subspace of the space generated by the mi. But it does not depend on
the choice of the mi. Furthermore if we take �(m) =

P
ci 
 mi with a shortest
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representation then the mi are in C�m since c�m =
P
hc�; ciimi = mi for c� an

element of a dual basis of the ci.
N is a C-comodule since �(c�m) =

P
hc�; cii�(mi) =

P
hc�; ci(1)ici(2) 
 mi 2

C 
C�m.
Now we construct a subcoalgebra D of C such that N is a D-comodule with the

induced coaction. Let D := N 
 N�. By 8.13 N is a comodule over the coalgebra
N 
 N�. Construct a linear map � : D �! C by n 
 n� 7!

P
n(1)hn

�; n(N)i. By
de�nition of the dual basis we have n =

P
nihn�i ; ni. Thus we get

(�
 �)�D(n
 n�) = (�
 �)(
P
n
 n�i 
 ni 
 n�)

=
P
n(1)hn

�
i ; n(N)i 
 ni(1)hn

�; ni(N)i
=
P
n(1) 
 ni(1)hn

�; ni(N)ihn
�
i ; n(N)i

=
P
n(1) 
 n(2)hn

�; n(N)i =
P

�C(n(1))hn
�; n(N)i

= �C�(n
 n�):

Furthermore "C�(n 
 n�) = "(
P
n(1)hn

�; n(N)i = hn�;
P
"(n(1))n(N)i = hn�; ni =

"(n
n�). Hence � : D �! C is a homomorphism of coalgebras, D is �nite dimensional
and the image C 0 := �(D) is a �nite dimensional subcoalgebra of C. Clearly N is
also a C 0-comodule, since it is a D-comodule.

Finally we show that the D-comodule structure on N if lifted to the C-comodule
structure coincides with the one de�ned on M . We have

�C(c
�m) = �C(

P
hc�;m(1)im(M)) =

P
hc�;m(1)im(2) 
m(M)

=
P
hc�;m(1)im(2) 
mihm�

i ;m(M)i =
P
hc�;m(1)im(2)hm�

i ;m(M)i 
mi

= (�
 1)(
P
hc�;m(1)im(M) 
m�

i 
mi) = (�
 1)(
P
c�m
m�

i 
mi)
= (�
 1)�D(c�m):
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7. Bialgebras

De�nition 8.7.1. 1. A bialgebra (B;r; �;�; �) consists of an algebra (B;r; �)
and a coalgebra (B;�; �) such that the diagrams

B 
B B 
B 
B 
B-�
�

1
�
1

HHHHHHHj

?

r

B B 
B-�

B 
B 
B 
B

?
r
r

and
K

B

�

�
�
�
���

�
�

A
A
A
AAU

B B 
B-�

B 
B B-r

K

�
�

A
A
A
AAU

�

�
�
�
���

K K-
id

B

�

A
A
A
AAU

�

�
�
�
���

commute, i.e. � and � are homomorphisms of algebras resp. r and � are homomor-
phisms of coalgebras.

2. Given bialgebras A and B. A map f : A �! B is called a homomorphism of
bialgebras if it is a homomorphism of algebras and a homomorphism of coalgebras.

3. The category of bialgebras is denoted by K-Bialg.

Problem 8.7.14. 1. Let (B;r; �) be an algebra and (B;�; ") be a coalgebra.
The following are equivalent:

a) (B;r; �;�; ") is a bialgebra.
b) � : B �! B 
B and " : B �! K are homomorphisms of K-algebras.
c) r : B 
B �! B and � : K �! B are homomorphisms of K-coalgebras.

2. Let B be a �nite dimensional bialgebra over �eld K. Show that the dual space
B� is a bialgebra.

One of the most important properties of bialgebras B is that the tensor product
over K of two B-modules or two B-comodules is again a B-module.

Proposition 8.7.2. 1. Let B be a bialgebra. Let M and N be left B-modules.
Then M 
K N is a B-module by the map

B 
M 
N
�
1
�! B 
B 
M 
N

1
�
1
�! B 
M 
B 
N

�
�
�!M 
N:

2. Let B be a bialgebra. Let M and N be left B-comodules. Then M 
K N is a
B-comodule by the map

M 
N
�
�
�! B 
M 
B 
N

1
�
1
�! B 
B 
M 
N

r
1
�! B 
M 
N:
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3. K is a B-module by the map B 
 K �= B
"
�! K.

4. K is a B-comodule by the map K
�
�! B �= B 
 K.

Proof. We give a diagrammatic proof for 1. The associativity law is given by

B 
B 
M 
N B 
B 
B 
M 
N-1
�
1
1
B 
B 
M 
B 
N-1
1
�
1

B 
M 
N-1
�
�

B 
B 
B 
B 
M 
N B 
B 
B 
M 
B 
N-1
1
1
�
1
B 
B 
M 
N-1
1
�
�

B 
B 
B 
B 
M 
N B 
B 
M 
B 
B 
N-
1
1
�(B
B;M)
1

B 
M 
B 
N-1
�
1
�

B 
M 
N B 
B 
M 
N-�
1
1
B 
M 
B 
N-1
�
1

M 
N-�
�
?

r
1
1

?
�
1
1
1
1

?
�
1
1
1
1

?
�
1
1

?
1
�
1
1
1

?
1
�(B;B
M)
1
1

?
1
�
1

?
r
r
1
1

?
r
1
r
1

?
�
�

The unit law is the commutativity of

M 
N �= K 
M 
N B 
M 
N-�
1
1

K 
 K 
M 
N B 
B 
M 
N-�
�
1
1

M 
N �= K 
M 
 K 
N B 
M 
B 
N-�
1
�
1

?

�=

?
1
�
1

?
�
1
1

?
1
�
1

?
�
�

?

=

M 
N

1

XXXXXXXXXXXXXz

The corresponding properties for comodules follows from the dualized diagrams. The
module and comodule properties of K are easily checked.

De�nition 8.7.3. 1. Let (B;r; �;�; �) be a bialgebra. Let A be a left B-module
with structure map � : B 
A �! A. Let furthermore (A;rA; �A) be an algebra such
that rA and �A are homomorphisms of B-modules. Then (A;rA; �A; �) is called a
B-module algebra.

2. Let (B;r; �;�; �) be a bialgebra. Let C be a left B-module with structure map
� : B
C �! C. Let furthermore (C;�C; "C) be a coalgebra such that �C and "C are
homomorphisms of B- modules. Then (C;�C; "C; �) is called a B-module coalgebra.

3. Let (B;r; �;�; �) be a bialgebra. Let A be a left B-comodule with structure
map � : A �! B 
A. Let furthermore (A;rA; �A) be an algebra such that rA and
�A are homomorphisms of B-comodules. Then (A;rA; �A; �) is called a B-comodule
algebra.
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4. Let (B;r; �;�; �) be a bialgebra. Let C be a left B-comodule with structure
map � : C �! B 
 C. Let furthermore (C;�C; "C) be a coalgebra such that �C and
"C are homomorphisms of B-comodules. Then (C;�C; "C ; �) is called a B-comodule
coalgebra.

Remark 8.7.4. If (C;�C; "C) is a K-coalgebra and (C;�) is a B-module, then
(C;�C; "C; �) is a B-module coalgebra i� � is a homomorphism of K-coalgebras.

If (A;rA; �A) is a K-algebra and (A; �) is a B-comodule, then (A;rA; �A; �) is a
B-comodule algebra i� � is a homomorphism of K-algebras.

Similar statement for module algebras or comodule coalgebras do not hold.
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8. Representable Functors

De�nition 8.8.1. Let F : C �! Set be a covariant functor. A pair (A;x) with
A 2 C; x 2 F(A) is called a representing (generic, universal) object for F and F is
called a representable functor, if for each B 2 C and y 2 F(B) there exists a unique
f 2 MorC(A;B) such that F(f)(x) = y:

A

B
?

f

F(A)

F(B)
?

F(f)

3 x

3 y
?

?

Proposition 8.8.2. Let (A;x) and (B; y) be representing objects for F . Then
there exists a unique isomorphism f : A �! B such that F(f)(x) = y.

A

B
?

h

A
?

k

B
?

h

��	

?

1A

@@R

��	

?

1B

@@R

F(A)

F(B)
?

F(h)

F(A)
?

F(k)

F(B)
?

F(h)

@@R

?

1F(A)

��	

@@R

?

1F(B)

��	

x

y
?

?

?

?

x

y
?

?

Examples 8.8.3. 1. Let X 2 Set and let R be a ring. F : R-Mod �! Set,
F(M) := Map(X;M) is a covariant functor. A representing object for F is given by
(RX;x : X �! RX) with the property, that for all (M;y : X �! M) there exists a
unique f 2 HomR(RX;M) such that F(f)(x) = Map(X; f)(x) = fx = y

X RX-x

y

@
@
@
@@R
M:
?

f

2. Given modules MR and RN . De�ne F : Ab �! Set by F(A) := BilR(M;N ;A).
Then F is a covariant functor. A representing object for F is given by (M 
RN;
 :
M �N �!M 
RN) with the property that for all (A; f :M �N �! A) there exists
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a unique g 2 Hom(M 
R N;A) such that F(g)(
) = BilR(M;N ; g)(
) = g
 = f

M �N M 
R N-


f

@
@
@
@@R
A:
?

g

3. Given a K-module V . De�ne F : Alg �! Set by F(A) := Hom(V;A). Then F is a
covariant functor. A representing object for F is given by (T (V ); � : V �! T (V )) with
the property that for all (A; f : V �! A) the exists a unique g 2 MorAlg(T (V ); A)
such that F(g)(�) = Hom(V; g)(�) = g� = f

V T (V )-�

f

@
@
@
@@R
A:
?

g

4. Given a K-module V . De�ne F : cAlg �! Set by F(A) := Hom(V;A). Then F
is a covariant functor. A representing object for F is given by (S(V ); � : V �! S(V ))
with the property that for all (A; f : V �! A) the exists a unique g 2 MorAlg(S(V ); A)
such that F(g)(�) = Hom(V; g)(�) = g� = f

V S(V )-�

f

@
@
@
@@R
A:
?

g

Proposition 8.8.4. F has a representing object (A; a) if and only if there is a
natural isomorphism ' : F �= MorC(A;�) (with a = '(A)�1(1A)).

Proof. =) : The map

'(B) : F(B) 3 y 7! f 2 MorC(A;B) with F(f)(a) = y

is bijective with the inverse map

 (B) : MorC(A;B) 3 f 7! F(f)(a) 2 F(B):

In fact we have y 7! f 7! F(f)(a) = y and f 7! y := F(f)(a) 7! g : F(g)(a) = y =
F(f)(a). By uniqueness we get f = g. Hence all '(B) are bijective with inverse map
 (B). It is su�cient to show that  is a natural transformation.
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Given g : B �! C. Then the following diagram commutes

MorC(A;C) F(C)-
 (C)

MorC(A;B) F(B)- (B)

?

MorC(A;g)

?

F(g)

since  (C)MorC(A; g)(f) =  (C)(gf) = F(gf)(a) = F(g)F(f)(a) = F(g) (B)(f):
(: Let A be given. Let a := '(A)�1(1A). For y 2 F(B) we get y = '(B)�1(f) =

'(B)�1(f1A) = '(B)�1MorC(A; f)(1A) = F(f)'(A)�1(1A) = F(f)(a) for a uniquely
determined f 2 MorC(A;B).

Proposition 8.8.5. Given a representable functor FX : C �! Set for each X 2
D. Given a natural transformation Fg : FY �! FX for each g : X �! Y (contravari-
ant!) such that F depends functorially on X, i.e. F1X = 1FX ;Fhg = FgFh. Then
the representing objects (AX; aX) for FX depend functorially on X, i.e. for each
g : X �! Y there is a unique homomorphism Ag : AX �! AY (with FX(Ag)(aX) =
Fg(AY )(aY )) and the following identities hold A1X = 1AX ; Ahg = AhAg.

Proof. Choose a representing object (AX; aX) for FX for each X 2 C (by the
axiom of choice). Then there is a unique homomorphism Ag : AX �! AY with

FX(Ag)(aX) = Fg(AY )(aY ) 2 FX(AY );

for each g : X �! Y because Fg(AY ) : FY (AY ) �! FX(AY ) is given. We have
FX(A1)(aX) = F1(AX)(aX) = aX = FX(1)(aX) hence A1 = 1, and FX(Ahg)(aX) =
Fhg(AZ)(aZ) = Fg(AZ)Fh(AZ)(aZ) = Fg(AZ)FY (Ah)(aY ) = FX(Ah)Fg(AY )(aY ) =
FX(Ah)FX(Ag)(aX) = FX(AhAg)(aX) hence AhAg = Ahg for g : X �! Y and h :
Y �! Z in D.

Corollary 8.8.6. 1. Map(X;M) �= HomR(RX;M) is a natural transformation
in M (and in X!). In particular Set 3 X 7! RX 2 R-Mod is a functor.

2. BilR(M;N ;A) �= Hom(M 
R N;A) is a natural transformation in A (and in
(M;N) 2Mod-R�R-Mod). In particular Mod-R�R-Mod 3M;N 7!M
rN 2
Ab is a functor.

3. R-Mod-S � S-Mod-T 3 (M;N) 7!M 
S N 2 R-Mod-T is a functor.
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9. Adjoint Functors and the Yoneda Lemma

Theorem 8.9.1. (Yoneda Lemma) Let C be a category. Given a covariant functor
F : C �! Set and an object A 2 C. Then the map

� : Nat(MorC(A; -);F) 3 � 7! �(A)(1A) 2 F(A)

is bijective with the inverse map

��1 : F(A) 3 a 7! ha 2 Nat(MorC(A; -);F);

where ha(B)(f) = F(f)(a).

Proof. For � 2 Nat(MorC(A; -);F) we have a map �(A) : MorC(A;A) �! F(A),
hence � with �(�) := �(A)(1A) is a well de�ned map. For ��1 we have to check that
ha is a natural transformation. Given f : B �! C in C. Then the diagram

F(B) F(C)-
F(f)

MorC(A;B) MorC(A;C)-Mor(A;f)

?

ha(B)

?

ha(C)

is commutative. In fact if g 2 MorC(A;B) then ha(C)MorC(A; f)(g) = ha(C)(fg) =
F(fg)(a) = F(f)F(g)(a) = F(f)ha(B)(a). Thus ��1 is well de�ned.

Let ��1(a) = ha. Then ���1(a) = ha(A)(1A) = F(1A)(a) = a. Let �(�) =
�(A)(1A) = a. Then ��1�(�) = ha and ha(B)(f) = F(f)(a) = F(f)(�(A)(1A)) =
�(B)MorC(A; f)(1A) = �(B)(f), also ha = �.

Corollary 8.9.2. Given A;B 2 C. Then the following hold
1. MorC(A;B) 3 f 7! MorC(f; -) 2 Nat(MorC(B; -);MorC(A; -)) is a bijective

map.
2. With the bijective map from 1. the isomorphisms from MorC(A;B) correspond

to natural isomorphisms from Nat(MorC(B; -);MorC(A; -)).
3. For contravariant functors F : C �! Set we have Nat(MorC(-; A);F) �= F(A).
4. MorC(A;B) 3 f 7! MorC(-; f) 2 Nat(MorC(-; A);MorC(-; B)) is a bijective map

that de�nes a one-to-one correspondence between the isomorphisms from MorC(A;B)
and the natural isomorphisms from Nat(MorC(-; A);MorC(-; B)).

Proof. 1. follows from the Yoneda Lemma with F = MorC(A; -).
2. Observe that hf (C)(g) = MorC(A; g)(f) = gf = MorC(f;C)(g) hence hf =

MorC(f; -). Since we haveMorC(f; -)MorC(g; -) = MorC(gf; -) and MorC(f; -) = idMorC(A;-)
if and only if f = 1A we get the one-to-one correspondence between the isomorphisms
from 1.

3. and 4. follow by dualizing.
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Remark 8.9.3. The map � is a natural transformation in the arguments A and
F . More precisely: if f : A �! B and � : F �! G are given then the following
diagrams commute

Nat(MorC(A; -);G) G(A)-
�

Nat(MorC(A; -);F) F(A)-�

?

Nat(Mor(A;-);�)

?

�(A)

Nat(MorC(B; -);F) F(B):-
�

Nat(MorC(A; -);F) F(A)-�

?

Nat(Mor(f;-);F)

?

F(f)

This can be easily checked. Furthermore we have for  : MorC(A; -) �! F

�Nat(MorC(A; -); �)( ) = �(� ) = (� )(A)(1A) = �(A) (A)(1A) = �(A)�( )

and

�Nat(MorC(f; -);F)( ) = �( MorC(f; -)) = ( MorC(f; -))(B)(1B) =  (B)(f)
=  (B)MorC(A; f)(1A) = F(f) (A)(1A) = F(f)�( ):

Remark 8.9.4. By the previous corollary the representing object A is uniquely
determined up to isomorphism by the isomorphism class of the functor MorC(A; -).

Problem 8.9.15. 1. Determine explicitly all natural endomorphisms from G a to
G a (as de�ned in Lemma 2.3.5).

2. Determine all additive natural endomorphisms of G a .
3. Determine all natural transformations from G a to Gm (see Lemma 2.3.7).
4. Determine all natural automorphisms of Gm .

Proposition 8.9.5. Let G : C � D �! Set be a covariant bifunctor such that
the functor G(C; -) : D �! Set is representable for all C 2 C. Then there exists a
contravariant functor F : C �! D such that G �= MorD(F-; -) holds. Furthermore F
is uniquely determined by G up to isomorphism.

Proof. For each C 2 C choose an object F(C) 2 D and an isomorphism �C :
G(C; -) �= MorD(F(C); -). Given f : C �! C 0 in C then let F(f) : F(C 0) �! F(C)
be the uniquely determined morphism (by the Yoneda Lemma) in D such that the
diagram

G(C 0; -) MorD(F(C 0); -)-
�C0

G(C; -) MorD(F(C); -)-�C

?

G(f;-)

?

Mor(F(f);-)
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commutes. Because of the uniqueness F(f) and because of the functoriality of G
it is easy to see that F(fg) = F(g)F(f) and F(1C) = 1F(C) hold and that F is a
contravariant functor.

If F 0 : C �! D is given with G �= MorD(F 0-; -) then � : MorD(F -; -) �= MorD(F 0-; -).
Hence by the Yoneda Lemma  (C) : F(C) �= F 0(C) is an isomorphism for all C 2 C.
With these isomorphisms induced by � the diagram

MorD(F 0(C 0); -) MorD(F(C 0); -)-
Mor( (C0);-)

MorD(F 0(C); -) MorD(F(C); -)-Mor( (C);-)

?

Mor(F 0(f);-)

?

Mor(F(f);-)

commutes. Hence the diagram

F(C) F 0(C)-
 (C)

F(C 0) F 0(C 0)- (C0)

?

F 0(f)

?

F(f)

commutes. Thus  : F �! F 0 is a natural isomorphism.

De�nition 8.9.6. Let C and D be categories and F : C �! D and G : D �! C
be covariant functors. F is called leftadjoint to G and G rightadjoint to F if there is
a natural isomorphism of bifunctors � : MorD(F -; -) �! MorC(-;G-) from Cop �D to
Set.

Lemma 8.9.7. If F : C �! D is leftadjoint to G : D �! C then F is uniquely
determined by G up to isomorphism. Similarly G is uniquely determined by F up to
isomorphism.

Proof. Now we prove the �rst claim. Assume that also F 0 is leftadjoint to G
with �0 : MorD(F 0-; -) �! MorC(-;G-). Then we have a natural isomorphism �0�1� :
MorD(F -; -) �! MorD(F 0-; -). By Proposition 8.9.5 we get F �= F 0.

Lemma 8.9.8. A functor G : D �! C has a leftadjoint functor i� all functors
MorC(C;G-) are representable.

Proof. follows from 8.9.5.

Lemma 8.9.9. Let F : C �! D and G : D �! C be covariant functors. Then

Nat(IdC;GF) 3 � 7! G-�- 2 Nat(MorD(F-; -);MorC(-;G-))

is a bijective map with inverse map

Nat(MorD(F-; -);MorC(-;G-)) 3 � 7! �(-;F-)(1F-) 2 Nat(IdC;GF):
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Furthermore

Nat(FG; IdC) 3 	 7! 	-F- 2 Nat(MorC(-;G-);MorD(F-; -))

is a bijective map with inverse map

Nat(MorC(-;G-);MorD(F-; -)) 3  7!  (G-; -)(1G-) 2 Nat(FG; IdC):

Proof. The natural transformation G-�- is de�ned as follows. Given C 2 C,
D 2 D and f 2 MorD(F(C);D) then let (G-�-)(C;D)(f) := G(f)�(C) : C �!
GF(C) �! G(D). It is easy to check the properties of a natural transformation.

Given � then one obtains by composition of the two maps G(1F(C))�(C) =
GF(1C)�(C) = �(C). Given � one obtains

G(f)(�(C;F(C))(1F(C)) = MorC(C;G(f))�(C;F(C))(1F(C))
= �(C;D)MorD(F(C); f)(1F(C)) = �(C;D)(f):

The second part of the lemma is proved similarly.

Proposition 8.9.10. Let

� : MorD(F-; -) �! MorC(-;G-) and  : MorC(-;G-) �! MorD(F-; -)

be natural transformations with associated natural transformations (by Lemma 8.9.9)
� : IdC �! GF resp. 	 : FG �! IdD.

1) Then we have � = idMor(-;G-) if and only if (G
�G
�! GFG

G	
�! G) = idG.

2) We also have  � = idMor(F-;-) if and only if (F
F�
�! FGF

	F
�! F) = idF .

Proof. We get

G	(D)�G(D) = G	(D)�(G(D);FG(D))(1FG(D))
= MorC(G(D);G	(D))�(G(D);FG(D))(1FG(D))
= �(G(D);D)MorD(FG(D);	(D))(1FG(D))
= �(G(D);D)(	(D))
= �(G(D);D) (G(D);D)(1G(D))
= � (G(D);D)(1G(D)):

Similarly we get

� (C;D)(f) = �(C;D) (C;D)(f) = G(	(D)F(f))�(C)
= G	(D)GF(f)�(C) = G	(D)�G(D)f:

Corollary 8.9.11. Let F : C �! D and G : D �! C be functors. F is leftadjoint
to G if and only if there are natural transformations � : IdC �! GF and 	 : FG �! IdD
such that (G	)(�G) = idG and (	F)(F�) = idF .

De�nition 8.9.12. The natural transformations � : IdC �! GF and 	 : FG �!
IdD given in 8.9.11 are called unit and counit resp. for the adjoint functors F and G.
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Problem 8.9.16. 1. Let RMS be a bimodule. Show that the functor M 
S - :

SM �! RM is leftadjoint to HomR(M; -) : RM �! SM. Determine the associated
unit and counit.

b) Show that there is a natural isomorphismMap(A�B;C) �= Map(B;Map(A;C)).
Determine the associated unit and counit.

c) Show that there is a natural isomorphism K-Alg(KG;A) �= Gr(G;U(A)).
Determine the associated unit and counit.

d) Show that there is a natural isomorphism K-Alg(U(g); A) �= Lie-Alg(g; AL):
Determine the corresponding leftadjoint functor and the associated unit and counit.

De�nition 8.9.13. Let G : D �! C be a covariant functor. G generates a (co-
)universal problem a follows:

Given C 2 C. Find an object F(C) 2 D and a morphism � : C �! G(F(C)) in
C such that there is a unique morphism g : F(C) �! D in D for each object D 2 D
and for each morphism f : C �! G(D) in C such that the diagram

C G(F(C))-�

f

@
@
@
@@R
G(D)
?

G(g)

commutes.
A pair (F(C); �) that satis�es the above conditions is called a universal solution

of the (co-)universal problem de�ned by G and C.
Let F : C �! D be a covariant functor. F generates a universal problem a follows:
Given D 2 D. Find an object G(D) 2 C and a morphism � : F(G(D)) �! D in D

such that there is a unique morphism g : C �! G(D) in C for each object C 2 C and
for each morphism f : F(C) �! D in D such that the diagram

FG(D) D-�

f

@
@
@
@@R

F(C)

?

F(g)

commutes.
A pair (G(D); �) that satis�es the above conditions is called a universal solution

of the (co-)universal problem de�ned by F and D.

Proposition 8.9.14. Let F : C �! D be leftadjoint to G : D �! C. Then F(C)
and the unit � = �(C) : C �! GF(C) form a (co-)universal solution for the (co-
)universal problem de�ned by G and C.

Furthermore G(D) and the counit � = 	(D) : FG(D) �! D form a universal
solution for the universal problem de�ned by F and D.
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Proof. By Theorem 8.9.10 the morphisms � : MorD(F -; -) �! MorC(-;G-) and
 : MorC(-;G-) �!MorD(F -; -) are inverses of each other. They are de�ned with unit
and counit as �(C;D)(g) = G(g)�(C) resp.  (C;D)(f) = 	(D)F(f). Hence for
each f : C �! G(D) there is a unique g : F(C) �! D such that f = �(C;D)(g) =
G(g)�(C) = G(g)�.

The second statement follows analogously.

Remark 8.9.15. If G : D �! C and C 2 C are given then the (co-)universal
solution (F(C); � : C �! G(D)) can be considered as the best (co-)approximation of
the object C in C by an object D in D with the help of a functor G. The object
D 2 D turns out to be F(C).

If F : C �! D and D 2 D are given then the universal solution (G(D); � :
FG(D) �! D) can be considered as the best approximation of the object D in D by
an object C in C with the help of a functor F . The object C 2 C turns out to be
G(D).

Proposition 8.9.16. Given G : D �! C. Assume that for each C 2 C the uni-
versal problem de�ned by G and C is solvable. Then there is a leftadjoint functor
F : C �! D to G.

Given F : C �! D. Assume that for each D 2 D the universal problem de�ned by
F and D is solvable. Then there is a leftadjoint functor G : D �! C to F .

Proof. Assume that the (co-)universal problem de�ned by G and C is solved
by � : C �! F(C). Then the map MorC(C;G(D)) 3 f 7! g 2 MorD(F(C);D) with
G(g)� = f is bijective. The inverse map is given by g 7! G(g)�. This is a natural
transformation since the diagram

MorD(F(C);D0) MorC(C;G(D0))-
G(-)�

MorD(F(C);D) MorC(C;G(D))-G(-)�

?

MorD(F(C);h)

?

MorC(C;G(h))

commutes for each h 2 MorD(D;D0). In fact we have

MorC(C;G(h))(G(g)�) = G(h)G(g)� = G(hg)� = G(MorC(F(C); h)(g))�:

Hence for all C 2 C the functor MorC(C;G(-)) : D �! Set induced by the bifunctor
MorC(-;G(-)) : Cop �D �! Set is representable. By Theorem 8.9.5 there is a functor
F : C �! D such that MorC(-;G(-)) �= MorD(F(-); -).

The second statement follows analogously.

Remark 8.9.17. One can characterize the properties that G : D �! C (resp.
F : C �! D) must have in order to possess a left-(right-)adjoint functor. One of
the essential properties for this is that G preserves limits (hence direct products and
di�erence kernels).


