CHAPTER 8

Toolbox

1. Categories

Definition 8.1.1. Let C consist of

1. a class ObC whose elements A, B,C. ... € Ob( are called objects,
2. a family {Mor¢(A, B)|A, B € ObC} of mutually disjoint sets whose elements
fig,... € Morc(A, B) are called morphisms, and
3. a family {Mor¢(A, B) x Mor¢(B,C) 3 (f,9) — gf € Morc(A,C)|A,B,C €
Ob C} of maps called compositions.
C is called a category if the following axioms hold for C

1. Associative Law:

VA,B,C,D € ObC, f € More(A, B),g € More(B,C),h € More(C, D) :

hgf) = (hg)f;
2. Identity Law:
VYA € ObC 314 € Morc(A,A) VB,C € ObC, Vf € Morc¢(A,B), Vg €
Morc(C, A) :
lug=yg and fla=F.

Examples 8.1.2. 1. The category of sets Set.

2. The categories of R-modules R-Mod, k-vector spaces k-Vec or k-Mod, groups
Gr, abelian groups Ab, monoids Mon, commutative monoids cMon, rings Ri, fields
Fld, topological spaces Top.

Since modules are highly important for all what follows, we recall the definition
and some basic properties.

Definition and Remark 8.1.3. Let R be a ring (always associative with unit).
A left R-module pM is an (additively written) abelian group M together with an
operation R x M 3 (r,m) — rm € M such that

L. (rs)m = r(sm),

2. (r+s)m=rm+sm,

3. r(m+m') =rm+rm/,

4. Im=m
for all r,s € R, m,m' € M.

Each abelian group is a Z-module in a unique way.
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A homomorphism of left R-modules f : pM — rN is a group homomorphism
such that f(rm) =rf(m).

Analogously we define right R-modules Mg and their homomorphisms.

We denote by Hompg (.M, .N) the set of homomorphisms of left R-modules g M and
rN. Similarly Homg(M., N.) denotes the set of homomorphisms of right R-modules
Mp and Ng. Both sets are abelian groups by (f 4 ¢)(m) := f(m) + g(m).

For arbitrary categories we adopt many of the customary notations.

!
Notation 8.1.4. f € Mor¢(A, B) will be written as f: A — Bor A — B. A is
called the domain, B the range of f.

The composition of two morphisms f : A — B and g : B — (' is written as
gf:A—Corasgof:A—C.

Definition and Remark 8.1.5. A morphism f : A — B is called an isomor-
phism if there exists a morphism g : B — A in C such that f¢g = 1p and gf = 14.
The morphism ¢ is uniquely determined by f since ¢’ = ¢'fg = g. We write f~! :=g.

An object A is said to be isomorphicto an object B if there exists an isomorphism
f: A — B. If fis an isomorphism the sois f'. If f: A — Band g: B — C
are isomorphisms in C then so is gf : A — €. We have: (f~')~! = f and (¢f)~! =
f7tg7!. The relation of being isomorphic between objects is an equivalence relation.

Example 8.1.6. In the categories Set, R-Mod, k-Vec, Gr, Ab, Mon, cMon,
Ri, Fld the isomorphisms are exactly those morphisms which are bijective as set
maps.

In Top the set M = {a,b} with T, = {0, {a}, {b},{a,b}} and with T, = {0, M}
defines two different topological spaces. The map f = id : (M, %) — (M, %,) is
bijective and continuous. The inverse map, however, is not continuous, hence f is no
isomorphism (homeomorphism).

Many well known concepts can be defined for arbitrary categories. We are going
to apply some of them. Here are two examples.

Definition 8.1.7. 1. A morphism f : A — B is called a monomorphism if
VC € ObC, Yg,h € Morc(C, A) :

fog=fh = g=~h (fisleft cancellable).

2. A morphism f : A — B is called an epimorphism it VO € Ob(C, Vg,h €
Morc(B,C) :
gf =hf = g=~h (f isright cancellable).
Definition 8.1.8. Given A, B € C. An object A x B in C together with mor-

phisms pg : AXx B — Aand pg: A x B — B is called a (categorical) product of
A and B if for every object T' € C and every pair of morphisms f : T" — A and



1. CATEGORIES 3

g : T — B there exists a unique morphism (f,g) : T — A x B such that the diagram
T

f (f.9) 9

A~P—Ax B—E>B
commutes.
An object £ € C is called a final object if for every object T' € C there exists a
unique morphism e : ' — E (i.e. More (T, E') consists of exactly one element).
A category C which has a product for any two objects A and B and which has a
final object is called a category with finite products.

Remark 8.1.9. If the product (A x B, pa, pg) of two objects A and B in C exists
then it is unique up to isomorphism:.
If the final object F in C exists then it is unique up to isomorphism.

Problem 8.1.1. Let C be a category with finite products. Give a definition of a

product of a family Aq,..., A, (n > 0). Show that products of such families exist in
C.

Definition and Remark 8.1.10. Let C be a category. Then C° with the fol-
lowing data ObC := Ob(C, Mor¢er (A, B) := Mor¢(B, A), and fo,,g:= go f defines

a new category, the dual category to C.

Remark 8.1.11. Any notion expressed in categorical terms (with objects, mor-
phisms, and their composition) has a dual notion, i.e. the given notion in the dual
category.

Monomorphisms f in the dual category C° are epimorphisms in the original cat-
egory C and conversely. A final objects [ in the dual category C° is an wnitial object
in the original category C.

Definition 8.1.12. The coproduct of two objects in the category C is defined to
be a product of the objects in the dual category C.

Remark 8.1.13. Equivalent to the preceding definition is the following defini-
tion.

Given A, B € C. An object AIl B in C together with morphisms j4: A — AI B
and jp: B — ALl B — B is a (categorical) coproduct of A and B if for every object
T € C and every pair of morphisms f: A — T and ¢g: B — T there exists a unique
morphism [f,¢] : AIl B — T such that the diagram

A2 auB-~2—B
! [f.9] /9

T
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commutes.
The category C is said to have finite coproducts if C°? is a category with finite
products. In particular coproducts are unique up to isomorphism.
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2. Functors

Definition 8.2.1. Let C and D be categories. Let F consist of
1. amap ObC 3 A~ F(A) € ObD,
2. a family of maps

{Fap:Morc(A,B)> f— Fap(f) € Morp(F(A), F(B))|A, BeC}
[or {Fap:More(A,B)> fr— Fap(f) € Morp(F(B),F(A))|A, B € C}]

F is called a covariant [contravariant] functor if
1. fA,A(lA) = 1}'(A) for all A € ObC(,
2. Faclgf) = Feeolg)Fap(f) for all A, B,C € ObC.
[Facl(gf) = Fas(f)Fpclg) for all A, B,C € Ob(].
Notation: We write
A €C instead of AeObC
f€C instead of f € Mor¢(A,B)
F(f) instead of Fans(f).

Examples 8.2.2. 1. Id : Set — Set

2. Forget : R-Mod — Set

3. Forget : Ri — Ab

4. Forget : Ab — Gr

5. P : Set — Set, P(M) := power set of M. P(f)(X):= f~4X) for f: M —
N, X C N is a contravariant functor.

6. Q : Set — Set, Q(M) := power set of M. Q(f)(X) := f(X) for f: M —
N, X C M is a covariant functor.

Lemma 8.2.3. 1. Let X € C. Then
ObC 3 A More(X, A) € ObSet

Morc(A, B) 3 f = More(X, f) € Morget(More(X, A), More (X, B)),

with Morc (X, f) : Morc(X,A) 3 g — fg € More(X, B) or More(X, f)(g) =
fg is a covariant functor Morc (X, -).
2. Let X € C. Then

ObC 3 A~ Morc(A, X) € ObSet

Morc(A, B) 3 f+— More(f, X) € Morget(Morc(B, X), Mor¢(A, X))
with More(f, X) : More(B, X) 3 g — gf € Mor¢(A, X) or More(f, X)(g) = gf
is a contravariant functor More(-, X).
PrROOF. 1. More(X,14)(9) = lag = g = id(g), Morc(X, f)Morc (X, g)(h) =

fgh = Morc (X, fg)(h).
2. analogously. O
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Remark 8.2.4. The preceding lemma shows that Mor¢(-,-) is a functor in both
arguments. A functor in two arguments is called a bifunctor. We can regards the
bifunctor More(-,-) as a covariant functor

More(-,-) : C? x C — Set.

The use of the dual category removes the fact that the bifunctor More(-,-) is con-
travariant in the first variable.
Obviously the composition of two functors is again a functor and this composition
is associative. Furthermore for each category C there is an identity functor Id¢.
Functors of the form Mor¢(X,-) resp. Morc¢(-, X)) are called representable functors
(covariant resp. contravariant) and X is called the representing object (see also section

8.8).
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3. Natural Transformations

Definition 8.3.1. et F : C — D and G : C — D be two functors. A
natural transformation or a functorial morphism ¢ : F — G is a family of morphisms

{e(A): F(A) — G(A)|A € C} such that the diagram

p(A)

»(B)
commutes for all f: A — BinC,ie G(f)p(A)=o(B)F(f).

Lemma 8.3.2. Given covariant functors F = ldgey : Set — Set and G =
Morget(Morget(—, A), A) : Set — Set for a set A. Then ¢ : F — G with

e(B): B>br— (Morget(B,A)> f— f(b) € A) € G(B)
is a natural transformation.
PrOOF. Given g : B — (. Then the following diagram commutes
B
B L» Morget(Morset( B, A), A)

Morget(Morset(g, A), A)

C
C M» Morget(Morget(C, A), A)
since

P(C)F(9)(0)(f) = w(C)g(b)(f) = fg(b) = @(B)(b)(f9)
= [p(B)(b)Morset(g, A)](f) = [Morser(Morset(g, A), A)p(A)(0)](f)-

O

Lemma 8.3.3. Let f: A — B be a morphism inC. Then More(f,-) : More(B,-) —
Morc(A, -) given by Morc(f,C) : More(B,C) 3 g — gf € Morc(A,C) is a natural
transformation of covariant functors.

Let f: A — B be a morphism in C. Then Mor¢(-, f) : Mor¢(-, A) — More(-, B)
given by More(C, f) : More(C, A) 3 g — fg € Morc(C, B) is a natural transformation
of contravariant functors.
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Proor. Let h: C' — ("’ be a morphism in C. Then the diagrams

More(f,C)

Morc(B, C') Morc(A, C)

Morc¢(B,h) Morc(A,R)

Morc (B, C") Morc (A, C7)

Mor¢(f,C")

and

Morc(C, f)

Morc(C’, A) Morc(C’, B)

Morc(h,A) Mor¢(h,B)

Morc(C, A) Morc(C, B)

More¢(C,f)

commute. ]

Remark 8.3.4. The composition of two natural transformations is again a nat-
ural transformation. The identity idz(A) := Lr(a) is also a natural transformation.

Definition 8.3.5. A natural transformation ¢ : F — G is called a natural iso-
morphism if there exists a natural transformation ¢ : G — F such that ¢ o ¢ = idg
and ¥ o ¢ = idz. The natural transformation ¢ is uniquely determined by ¢. We
write 71 1= ).

A functor F is said to be isomorphic to a functor G if there exists a natural
isomorphism ¢ : F — G.

Problem 8.3.2. 1. Let F,G : C — D be functors. Show that a natural trans-
formation ¢ : F — G is a natural isomorphism if and only if p(A) is an isomorphism
for all objects A € C.

2. Let (A X B,pa,pg) be the product of A and B in C. Then there is a natural
isomorphism

Mor(-, A x B) = Mor¢(-, A) x More(-, B).

3. Let C be a category with finite products. For each object A in C show that
there exists a morphism Ay : A — A x A satisfying pyAy = 14 = poA4. Show that
this defines a natural transformation. What are the functors?

4. Let C be a category with finite products. Show that there is a bifunctor
- x -:C xC — C such that (- x -)(A, B) is the object of a product of A and B. We
denote elements in the image of this functor by A x B := (- x -)(A, B) and similarly
fxg.

5. With the notation of the preceding problem show that there is a natural
transformation a(A, B,C) : (A x B) x C 2 A x (B x ). Show that the diagram



3. NATURAL TRANSFORMATIONS 9

(coherence or constraints)

(A x B) x () x D —2AB0x

a(A,BxC,D)

(Ax(BxC))xD Ax((BxC)x D)

a(AxB,C,D) 1xa(B,C,D)

a(A,B,CxD)

(Ax B) x (C x D)

commutes.

A X (B x (Cx D))

6. With the notation of the preceding problem show that there are a natural
transformations A(A) : £ x A — A and p(A) : A X F — A such that the diagram
(coherence or constraints)

a(A,E,B)

(Ax E)x B A X (F x B)
p(A)x1 %(B)
AxB

Definition 8.3.6. Let C and D be categories. A covariant functor F : C — D is
called an equivalence of categories if there exists a covariant functor G : D — C and
natural isomorphisms ¢ : GF = Id¢ and ¢ : FG = Idp.

A contravariant functor F : C — D is called a duality of categories if there exists
a contravariant functor G : D — C and natural isomorphisms ¢ : GF = Ide and
Y FG = 1dp.

A category C is said to be equivalent to a category D if there exists an equivalence
F :C — D. A category C is said to be dual to a category D if there exists a duality
F:C—D.

Problem 8.3.3. 1. Show that the dual category C° is dual to the category C.

2. Let D be a category dual to the category C. Show that D is equivalent to the
dual category CP.

3. Let F :C — D be an equivalence with respect to G : D — C, ¢ : GF = Idg,
and ¥ : FG = Idp. Show that G : D — C is an equivalence. Show that G is uniquely
determined by F up to a natural isomorphism.
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4. Tensor Products

Definition and Remark 8.4.1. Let Mg and r/N be R-modules, and let A be
an abelian group. A map f: M x N — A is called R-bilinear if

L f(m+m'sn) = f(mon) + f(m'sn).

2 flmon+ ) = fm,m) 4 F(m, ).

3. f(mr,n) = flm,rn)
forallr € R, m,m’ € M, n,n’ € N.

Let Bilg(M, N; A) denote the set of all R-bilinear maps f: M x N — A.

Bilg(M, N; A) is an abelian group with (f + g)(m,n) := f(m,n) + g(m,n).

Definition 8.4.2. Let Mg and g N be R-modules. An abelian group M @r N
together with an R-bilinear map

@:MxN3(mn)—meneMepN

is called a tensor product of M and N over R if for each abelian group A and for
each R-bilinear map f : M x N — A there exists a unique group homomorphism
g: M ®@r N — A such that the diagram

MxNEZMonN

f g

A

commutes. The elements of M @gr N are called tensors, the elements of the form
m @ n are called decomposable tensors.

Warning: If you want to define a homomorphism f : M @r N — A with a tensor
product as domain you must define it by giving an R-bilinear map defined on M x N.

Lemma 8.4.3. A tensor product (M @r N,®) defined by Mg and rN is unique
up to a unique isomorphism.
PROOF. Let (M @r N,®) and (M g N,K) be tensor products. Then
M x N

T e

M®3N+M&R M®3N+M&R
implies k = A~ O

Because of this fact we will henceforth talk about the tensor product of M and N
over R.

Proposition 8.4.4. (Rules of computation in a tensor product) Let (M @r N, ®@)
be the tensor product. Then we have for allr € R, m,m’ € M, n,n’ € N
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M@rN={>,m@n; | mi € M,n;, € N},

(m+m)@n=men+m @n,

m@n+n)=men+men,

mr @n =m @rn (observe in particular, that @ : M x N — M @ N is not
injective in general),

5.4 f: M x N — A is an R-bilinear map and g : M @p N — A is the induced

homomorphism, then

Ll

g(m @n) = f(m,n).
PrROOF. 1. Let B := (m @n) € M @r N denote the subgroup of M @r N
generated by the decomposable tensors m@n. Let j: B — M @prN be the embedding
homomorphism. We get an induced map @' : M x N — B. In the following diagram

!
MxN-2B.maxN

@' \Jddg P|Jp

B—LM@pN
we have idgo®’ = @', pwith pojo® =po® = @ exists since @ is R-bilinear.
Because of jpo® = jo®@ = @ = idyg,no® we get jp = idyg,n, hence the
embedding j is surjective and thus the identity.
2. m+mHean=am+m/ ,n)=a(m,n)+e(m,n)=men+m @n.
3. and 4. analogously.
5. is precisely the definition of the induced homomorphism. O

Remark 8.4.5. To construct tensor products, we use the notion of a free module.
Let X be a set and R be a ring. An R-module RX together with a map ¢ : X —
RX is called a free R-module generated by X, if for every R-module M and for every
map f: X — M there exists a unique homomorphism of R-modules g : RX — M
such that the diagram ,

X

RX
! g

M

commutes.
Free R-modules exist and can be constructed as RX := {a: X — R| for almost
all € X : a(x) =0}.

Proposition 8.4.6. Given R-modules Mgr and rN. Then there exists a tensor
product (M @p N, ®).

PROOF. Define M @ N := Z{M x N}/U where Z{M x N} is a free Z-module
over M x N (the free abelian group) and U is generated by
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tm+m/ n)—m,n) —(m',n)
t(m,m +n')—(m,n) —(m,n’)
t(mr,n) — t(m,rn)
for allr € R, mym’ € M, n,n" € N. Consider
MxN—~7Z{Mx N} Y2~ M@pr N=Z{M x N}/U

P g

A

Let ¢ be given. Then there is a unique p € Hom(Z{M x N}, A) such that pc = .
Since ¢ is R-bilinear we get p(c(m + m/,n) — c(m,n) — «(m'n)) = Y(m + m',n) —
p(m,n) —(m/,n) = 0 and similarly p(¢(m,n + n') — ¢(m,n) — «(m,n’)) = 0 and
p(e(mr,n) —«(m,rn)) = 0. So we get p(U) = 0. This implies that there is a unique
g € Hom(M @gr N, A) such that gv = p (homomorphism theorem). Let @ := v 0.
Then ®@ is bilinear since (m +m’) @n = vom + m',n) = v(eim + m',n)) =
V(L(m + mlv n) - L(mv n) - L(mlv n) + L(mv n) + L(mlv n)) = V(L(mv n) + L(mlv n)) =
voum,n)+rvocm’,n)=m@n+m’'@n. The other two properties are obtained in
an analogous way.

We have to show that (M @g N, @) is a tensor product. The above diagram shows
that for each abelian group A and for each R-bilinear map ¢ : M x N — A there
is a g € Hom(M @gr N, A) such that g o @ = ¢». Given h € Hom(M ®@gr N, A) with
ho®=1. Then hov ot =1. This implieshov =p = go v hence g = h. O

Proposition and Definition 8.4.7. Given two homomorphisms
f € Homp(M.,M'".) and g € Hom g(.N,.N').
Then there is a unique homomorphism
f@rg € Hom(M @r N,M' @p N')
such that f @p g(m @ n) = f(m) @ g(n), i.e. the following diagram commutes

Mx N MonN

fxg f®ryg
M/XN/@M/(@RN/
PROOF. @ o (f X g) is bilinear. O

Notation 8.4.8. We often write f @g N := f @r Iy and M ®gr g := 1y @r g.
We have the following rule of computation:

fOrg=(f@rN')o(M@rg)=(M @rg)o(f@rN)
since f x g=(f X N')o(M xg)= (M xg)o(fxN).
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Proposition 8.4.9. The following define covariant functors
1. -® N : Mod-R — Ab;

2. M ® -: R-Mod — Ab;

3. -®-:Mod-R x R-Mod — Ab.

PROOF. (f % g)o (/' x &) = [1' % g implies (f ©rg)o (/' Ong') = [ * gg"
Furthermore 15 X 1y = 1ysxny implies 1y @p 1y = Lyg - O

Definition 8.4.10. Let R, S be rings and let M be a left R-module and a right S-
module. M is called an R-S-bimodule if (rm)s = r(ms). We define Homp-s(.M.,.N.)
:= Homp(.M,.N) N Homg(M., N.).

Remark 8.4.11. Let Mg be a right S-module and let R x M — M a map. M
is an R-S-bimodule if and only if

L.Yre R: (M >mw~rmée& M) e Homg(M., M.),
2.Vr,rm € Rom e M (r+0r"Ym =rm+r'm,
3.Vr,h € Rome M = (rr')ym = r(r'm),

1. VYmeM:1m=m.

Lemma 8.4.12. Let Mg and s Ny be bimodules. Then r(M@sN )1 is a bimodule
by r(m @n):=rm@n and (m @n)t :=m @ nt.

PROOF. Obviously we have 2.-4. Furthermore (r @gid)(m @ n) = rm @ n =
r(m @ n) is a homomorphism. O

Corollary 8.4.13. Given bimodules pMg, s Ny, pM§, s Ny and homomorphisms
f € Homp-s(.M.,.M'".) and g € Homg-r(.N.,.N".). Then we have f @s g € Homp-r
(M @s N.,.M" @25 N'.).

PROOF. f ®sg(rm @nt) = f(rm) @ g(nt) = r(f @s g)(m @ n)t. O

Remark 8.4.14. Every module M over a commutative ring K and in particular
every vector space over a field K is a K-K-bimodule by Am = mA. So there is an
embedding functor ¢ : K-Mod — K-Mod-K. Observe that there are K-K-bimodules
that do not satisfy Am = mA. Take for example an automorphism o : K — K and a
left K-module M and define mA := a(A)m. Then M is such a K-K-bimodule.

The tensor product M @r N of two K-K-bimodules M and N is again a K-K-
bimodule. If we have, however, K-K-bimodules M and N arising from K-modules as
above, i.e. satisfying Am = mA, then their tensor product M ®@g N also satisfies this
equation, so M @g N comes from a module in K-Mod. Indeed we have Am ® n =
mA®@n=m® An =m ®nA. Thus the following diagram of functors commutes:

K-Mod x K-Mod “2+ K-Mod-K x K-Mod-K

QK QK

K-Mod

K-Mod-K.

L
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So we can consider K-Mod as a (proper) subcategory of K-Mod-K. The tensor
product over K can be restricted to K-Mod.
We write the tensor product of two vector spaces M and N as M @ N.

Theorem 8.4.15. In the category K-Mod there are natural isomorphisms

1. Associativity Law: a: (M @ N)@ P=Z M @ (N @ P).

2. Law of the Left Unit: A\: K@ M = M.

3. Law of the Right Unit: p: M @ K= M.

4. Symmetry Law: 7: M @ N =2 N M.

5. Existence of Inner Hom-Functors: Hom(P @ M, N) = Hom(P, Hom(M, N)).

PrOOF. We only describe the corresponding homomorphisms.

1. Use (8.4.45.) to define a((m @ n) @ p) := m @ (n @ p).

2. Define A\ : K@ M — M by A(r @ m) := rm.

3. Define p: M @ K — M by p(m @ r) := mr.

4. Define 7(m @ n) :=n @ m.

5. For f : P @ M — N define ¢(f) : P — Hom(M,N) by &(f)(p)(m) :=
f(p@m). O

Usually one identifies threefold tensor products along the map « so that we use
MaN@P=(MaN)@P=M®(N® P). For the notion of a monoidal or tensor

category, however, this natural transformation is of central importance.

Problem 8.4.4. 1. Give an explicit proof f M @ (X &Y)ZM X EMaY.
2. Show that for every finite dimensional vector space V' there is a unique element

Yo vi@vr € V@ V* such that the following holds
YvoeV: Zvi*(v)vi = v.
(Hint: Use an isomorphism End(V) = V @ V* and dual bases {v;} of V and {v/} of
V=)
3. Show that the following diagrams (coherence diagrams or constraints) commute

in K-Mod:
(AoB)eC)® D A (B C)® D)
a(A®B,C,D) 1®a(B,C,D)

(A®@B)®(C® D)

a(A,B,C)@1 a(A,BeC,D)

(A (BeC)@ D

a(A,B,CQD)

A®(B®(C®D))

a(AK,B)

A® (K@ B)

p(A)@1 M(B)

A@B



4. TENSOR PRODUCTS 15

4. Write 7(A,B): A®@ B— B® Afor 7(A,B): a ® b — b® a. Show that 7 is a

natural transformation (between which functors?). Show that

(AeB)oc X2 (BogA)eC—2 ~Bo (A ()
o 1®7(A,C)
AoBo0) 220 (Boc)oA—2 ~Bo(C o A)

commutes for all A, B,C' € K-Mod and that
T(B,A)T(A, B) = idA®B

for all A, B in K-Mod.
5. Find an example of M, N € K-Mod-K such that M @x N % N @x M.
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5. Algebras

Let K be a commutative ring. In most of our applications K will be a field. Tensor
products of K-modules will be simply written as M @ N := M @k N. Every such
tensor product is again a K-bimodule since each K-module M resp. N is a K-bimodule

(see 8.4.14).

Definition 8.5.1. A K-algebra is a vector space A together with a multiplication
V:A® A — A that is associative:

A0A0A—YY L 404
V&id v
A® A - A

and a unit n : K — A:

KoAXAY Ao K —297 .

A® A

nQid id \%

A®A s A,

A K-algebra A is commutative if the following diagram commutes

AQA—T>AQ A

\/

Let A and B be K-algebras. A homomorphism of algebras f : A — B is a K-linear

map such that the following diagrams commute:

AoALY. BoB

VA VB
A 7 B
and
K
na nB
f
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Remark 8.5.2. Every K-algebra A is a ring with the multiplication

® v
AxA—-ARQ A — A.

The unit element is n(1), where 1 is the unit element of K.

Obviously the composition of two homomorphisms of algebras is again a homo-
morphism of algebras. Furthermore the identity map is a homomorphism of alge-
bras. Hence the K-algebras form a category K-Alg. The category of commutative
K-algebras will be denoted by K-cAlg.

Problem 8.5.5. 1. Show that Endg (V) is a K-algebra.
2. Show that (A,V : A® A — An: K — A)is a Kalgebra if and only if

v
A with the multiplication A x A =y @ A — A and the unit n(1) is a ring and
n: K — Cent(A) is a ring homomorphism into the center of A.
3. Let V be a K-module. Show that D(V) := K x V with the multiplication

(ri,v1)(re,v2) := (r1re, rivz + rov1) is a commutative K-algebra.

Lemma 8.5.3. Let A and B be algebras. Then A @ B is an algebra with the
multiplication (a1 @ by)(az @ by) 1= ajaz @ bybs.

PRrROOF. Certainly the algebra properties can easily be checked by a simple cal-
culation with elements. We prefer for later applications a diagrammatic proof.

Let V4: A® A — Aand Vg : B® B — B denote the multiplications of the
two algebras. Then the new multiplication is Vg := (V4 @ Vp)(1la @ 7 @ 1) :
AR B@A®B — A® B where 7 : B A — A® B is the symmetry map from

Theorem 8.4.15. Now the following diagrams commute

1RTR1° Veve12
—_— > —_

ARB@A®@B®A®DB ARQAQB®B®A®DB

ISM

12@7®1 A X A X B & A X B & B 1®7BgB,AR1 197®1

1®M N@)ﬁ

A@B@A®A@B®B A9 ARA BB BY Y Ao A0 Bo B

1878, A9A®1

AR B®A®B

1RVeV 10VR1IV vev

A9B®A®B L AR A®B®B vev
In the left upper rectangle of the diagram the quadrangle commutes by the properties
of the tensor product and the two triangles commute by inner properties of 7. The
right upper and left lower rectangles commute since 7 is a natural transformation and
the right lower rectangle commutes by the associativity of the algebras A and B.

A@B
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Furthermore we use the homomorphism n = 45 : K - K@ K — A® B in the
following commutative diagram

Ao BoKoK Y Ao Bo Ao B

KoAoB=2ARB=2A® BoK

10T®1 10T®1

Y

AOK@OBOKZz2A®AQB®B

171
KoK@A@B—K@AQK® B 187167

n@n®12 n®1Q71 vev

vev

A9B2AOBY Y AoA® B9 B A® B.

O

Definition 8.5.4. Let K be a commutative ring. Let V be a K-module. A K-
algebra T'(V) together with a homomorphism of K-modules ¢ : V. — T(V) is called
a tensor algebra over V if for each K-algebra A and for each homomorphism of K-
modules [ : V' — A there exists a unique homomorphism of K-algebras g : T(V) — A
such that the diagram

vV —L—T(V)
f g

A
commutes.
Note: If you want to define a homomorphism g : T'(V) — A with a tensor algebra
as domain you should define it by giving a homomorphism of K-modules defined on

V.

Lemma 8.5.5. A tensor algebra (T'(V),.) defined by V' is unique up to a unique
isomorphism.

PROOF. Let (T'(V),¢) and (T'(V'),!) be tensor algebras over V. Then

implies k = A~ O



5. ALGEBRAS 19

Proposition 8.5.6. (Rules of computation in a tensor algebra) Let (T'(V'),¢) be
the tensor algebra over V.. Then we have
L.o: V. — T(V) is injective (so we may identify the elements «(v) and v for all
veV),
2.T(V)={>, 50 -v. - i li = (i1, ... ,1,) multiindex of length n},
3. f:V — Ais a homomorphism of K-modules, A is a K-algebra, and g :
T(V) — A is the induced homomorphism of K-algebras, then

9> v o) = f(0) e flus).

PRrROOF. 1. Use the embedding homomorphism j : V. — D(V'), where D(V) is
defined as in 8.5.3. to construct g : T(V) — D(V') such that g o« = j. Since j is
injective so 1is ¢.

2. Let B:={}] ;i -...-v,|i = (i1,... ,i,) multiindex of length n}. Obviously
B is the subalgebra of T (V) generated by the elements of V. Let j : B — T(V) be
the embedding homomorphism. Then ¢ : V' — T(V) factors through a linear map
/' V — B. In the following diagram

B T(V)
we have idg ot/ = (/. p with pojot = por =/ exists since ¢/ is a homomorphism
of K-modules. Because of jpot = jo = =idpyy ot we get jp = idy(v), hence the
embedding j is surjective and thus j is the identity.
3. is precisely the definition of the induced homomorphism. O

Proposition 8.5.7. Given a K-module V. Then there exists a tensor algebra
(T(V),0).

PROOF. Define T"(V) :=V @...@V = V" to be the n-fold tensor product of
V. Define T°(V) := K and T*(V) := V. We define

TV)=PT(V)=KaeVae(VaV)a(VaVeV)s....
i>0
The components T"(V') of T'(V) are called homogeneous components.

The canonical isomorphisms T™(V) @ T™(V) = T™*"(V) taken as multiplication
V:T"V)ye T (V) — T (V)
V:T(V)eT(V)—T(V)
and the embedding  : K = T°(V) — T(V) induce the structure of a K-algebra on

T(V). Furthermore we have the embedding ¢ : V' — TY(V) C T(V).



20 8. TOOLBOX

We have to show that (T'(V),¢) is a tensor algebra. Let f : V — A be a ho-
momorphism of K-modules. Each element in T'(V) is a sum of decomposable ten-
sors v1 @ ... @ v,. Define g : T(V) — A by g(vy @ ... @ v,) := fvy)... f(vn)
(and (g : T°%(V) — A) = (n : K — A)). By induction one sees that g is a
homomorphism of algebras. Since (¢ : THV) — A) = (f : V — A) we get
gocv=f. If h: T(V) — Ais a homomorphism of algebras with h ot = f we
get h(vy @ ... @ v,) = h(vy)...h(v,) = f(v1)... f(v,) hence h = g. O

Proposition 8.5.8. The construction of tensor algebras T(V') defines a functor
T : K-Mod — K-Alg that is left adjoint to the underlying functor U : K-Alg —
K-Mod.

ProOOF. Follows from the universal property and 8.9.16. O

Problem 8.5.6. 1. Let X be a set and V := KX be the free K-module over
X. Show that X — V — T(V) defines a free algebra over X, ie. for every K-
algebra A and every map f : X — A there is a unique homomorphism of K-algebras
g:T(V) — A such that the diagram

X T(V)
f g

A
commutes.

We write K(X) := T(KX) and call it the polynomial ring over K in the non-
commuting variables X.

2. Let T(V)and ¢ : V. — T(V) be a tensor algebra. Regard V as a subset of
T(V) by ¢. Show that there is a unique homomorphism A : T(V) — T(V) @ T(V)
with A(v)=v@ 14+ 1®@v forall ve V.

3. Show that ( A@ DA =1 A)A:T(V)=>TV)a T(V)a T(V).

4. Show that there is a unique homomorphism of algebras ¢ : T(V) — K with
e(v)=0forall ve V.

5. Show that (¢ @ 1)A = (1 ® e)A = idy(vy.

6. Show that there is a unique homomorphism of algebras S : T(V) — T(V)°
with S(v) = —v. (T(V) is the opposite algebra of T'(V') with multiplication s*t := ts
for all s,t € T(V) =T(V)® and where st denotes the product in T'(V).)

7. Show that the diagrams

T(V)—=+K-—"+T(V)

commute.
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Definition 8.5.9. Let K be a commutative ring. Let V' be a K-module. A K-
algebra S(V') together with a homomorphism of K-modules ¢ : V' — S(V'), such that
t(v) - (V) = (V') - o(v) for all v,0" € V, is called a symmetric algebra over V if for
each K-algebra A and for each homomorphism of K-modules f : V — A, such that
fv)- f(v) = f(v') - f(v) for all v,v" € V| there exists a unique homomorphism of
K-algebras ¢ : S(V) — A such that the diagram

VLt S(V)
f g

A

commutes.
Note: If you want to define a homomorphism ¢ : S(V) — A with a symmetric
algebra as domain you should define it by giving a homomorphism of K-modules

f:V — Asatisfying f(v)- f(v") = f(v') - f(v) for all v,0" € V.

Lemma 8.5.10. A symmetric algebra (S(V),¢) defined by V' is unique up to a
unique isomorphism.

PROOF. Let (S(V),¢) and (S'(V), L’) be symmetric algebras over V. Then

implies k = A~ O

Proposition 8.5.11. (Rules of computation in a symmetric algebra) Let (S(V),¢)
be the symmetric algebra over V.. Then we have

¢ Vo— S(V) is injective (we will identify the elements «(v) and v for all
veV),
S(V)y=1{> ;v v i = (i1,... ,i,) multiindex of length n},

3.4 f V. — A is a homomorphism of K-modules satisfying f(v) - f(v') =
f")-fv) forallv,v" € V, A is a K-algebra, and g : S(V) — A is the induced

homomorphism K-algebras, then

g(Zvil-...-vzn Zf Vi) e flu).

.0

PRrROOF. 1. Use the embedding homomorphism j : V. — D(V'), where D(V) is
the commutative algebra defined in 8.5.3. to construct g : S(V) — D(V) such that
g o= j. Since j is injective so is ¢.
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2. Let B:={}] ;vi,-...-v3,|i = (i1,... ,in) multiindex of length n}. Obviously
B is the subalgebra of S(V) generated by the elements of V. Let j : B — S(V) be
the embedding homomorphism. Then ¢ : V' — S(V) factors through a linear map
/' V — B. In the following diagram

B——5(v)
we have idg ot/ = ¢/, p with pojot = por = exists since /' is a homomorphism
of K-modules satisfying /(v) - /(v) = J/(v) - /(v) for all v,v" € V. Because of
Jpot=jou =1 =idgy)or we get jp = idgy), hence the embedding j is surjective
and thus the identity.
3. is precisely the definition of the induced homomorphism. O

Proposition 8.5.12. Let V be a K-module. The symmetric algebra (S(V),¢) is
commutative and satisfies the following universal property:

for each commutative K-algebra A and for each homomorphism of K-modules
[V — A there exists a unique homomorphism of K-algebras g : S(V) — A such

that the diagram
V——5(V)

f g

A

commutes.

PrOOF. Commutativity follows from the commutativity of the generators: vv’ =

v'v which carries over to the elements of the form 7 ‘v -...-v;,. The universal
property follows since the defining condition f(v)- f(v') = f(v')- f(v) for all v, 0" € V
is automatically satisfied. O

Proposition 8.5.13. Given a K-module V. Then there exists a symmetric alge-
bra (S(V),¢).

PROOF. Define S(V) := T(V)/I where [ = (vv' — v'v|v,v" € V) is the two-sided
ideal generated by the elements vo’ — v'v. Let ¢ be the canonical map V — T(V) —
S(V). Then the universal property is easily verified by the homomorphism theorem
for algebras. O

Proposition 8.5.14. The construction of symmetric algebras S(V') defines a
functor S : K-Mod — K-cAlg that is left adjoint to the underlying functor U :
K-cAlg — K-Mod.
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ProOOF. Follows from the universal property and 8.9.16. U

Problem 8.5.7. Let X be a set and V := KX be the free K-module over X.
Show that X — V — S(V) defines a free commutative algebra over X, i.e. for every
commutative K-algebra A and every map f : X — A there is a unique homomorphism

of K-algebras ¢ : S(V) — A such that the diagram
X ——5(V)

f g

A
commutes.

The algebra K[X] := S(KX) is called the polynomial ring over K in the (com-
muting) variables X.

2. Let S(V)and ¢ : V — S(V) be a symmetric algebra. Show that there is a
unique homomorphism A : S(V) — S(V) @ S(V) with A(v) =v®@ 14+ 1 @ v for all
veV.

3. Show that (A@ DA =(1@A)A: S(V) —= S(V)@ S(V)a S(V).

4. Show that there is a unique homomorphism of algebras ¢ : S(V) — K with
e(v)=0forall ve V.

5. Show that (¢ @ 1)A = (1 ® e)A = idg(vy.

6. Show that there is a unique homomorphism of algebras S : S(V) — S(V) with
S(v) = —v.

7. Show that the diagrams

S(V)® S(V) 23 S(V) @ S(V)

commute.

Definition 8.5.15. Let K be a commutative ring. Let V be a K-module. A
K-algebra F(V') together with a homomorphism of K-modules ¢ : V' — E(V'), such
that «(v)? =0 for all v € V| is called an eaterior algebra or Grassmann algebra over
V if for each K-algebra A and for each homomorphism of K-modules f : V. — A,
such that f(v)?* =0 for all v € V, there exists a unique homomorphism of K-algebras
g: E(V) — A such that the diagram

vV —L—~EV)
f g

A
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commutes.

The multiplication in £(V') is usually denoted by u A v.

Note: If you want to define a homomorphism ¢ : E(V) — A with an exterior
algebra as domain you should define it by giving a homomorphism of K-modules

defined on V satisfying f(v)* =0 for all v,v" € V.

Problem 8.5.8. 1. Let f: V. — A be a linear map satisfying f(v)* = 0 for all
v € V. Then f(v)f(v') = —f(v")f(v) for all v,0" € V.

2. Let 2 be invertible in K (e.g. K a field of characteristic # 2). Let f:V — A
be a linear map satisfying f(v)f(v') = —f(v')f(v) for all v,v" € V. Then f(v)? =0
for all v € V.

Lemma 8.5.16. An exterior algebra (E(V'),¢) defined by V is unique up to a
unique isomorphism.

PROOF. Let (E(V),¢) and (E'(V),:) be exterior algebras over V. Then

A

implies k = A~ O

Proposition 8.5.17. (Rules of computation in an exterior algebra) Let (FE(V),¢)
be the exterior algebra over V. Then we have

¢ Vo— E(V) is injective (we will identify the elements «(v) and v for all
veV),
V)={>,:va A A v i = (i1,... ,i,) multiindex of length n},
3.4 f V. — A is a homomorphism of K-modules satisfying f(v) - f(v') =
—f(') - f(v) for adll v,v" € V, A is a K-algebra, and g : E(V) — A is the

induced homomorphism K-algebras, then

g(z vi, N AY) Z Foi) oo flo).

.0

PRrROOF. 1. Use the embedding homomorphism j : V. — D(V'), where D(V) is
the algebra defined in 8.5.3. to construct g : E(V) — D(V) such that got = j. Since
7 1s injective so is ¢.

2. Let B:={}_ ;vi,A...Avi,li = (i1,... ,i,) multiindex of length n}. Obviously
B is the subalgebra of E (V') generated by the elements of V. Let j: B — E(V) be
the embedding homomorphism. Then ¢ : V. — FE(V) factors through a linear map
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/' V — B. In the following diagram

/ N\Jdp polap

B~ B(V)
we have idg ot/ = ¢/, p with pojot = por = exists since /' is a homomorphism
of K-modules satisfying /(v) - /(v") = —=/(v) - /(v) for all v,v" € V. Because of

Jpot=joi =1 =idgwy)or we get jp = idg(v), hence the embedding j is surjective
and thus j is the identity.
3. is precisely the definition of the induced homomorphism. O

Proposition 8.5.18. Given a K-module V.. Then there exists an exterior algebra
(E(V),1).

PROOF. Define E(V) := T(V)/I where [ = (v*|v € V) is the two-sided ideal
generated by the elements v?. Let ¢ be the canonical map V — T(V) — E(V).

Then the universal property is easily verified by the homomorphism theorem for
algebras. O

Problem 8.5.9. 1. Let V be a finite dimensional vector space of dimension n.
Show that F(V') is finite dimensional of dimension 2". (Hint: The homogeneous

components £*(V) have dimension ( 7;

2. Show that the symmetric group S, operates (from the left) on T"(V') by
o(v1 @...0v,) = Vom1(1) @ o @ Uy with o € S,, and v; € V.

3. A tensor a € T"(V) is called a symmetric tensor if o(a) = a for all o € S,,.
Let g”(V) be the subspace of symmetric tensors in T"(V).

a) Show that S: T™(V) 2 aw ) . o(a) € T"(V) is a linear map.

b) Show that S has its image in $™(V)).

c¢) Show that Im(S) = S”(V) if n! is invertible in K.

d) Show that S”(V) — T™(V) % S*(V) is an isomorphism if n! is invertible in
Kand v : T"(V) — S™(V) is the restriction of v : T(V) — S(V), the symmetric
algebra.

4. A tensor a € T"(V) is called an antisymmetric tensor if o(a) = e(o)a for all
o € S, where ¢(0) is the sign of the permutation o. Let E”(V) be the subspace of
antisymmetric tensors in 7™ (V).

a) Show that £ : T"(V) > aw Y g c(0)o(a) € T™(V) is a linear map.

b) Show that € has its image in E”(V)

¢) Show that Im(€) = E”(V) if n! is invertible in K.

d) Show that E”(V) — T™(V) 2 E™(V) is an isomorphism if n! is invertible in K
and v : T*(V) — E"(V) is the restriction of v : T(V) — E(V), the exterior algebra.
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Definition 8.5.19. Let A be a K-algebra. A left A-module is a K-module M
together with a homomorphism g : A @ M — M, such that the diagrams
id@u

AR AQ M A M
vid “
A M m M
and y
M=ZKoM-22 A M
id I
M
commute.

Let 4M and 4N be A-modules and let f : M — N be a K-linear map. The map

f is called a homomorphism of modules if the diagram

Ao M ru M

1ef !

AQN N

AN
commutes.
The left A-modules and their homomorphisms form the category 4 M of A-modules.

Problem 8.5.10. Show that an abelian group M is a left module over the ring
A if and only if M is a K-module and an A-module in the sense of Definition 8.5.19.
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6. Coalgebras

Definition 8.6.1. A K-coalgebra is a K-module C' together with a comultiplica-
tion or diagonal A : C' — C ®@ C that is coassociative:

C = Cod

A Agid
and a counit or augmentation € : C — K
C £ Cec
A id id @e

C@CWK@CQC'EC@K
A K-coalgebra C' is cocommutative if the following diagram commutes
C
CoC——CaC

Let C' and D be K-coalgebras. A homomorphism of coalgebras f : C — D is a
K-linear map such that the following diagrams commute:

c—7L p

AC AD

Col D®D

f&f
and

C

L ..
Ec\ /D
K

Remark 8.6.2. Obviously the composition of two homomorphisms of coalgebras
is again a homomorphism of coalgebras. Furthermore the identity map is a homo-
morphism of coalgebras. Hence the K-coalgebras form a category K-Coalg. The
category of cocommutative K-coalgebras will be denoted by K-cCoalg.
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Problem 8.6.11. 1. Show that V@ V* is a coalgebra for every finite dimensional
vector space V over a field K if the comultiplication is defined by A(v @ v*) :=
Yo v @uf @ v; @v* where {v;} and {vf} are dual bases of V resp. V*.

2. Show that the free K-modules KX with the basis X and the comultiplication
A(x) = x @ x is a coalgebra. What is the counit? Is the counit unique?

3. Show that K@ V with A(1)=1@ 1, A(v) =v @1+ 1 ® v defines a coalgebra.

4. Let C'and D be coalgebras. Then C'@ D is a coalgebra with the comultiplication
Acop = (1le @7 1p)(Ac @Ap): CRODRC®D — C®D and counit ¢ = ecgp :
C@D—K®K — K (The proof is analogous to the proof of Lemma 8.5.3.)

To describe the comultiplication of a K-coalgebra in terms of elements we intro-
duce a notation first introduced by Sweedler similar to the notation V(a @ b) = ab
used for algebras. Instead of A(c) = ¢; ® ¢} we write

Ale) =) ey @ .
Observe that only the complete expression on the right hand side makes sense, not
the components ¢(y) or ¢(3) which are not considered as families of elements of C'. This
notation alone does not help much in the calculations we have to perform later on.
So we introduce a more general notation.

Definition 8.6.3. (Sweedler Notation) Let M be an arbitrary K-module and C
be a K-coalgebra. Then there is a bijection between all multilinear maps

f:OCx...xC—M

and all linear maps

" Co...9C — M.

These maps are associated to each other by the formula

fler, oo ven) =l ®@...@¢,).
For ¢ € C we define
> fleqys o sem) = LA e),
where A"~ denotes the n — 1-fold application of A, for example A"™! = (A @ 1@

L@ o(A®1)oA.
In particular we obtain for the bilinear map @ : €' x C 3 (¢,d) —» c@d e C @ C

Y e @ e = Ale),
and for the multilinear map @2: C x C x C — C @ C @ C
Y e @ ey @ ey = (A 1)A(e) = (1© A)A(e),
With this notation one verifies easily

ZC(l)®...®A(C(i))®...®0(n):ZC(l)®...®C(n+1)
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and
20(1)®...®€(C(Z’))®...®C(n) 220(1)®...®1®...®C(n_1)
= 20(1) @ ... en-1)

This notation and its application to multilinear maps will also be used in more
general contexts like comodules.

Proposition 8.6.4. Let C be a coalgebra and A an algebra. Then the composition
F*g:=Valf @g)Ac defines a multiplication

Hom(C, A) @ Hom(C, A) > f @ g+ f+*g € Hom(C, A),

such that Hom(C, A) becomes an algebra. The unit element is given by K 3 a —
(¢ — n(ae(c))) € Hom(C, A).

PROOF. The multiplication of Hom(C, A) obviously is a bilinear map. The mul-
tiplication is associative since (f*g)*h = V4((Va(f ® 9)Ac) @ h)Ac =Va(V4 @

D((f@g)@h)(Ac@1)Ac = Va1l Va)([@(g@h)(10Ac)Ac = Va(f@(Valg®
h)Ac))Ac = f* (g * h). Farthermore it is unitary with unit lgem(c,4) = nacc since

nNaco * f == VA(UAGC X f)AC == VA(UA X 1A)(1K X f)(éc X 10)AC == f and similarly
f *Naco = f I

Definition 8.6.5. The multiplication * : Hom(C, A) @ Hom(C, A) — Hom(C, A)

is called convolution.

Corollary 8.6.6. Let C be a K-coalgebra. Then C* = Homg(C,K) is an K-
algebra.

PRrROOF. Use that K itself is a K-algebra. O

Remark 8.6.7. If we write the evaluation as C* @ C' 3 ¢ @ ¢ — (a,c) € K then
an element ¢ € C* is completely determined by the values of (a,¢) for all ¢ € C. So
the product of @ and b in C* is uniquely determined by the formula

(axb.c)=(a@b A(c)) =Y alcu))blcw)
The unit element of C* is ¢ € C*.

Lemma 8.6.8. Let K be a field and A be a finite dimensional K-algebra. Then
A* = Homg (A, K) is a K-coalgebra.

PROOF. Define the comultiplication on C* by
A A T (Ae AP A% @ A%
The canonical map can : A*@A* — (A®A)* is invertible, since A is finite dimensional.

By a diagrammatic proof or by calculation with elements it is easy to show that A*
becomes a K-coalgebra. O

Remark 8.6.9. If K is an arbitrary commutative ring, then A* = Homg (A, K)
is a K-coalgebra if A is a finitely generated projective K-module.
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Problem 8.6.12. Find sufficient conditions for an algebra A resp. a coalgebra €'
such that Hom(A, C') becomes a coalgebra with co-convolution as comultiplication.

Definition 8.6.10. Let C be a K-coalgebra. A left C'-comodule is a K-module
M together with a homomorphism dy; : M — C @ M, such that the diagrams

M d CoM

) A®id

and
M
§ id
CoM oid Ko M= M.
commute.

Let “M and “N be C-comodules and let f : M — N be a K-linear map. The

map f is called a homomorphism of comodules if the diagram

M Sar CoM

! 1®f

N

- CoN
N

commutes.

The left C-comodules and their homomorphisms form the category “ M of comod-
ules.

Let N be an arbitrary K-module and M be a C-comodule. Then there is a
bijection between all multilinear maps

f:Cx...xM—N
and all linear maps
fC®...0M — N.
These maps are associated to each other by the formula
fler,.ooyen,m) = flle1 @ ... @ ¢, @m).
For m € M we define
Z fmay, - smey, many) == f/(6"(m)),
where 6" denotes the n-fold application of 4, ie. " =(1®...@1®d§)o (1@ §)od.
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In particular we obtain for the bilinear map @ : C' x M — C @ M
>y @ mary = 8(m),
and for the multilinear map @?: C x Cx M - C@C @M
>y @me @ many = (10 6)6(c) = (A @ 1)d(m).

Problem 8.6.13. Show that a finite dimensional vector space V' is a comodule
over the coalgebra V @ V* as defined in problem 8.11.1 with the coaction §(v) :=
Yv@vrev € (VeV )@V where Y vl @ v; is the dual basis of V in V*@ V.

Theorem 8.6.11. (Fundamental Theorem for Comodules) Let K be a field. Let
M be a left C-comodule and let m € M be given. Then there exists a finite dimensional
subcoalgebra C" C C and a finite dimensional C'-comodule M' with m € M' C M
where M' C M is a K-submodule, such that the diagram

M’ & ! ® M’

CoM

commutes.

Corollary 8.6.12. . Fach element ¢ € C of a coalgebra is contained in a finite
dimensional subcoalgebra of C.

2. Fach element m € M of a comodule is contained in a finite dimensional
subcomodule of M.

Corollary 8.6.13. 1. Fach finite dimensional subspace V' of a coalgebra C is
contained in a finite dimensional subcoalgebra C' of C'.

2. Fach finite dimensional subspace V' of a comodule M 1is contained in a finite
dimensional subcomodule M’ of M.

Corollary 8.6.14. 1. Fach coalgebra is a union of finite dimensional subcoalge-
bras.
2. Fach comodule is a union of finite dimensional subcomodules.

PROOF. (of the Theorem) We can assume that m # 0 for else we can use M’ =0
and C' = 0.

Under the representations of §(m) € C'@ M as finite sums of decomposable tensors
pick one

S

d(m) = Zci®mi

=1



32 8. TOOLBOX

of shortest length s. Then the families (¢;|i = 1,...,s) and (m;]i = 1,...,s) are
linearly independent. Choose coeflicients ¢;; € C' such that

by suitably extending the linearly independent family (¢;|i = 1,...,s) to a linearly
independent family (¢;li = 1,... ,t) and t > s.

We first show that we can choose t = s. By coassociativity we have > 7 ¢ ®
d(my) = 2;21 Aej) @ m; = 2;21 Ele ¢ @ ¢;j @ my. Since the ¢; and the m; are
linearly independent we can compare coefficients and get
(1) 5(mi):Zcij®mj, ‘v’izl,...,s

i=1

and 0 = 2;21 ¢ij @ my for 1+ > s. The last statement implies

;i =0, Vi>s,g=1,...,s.

Hence we get t = s and

Define finite dimensional subspaces C' = (¢;li,7 = 1,...,s) € C and M’ =
(mile = 1,...,8) € M. Then by (1) we get 6 : M’ — C’" @ M’. We show that
m € M’ and that the restriction of A to C’ gives a linear map A : ¢/ — ' ® '
so that the required properties of the theorem are satisfied. First observe that m =
doe(e)m; € M and ¢; =Y e(¢;)e;; € C'. Using coassociativity we get

Z?le ci @ Aleij) @my = E;ja Aler) @ exy @ my
= Zi,j,k:l ¢ @ Cip D cky @ my

hence

(2) A(Cij) = E Cik ® Ck]‘.
k=1
U

Remark 8.6.15. We give a sketch of a second proof which is somewhat more
technical. Since (' is a K-coalgebra, the dual C* is an algebra. The comodule structure
d: M — C @ M leads to a module structure by p = (ev@l)(1® ) : C*@ M —
C*@C®M — M. Consider the submodule N := C*m. Then N is finite dimensional,
since ¢*m = Y -, {c*, ¢;)m; for all ¢* € C* where Y " ¢; @ m; = §(m). Observe that
C*m is a subspace of the space generated by the m;. But it does not depend on
the choice of the m;. Furthermore if we take 6(m) = > ¢; @ m; with a shortest
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representation then the m; are in C*m since ¢*m = > (c*,¢;)m; = m; for ¢ an
element of a dual basis of the ¢;.

N is a C-comodule since §(c*m) = > (", ¢;)d(m;) = D {(c*, ciy)cipy @ mi €
C®C*m

Now we construct a subcoalgebra D of €' such that N is a D-comodule with the
induced coaction. Let D := N @ N*. By 8.13 N is a comodule over the coalgebra
N @ N*. Construct a linear map ¢ : D — C by n @ n* = ) nq)(n*,nu)). By
definition of the dual basis we have n =Y n;(nf,n). Thus we get

(¢@@)Ap(n@n™) =(¢® ¢)(E n@ni @n; @n)

Y. nq < n(Ny) @ niy (", i)

= nq) <n SNy (1

= n(l) ® n<2><"*a nvy) =20 Ac(n)(n™, nw))
= Aco(n @ n*).

Furthermore ecg(n @ n*) = (3 nay(n*,nw)) = (0", 2 clnay)nw)) = (n*,n) =
e(n@n*). Hence ¢ : D — (' is a homomorphism of coalgebras, D is finite dimensional
and the image C’ := ¢(D) is a finite dimensional subcoalgebra of C'. Clearly N is
also a (’"-comodule, since it is a D-comodule.
Finally we show that the D-comodule structure on NN if lifted to the C'-comodule
structure coincides with the one defined on M. We have
do(c™m) = 0¢ (D (e, mu))man) = (e, ma))m) @ mn
=2 (¢, ma))me) @ mi(mi, man) = (" 7m (W) me)(mi, mn) @ m;
= (6@ 1) may)mpny @ mi @mi) = (¢ @ 1)(22 c™m ® m @ mi)
= (¢ @ 1)dp(c™m).
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7. Bialgebras

Definition 8.7.1. 1. A bialgebra (B,V,n,A,¢) consists of an algebra (B, V,n)
and a coalgebra (B, A, ¢) such that the diagrams

ARA

BB BB B®B
wl
v BB B®B
\V@V
B 2 B@ B
and
B®B—>B

B—»B@B

commute, i.e. A and ¢ are homomorphlsms of algebras resp. V and n are homomor-
phisms of coalgebras.
2. Given bialgebras A and B. A map f: A — B is called a homomorphism of
bialgebras if it is a homomorphism of algebras and a homomorphism of coalgebras.
3. The category of bialgebras is denoted by K-Bialg.

Problem 8.7.14. 1. Let (B,V,n) be an algebra and (B, A,¢) be a coalgebra.
The following are equivalent:

a) (B,V,n,A,¢)is a bialgebra.

b) A:B— B® Band ¢: B — K are homomorphisms of K-algebras.

¢) V:B® B — Bandn:K — B are homomorphisms of K-coalgebras.

2. Let B be a finite dimensional bialgebra over field K. Show that the dual space
B~ is a bialgebra.

One of the most important properties of bialgebras B is that the tensor product
over K of two B-modules or two B-comodules is again a B-module.

Proposition 8.7.2. 1. Let B be a bialgebra. Let M and N be left B-modules.
Then M @g N is a B-module by the map

BoMaoN22BoBoMoN"YSBaMoBa N4 Me N,

2. Let B be a bialgebra. Let M and N be left B-comodules. Then M Qg N is a
B-comodule by the map

MaN 2 BoMoBaoN'“SBoBaMaN Y3 BoMa N,
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3. K is a B-module by the map Bo K= B — K.
4. K is a B-comodule by the map K - B~ B K.

ProOOF. We give a diagrammatic proof for 1. The associativity law is given by

BoBoMaoN U BoBaBaoMao NS BeBoMaoBoN " 4BaMeN
ARIRIRIOL ARIRIRIOL AR1®1
BOB@B@BaMao NI R BB BaM@ BN “¥BoBo Mo N
VeIl 1©®18101 1@7(B,BOM)®101 1@7®1
Y 101Q7(B®B,M)®1 ) )
BoBoBoBoMaN BoBoM@BoBoNEBo Mo BoN
Vovelel ve18Vel =T
BoMoN—" . BgBoMaoN—"2 ~BoM@B®N M@ N
The unit law is the commutativity of
MoN=KoMaoN —""" ~BaMoN
=] AR1R1
= KoKoMoN"2 L popeMeN
107®1 107®1
MoN=KoMoKo N2 poMoBeN
\l\ LR 1
M® N
The corresponding properties for comodules follows from the dualized diagrams. The
module and comodule properties of K are easily checked. O

Definition 8.7.3. 1. Let (B,V,n, A, ¢) be a bialgebra. Let A be a left B-module
with structure map p: B® A — A. Let furthermore (A, V4,74) be an algebra such
that V4 and 14 are homomorphisms of B-modules. Then (A, V4,14, ) is called a
B-module algebra.

2. Let (B,V,n, A, ¢€) be a bialgebra. Let C' be a left B-module with structure map
p: B@C — C. Let furthermore (C, A¢, e¢) be a coalgebra such that A¢ and ¢ are
homomorphisms of B- modules. Then (C,A¢,ec, ) is called a B-module coalgebra.

3. Let (B,V,n,A,¢) be a bialgebra. Let A be a left B-comodule with structure
map § : A — B ® A. Let furthermore (A, V4,n4) be an algebra such that V4 and
na are homomorphisms of B-comodules. Then (A, V 4,n4,9) is called a B-comodule
algebra.
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4. Let (B,V,n,A,¢) be a bialgebra. Let C be a left B-comodule with structure
map ¢ : €' — B ® C. Let furthermore (C, A¢,e¢) be a coalgebra such that A and
ec are homomorphisms of B-comodules. Then (C,A¢,e¢,d) is called a B-comodule
coalgebra.

Remark 8.7.4. If (C,Ac,e¢) is a K-coalgebra and (C, ) is a B-module, then
(C,Ac,ec, ) is a B-module coalgebra iff 4 is a homomorphism of K-coalgebras.

If (A,V4,n4) is a K-algebra and (A, d) is a B-comodule, then (A, V4,14,0) is a
B-comodule algebra iff § is a homomorphism of K-algebras.

Similar statement for module algebras or comodule coalgebras do not hold.
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8. Representable Functors

Definition 8.8.1. Let F : C — Set be a covariant functor. A pair (A, z) with
A€ C,x € F(A) is called a representing (generic, universal) object for F and F is

called a representable functor, if for each B € C and y € F(B) there exists a unique
f € Morc(A, B) such that F(f)(z) = y:

A F(A)>x
b F(f)
B F(B)>y

Proposition 8.8.2. Let (A, x) and (B,y) be representing objects for F. Then
there exists a unique isomorphism f: A — B such that F(f)(z) = y.

A F(A

X

/

)
)Jlﬂm Yy

\
1a ‘B f(B
/

k F(k)

s N A FA |rm w
h F(h)

é F(B) y

Examples 8.8.3. 1. Let X € Set and let R be a ring. F : R-Mod — Set,
F(M) := Map(X, M) is a covariant functor. A representing object for F is given by
(RX,2 : X — RX) with the property, that for all (M,y : X — M) there exists a
unique f € Hompg(RX, M) such that F(f)(x) = Map(X, f)(z) = fe =y

X —— RX

M.

2. Given modules Mp and g N. Define F : Ab — Set by F(A) := Bilg(M, N; A).
Then F is a covariant functor. A representing object for F is given by (M @r N, ® :
M x N — M @g N) with the property that for all (A, f: M x N — A) there exists
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a unique ¢ € Hom(M @gr N, A) such that F(¢)(®@) = Bilg(M, N;9)(®) =g@ = f
M x N5 M@egrN

!

A.

3. Given a K-module V. Define F : Alg — Set by F(A) := Hom(V, A). Then F is a
covariant functor. A representing object for F is given by (T'(V),¢: V — T(V)) with
the property that for all (A, f : V — A) the exists a unique g € Morag(7(V), A)
such that F(¢)(¢) = Hom(V,g)(¢) =ge = f

V— e T(V)

f g

A.

4. Given a K-module V. Define F : cAlg — Set by F(A) := Hom(V, A). Then F
is a covariant functor. A representing object for F is given by (S(V),¢: V — S(V))
with the property that for all (A, f : V' — A) the exists a unique g € Morag(S(V), A)
such that F(¢)(¢) = Hom(V,g)(¢) =ge = f

Ve S(V)

f g

A.

Proposition 8.8.4. F has a representing object (A

,a) if and only if there is a
natural isomorphism ¢ : F = Morc(A, —) (with a = p(A)™!

(La)).
ProOF. = : The map
#(B): F(B) 3y~ f € More(A, B) with F(f)(a) = y
is bijective with the inverse map
$(B): More(A, B) 3 | = F(f)(a) € F(B).
In fact we have y — f — F(f)(a) = y and f — y i= F(f)(a) - g : F(g)(a) = y =

F(f)(a). By uniqueness we get f = g. Hence all p(B) are bijective with inverse map
Y(B). It is sufficient to show that ¢ is a natural transformation.
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Given g : B — (. Then the following diagram commutes
o v®B)

Morc(A, B) ————— F(B)
Morc(A,g) \ F(9)
Morc (A, C) © F(C)
since ¢ (C)More (A, g)(f) = ¢ (C)(gf) = (9 )a) = F(g)F(f)a) = F(g)(B)(f)-
<: Let A be given. Let a := ¢(A)™'(14). Fo ryE}—(B) we get y = (B)"H(f) =
P(B)7H(f1a) = p(B)"Morc(A, f)(1a) = F(f)e(A) 7 (14) = (f)( ) for a uniquely
determined f € Morc(A, B). O

Proposition 8.8.5. Given a representable functor Fx : C — Set for each X €
D. Given a natural transformation F, : Fy — Fx for each g : X — Y (contravari-
ant!) such that F depends functorially on X, i.e. Fi, = 1z, Frg = FyFn. Then
the representing objects (Ax,ax) for Fx depend functorially on X, i.e. for each
g: X — Y there is a unique homomorphism A, : Ax — Ay (with Fx(Ay)(ax) =
F,(Ay)(ay)) and the following identities hold Ay, = 1a,, Apy = ALA,.

PROOF. Choose a representing object (Ax,ax) for Fx for each X € C (by the
axiom of choice). Then there is a unique homomorphism A, : Ax — Ay with

Fx(Ag)lax) = Fy(Ay)(ay) € Fx(Ay),

for each ¢ : X — Y because F,(Ay) : Fy(Ay) — Fx(Ay) is given. We have
Fx(Ar)(ax) = Fi(Ax)(ax) = ax = Fx(1)(ax) hence A; = 1, and Fx(Any)(ax) =
Frg(Az)az) = Fy(Az)Fn(Az)az) = Fy(Az)Fy (Ap)ay) = Fx(An)Fy(Ay)(ay) =
Fx(Ap)Fx(Ay)(ax) = Fx(ArAy)(ax) hence ALA, = Ap, for g : X — Y and h :
Y — Z in D. O

Corollary 8.8.6. 1. Map(X, M) = Homg(RX, M) is a natural transformation
in M (and in X!). In particular Set 3 X — RX € R-Mod is a functor.

2. Bilg(M,N; A) 2 Hom(M @gr N, A) is a natural transformation in A (and in
(M,N) € Mod-R x R-Mod). In particular Mod-R x R-Mod 5 M, N — M@, N €
Ab is a functor.

3. R-Mod-S x S-Mod-T' 5 (M,N)— M ®s N € R-Mod-T is a functor.
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9. Adjoint Functors and the Yoneda Lemma

Theorem 8.9.1. (Yoneda Lemma) Let C be a category. Given a covariant functor
F :C — Set and an object A € C. Then the map

7 : Nat(More (A, -),F) 2 ¢ — ¢(A)(14) € F(A)
is bijective with the inverse map
7" F(A) 3 a— h* € Nat(More(A, -), F),
where h*(B)(f) = F(f)(a).

PROOF. For ¢ € Nat(Morc(A,-), F) we have a map ¢(A) : Morc(A, A) — F(A),
hence 7 with 7(¢) := ¢(A)(14) is a well defined map. For 7! we have to check that
h* is a natural transformation. Given f: B — (C in C. Then the diagram

Mor¢ (A, B) Mor(4,/) Morc (A, C)
h%(B) he(C)
F(B) F(C)

)

F(f
is commutative. In fact if g € Mor¢(A, B) then h*(C )Morc(A,f)(g) = h*(C)(fg) =
F(fg)a)=F(/)F(g)(a)=F(f)h*(B)(a). Thus 7= is well defined.
Let 77'(a) = h*. Then 77 (a) = h*(A)(14) = F(la)(a) = a. Let n(¢) =
¢(A)(14) = a. Then 77'7(¢) = h* and h*(B)(f) = F(f)(a) = F([)(¢(A)(1a)) =
¢(B)More (A, f)(1a) = ¢(B)([), also h* = ¢. O

Corollary 8.9.2. Given A, B € C. Then the following hold

1. Morc(A,B) 3 f — More(f,-) € Nat(More(B,-),Morc(A,-)) is a bijective
map.

2. With the bijective map from 1. the isomorphisms from Morc(A, B) correspond
to natural isomorphisms from Nat(Morc (B, -), Morc(A, -)).

3. For contravariant functors F : C — Set we have Nat(More(-, A), F) = F(A).

4. Mor¢(A, B) 3 f — More(-, f) € Nat(More(-, A), More(-, B)) is a bijective map
that defines a one-to-one correspondence between the isomorphisms from Morc(A, B)
and the natural isomorphisms from Nat(More(-, A), Mor¢(-, B)).

PROOF. 1. follows from the Yoneda Lemma with F = Mor¢(A,-).

2. Observe that 1/ (C)(g) = Morc(A,g)(f) = gf = More(f,C)(g) hence h/ =
More(f,-). Since we have More( f,-)More(g,-) = More(gf,-) and More(f,-) = idnore(4,-)
if and only if f = 14 we get the one-to-one correspondence between the isomorphisms
from 1.

3. and 4. follow by dualizing. O
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Remark 8.9.3. The map 7 is a natural transformation in the arguments A and
F. More precisely: if f: A — B and ¢ : F — G are given then the following
diagrams commute

Nat(More(A,-), F) ——— F(A)

¢(4)

Nat(Mor(A4,-),$) \

Nat(Mor¢(A,-),G) (A)
Nat(Mor¢(A,-), F) —— F(A)

:

Nat(Mor( f,-),F) F(f)

Nat(More(B,-), F) — F(B).
This can be easily checked. Furthermore we have for ¢ : Mor¢(A,-) — F

m Nat(Morc(A,-), ¢)(¢) = () = (¢)(A)(1a) = ¢(A)Y(A)(14) = o(A)7 ()
and

m Nat(More(f,-), F)(¢) = m(yMore(f,-)) = (More(f,-))(B)(1s) = ¥(B)(f)
= ¢(B)More(A, [)(14) = F(S)(A)(La) = F([)m ().

Remark 8.9.4. By the previous corollary the representing object A is uniquely
determined up to isomorphism by the isomorphism class of the functor Mor¢(A,-).

Problem 8.9.15. 1. Determine explicitly all natural endomorphisms from G, to
G, (as defined in Lemma 2.3.5).

2. Determine all additive natural endomorphisms of G, .

3. Determine all natural transformations from G, to G,, (see Lemma 2.3.7).

4. Determine all natural automorphisms of G,),.

Proposition 8.9.5. Let G : C x D — Set be a covariant bifunctor such that
the functor G(C,-) : D — Set is representable for all C € C. Then there exists a
contravariant functor F : C — D such that G = Morp(F-,-) holds. Furthermore F
is uniquely determined by G up to isomorphism.

PROOF. For each €' € C choose an object F(C') € D and an isomorphism &¢ :
G(C,-) = Morp(F(C),-). Given f : C — C"in C then let F(f) : F(C') — F(C)
be the uniquely determined morphism (by the Yoneda Lemma) in D such that the
diagram

G(C,-) =25 Morp(F(C),-)

Mor(}-(f) 7_)
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commutes. Because of the uniqueness F(f) and because of the functoriality of G
it is easy to see that F(fg) = F(g)F(f) and F(l¢) = 17 hold and that F is a
contravariant functor.

If F': C — Dis given with G = Morp(F'-,-) then ¢ : Morp(F-,-) = Morp (F'-,-).
Hence by the Yoneda Lemma ¢ (C') : F(C') = F'(C) is an isomorphism for all C' € C.
With these isomorphisms induced by ¢ the diagram

Morp(F/(C),-) ——2 DD NMorp (F(C), )

Mor(F'(£)-) Mor(F(£),7)

Morp (F'(C"),-)

Morp(F(C"),-)

Mor((C'),~)
commutes. Hence the diagram
F(ery 1D ey
F'(f) F(J)

!
F(O) o FI(C)
commutes. Thus ¢ : F — F' is a natural isomorphism. O

Definition 8.9.6. Let C and D be categories and F : C — D and G : D — C
be covariant functors. F is called leftadjoint to G and G rightadjoint to F if there is
a natural isomorphism of bifunctors ¢ : Morp(F-,-) — Mor¢(-,G-) from C? x D to
Set.

Lemma 8.9.7. If F : C — D s leftadjoint to G : D — C then F is uniquely
determined by G up to isomorphism. Similarly G is uniquely determined by F up to
isomorphism.

PROOF. Now we prove the first claim. Assume that also F' is leftadjoint to G
with ¢ : Morp(F'-,-) — More(-,G-). Then we have a natural isomorphism ¢/~ ¢ :
Morp(F-,-) — Morp(F'-,-). By Proposition 8.9.5 we get F = F'. 0

Lemma 8.9.8. A functor G : D — C has a leftadjoint functor iff all functors
Morc(C,G-) are representable.

Proor. follows from 8.9.5. O
Lemma 8.9.9. Let F:C — D and G : D — C be covariant functors. Then
Nat(Id¢,GF) 3 & — G-®- € Nat(Morp(F-, -), More(-,G-))

is a bijective map with inverse map

Nat(Morp(F-,-), More(-,G-)) 3 ¢ — ¢(-, F-)(1£-) € Nat(Id¢, GF).
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Furthermore
Nat(FG,1de) 5 ¥ — W-F- € Nat(More(-,G-), Morp(F-, -))
is a bijective map with inverse map
Nat(More(-,G-), Morp(F-, -)) 3 ¢ — (G-, -)(1g-) € Nat(FG, Ide).

PROOF. The natural transformation G-®- is defined as follows. Given C' € C,
D € D and f € Morp(F(C), D) then let (G-®-)(C,D)(f) = G(/)®(C) : C —
GF(C) — G(D). It is easy to check the properties of a natural transformation.

Given @ then one obtains by composition of the two maps G(1rc))®(C) =

GF(1c)®(C) = ®(C). Given ¢ one obtains
G(N(D(C, F(C))(1xcy) = More(C, G(f)o(C, F(C))(17(c))
= ¢(C, D)Morp(F(C), f)(1x(c)) = ¢(C, D)(f).

The second part of the lemma is proved similarly. O
Proposition 8.9.10. Let
¢ : Morp(F-,-) — More(-,G-) and ) : More(-,G-) — Morp(F-, -)

be natural transformations with associated natural transformations (by Lemma 8.9.9)
O :1de — GF resp. V: FG — Idp.
1) Then we have ¢tp = idyjor(-,g-) if and only if (G 2% grg 2% g)=idg.

2) We also have ¢ = idnor(r--y if and only if (F 7% rer Y F) =idr.

Proor. We get

GU(D)eG(D) = GU(D)e(G(D), FG(D))(1rg(p))
= Morc(G(D),G¥(D))o(G(D), FG(D))(1rg(1))
= ¢(G(D), D)Morp(FG(D), ¥(D))(1xg(p)

= ¢(G(D), D)(¥(D))

= Qb(g(D)v D)¢(Q(D)7 D)(lg(D))

= o(G(D), D)(1g(p))-

Similarly we get
ov(C. D)(f) = ¢(C, D) (C, D)(f) = G(Y(D)F([))®(C)
=GU(D)GF(f)®(C) =G (D)PG(D)f. O

Corollary 8.9.11. Let F:C — D and G : D — C be functors. F s leftadjoint
to G if and only if there are natural transformations ® : Ide — GF and ¥ : FG — Idp
such that (GU)(®G) = idg and (VF)(F®) = idr.

Definition 8.9.12. The natural transformations ® : Ide — GF and ¥ : FG —
Idp given in 8.9.11 are called unit and counit resp. for the adjoint functors F and G.
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Problem 8.9.16. 1. Let gMs be a bimodule. Show that the functor M ®g - :
sM — pM is leftadjoint to Hompg(M,-) : pM — sM. Determine the associated
unit and counit.

b) Show that there is a natural isomorphism Map(Ax B, C') = Map(B, Map(A, C)).
Determine the associated unit and counit.

¢) Show that there is a natural isomorphism K-Alg(KG, A) = Gr(G,U(A)).
Determine the associated unit and counit.

d) Show that there is a natural isomorphism K-Alg(U(g), A) = Lie-Alg(g, AY).

Determine the corresponding leftadjoint functor and the associated unit and counit.

Definition 8.9.13. Let G : D — C be a covariant functor. G generates a (co-
Juniversal problem a follows:

Given C' € C. Find an object F(C) € D and a morphism ¢ : €' — G(F(C)) in
C such that there is a unique morphism ¢ : F(C') — D in D for each object D € D
and for each morphism f: C' — G(D) in C such that the diagram

¢ ——g(F(C))
f G(9)
g(D)

commutes.

A pair (F(C),¢) that satisfies the above conditions is called a universal solution
of the (co-)universal problem defined by G and C.

Let F : C — D be a covariant functor. F generates a universal problem a follows:

Given D € D. Find an object G(D) € C and a morphism v : F(G(D)) — D in D
such that there is a unique morphism ¢ : C' — G(D) in C for each object C' € C and
for each morphism f: F(C) — D in D such that the diagram

F(C)
Flg) f

commutes.
A pair (G(D),v) that satisfies the above conditions is called a universal solution
of the (co-)universal problem defined by F and D.

Proposition 8.9.14. Let F : C — D be leftadjoint to G : D — C. Then F(C)
and the unit « = ®(C) : C — GF(C) form a (co-)universal solution for the (co-
Juniversal problem defined by G and C.

Furthermore G(D) and the counit v = V(D) : FG(D) — D form a universal
solution for the universal problem defined by F and D.
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PrROOF. By Theorem 8.9.10 the morphisms ¢ : Morp(F-,-) — More(-,G-) and
Y : More(-,G-) — Morp(F-,-) are inverses of each other. They are defined with unit
and counit as ¢(C, D)(g) = G(g)®(C) resp. (C,D)(f) = W(D)F(f). Hence for
each f: C — G(D) there is a unique g : F(C) — D such that f = ¢(C, D)(g) =
G(g)®(C) = G(g)e.

The second statement follows analogously. O

Remark 8.9.15. If G : D — C and C € C are given then the (co-)universal
solution (F(C),c: C — G(D)) can be considered as the best (co-)approximation of
the object €' in C by an object D in D with the help of a functor G. The object
D € D turns out to be F(C').

If F:C — D and D € D are given then the universal solution (G(D),v :
FG(D) — D) can be considered as the best approximation of the object D in D by
an object C' in C with the help of a functor F. The object ' € C turns out to be
g(D).

Proposition 8.9.16. Given G : D — C. Assume that for each C € C the uni-
versal problem defined by G and C' is solvable. Then there is a leftadjoint functor
F:C—Dtog.

Given F : C — D. Assume that for each D € D the uniwersal problem defined by
F and D is solvable. Then there is a leftadjoint functor G : D — C to F.

PROOF. Assume that the (co-)universal problem defined by G and C' is solved
by ¢ : € — F(C). Then the map Morc(C,G(D)) > f — g € Morp(F(C), D) with
G(g)t = [ is bijective. The inverse map is given by ¢ — G(g)c. This is a natural
transformation since the diagram

Morp(F(C), D) 50).

Morc(C,G(D))

Morp (F(C),h) Mor¢ (C,G(R))

Morp (F(C), D") More(C,G(D"))

G(-)e
commutes for each h € Morp(D, D'). In fact we have

Morc(C,G(h))(G(9)) = G(h)G(g)r = G(hg)e = G(Morc(F(C), h)(g))e.
Hence for all C' € C the functor More(C,G(-)) : D — Set induced by the bifunctor
More(-,G(-)) : C? x D — Set is representable. By Theorem 8.9.5 there is a functor
F : C — D such that Mor¢(-,G(-)) = Morp(F(-),-).

The second statement follows analogously. O

Remark 8.9.17. One can characterize the properties that G : D — C (resp.
F : C — D) must have in order to possess a left-(right-)adjoint functor. One of
the essential properties for this is that G preserves limits (hence direct products and
difference kernels).



