CHAPTER 4

The Infinitesimal Theory

4. Derivations and Lie Algebras of Affine Algebraic Groups

Lemma and Definition 7.4.1. Let $\mathcal{G}: \mathbb{K}\text{-}\mathbf{cAlg} \to \mathbf{Set}$ be a group valued functor. The kernel $\mathcal{L}ie(\mathcal{G})(R)$ of the sequence

$$0 \longrightarrow \mathcal{L}ie(\mathcal{G})(R) \longrightarrow \mathcal{G}(R(\delta)) \xrightarrow{\mathcal{G}(p)} \mathcal{G}(R) \longrightarrow 0$$

is called the Lie algebra of \mathcal{G} and is a group valued functor in R.

PROOF. For every algebra homomorphism $f:R\to S$ the following diagram of groups commutes

$$0 \longrightarrow \mathcal{L}ie(\mathcal{G})(R) \longrightarrow \mathcal{G}(R(\delta)) \xrightarrow{\mathcal{G}(p)} \mathcal{G}(R) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Proposition 4.4.2. Let $\mathcal{G}: \mathbb{K}\text{-}\mathbf{cAlg} \to \mathbf{Set}$ be a group valued functor with multiplication *. Then there are functorial operations

$$\mathcal{G}(R) \times \mathcal{L}ie(\mathcal{G})(R) \ni (g, x) \mapsto g \cdot x \in \mathcal{L}ie(\mathcal{G})(R)$$

 $R \times \mathcal{L}ie(\mathcal{G})(R) \ni (a, x) \mapsto ax \in \mathcal{L}ie(\mathcal{G})(R)$

such that

$$g \cdot (x + y) = g \cdot x + g \cdot y,$$

$$h \cdot (g \cdot x) = (h * g) \cdot x,$$

$$a(x + y) = ax + ay,$$

$$(ab)x = a(bx),$$

$$g \cdot (ax) = a(g \cdot x).$$

PROOF. First observe that the composition + on $\mathcal{L}ie(\mathcal{G})(R)$ is induced by the multiplication * of $\mathcal{G}(R(\delta))$ so it is not necessarily commutative.

We define $g \cdot x := \mathcal{G}(j)(g) * x * \mathcal{G}(j)(g)^{-1}$. Then $\mathcal{G}(p)(g \cdot x) = \mathcal{G}(p)\mathcal{G}(j)(g) * \mathcal{G}(p)(x) * \mathcal{G}(p)\mathcal{G}(j)(g)^{-1} = g * 1 * g^{-1} = 1$ hence $g \cdot x \in \mathcal{L}ie(\mathcal{G})(R)$.

Now let $a \in R$. To define $a : \mathcal{L}ie(\mathcal{G})(R) \to \mathcal{L}ie(\mathcal{G})(R)$ we use $u_a : R(\delta) \to R(\delta)$ defined by $u_a(\delta) := a\delta$ and thus $u_a(b+c\delta) := b+ac\delta$. Obviously u_a is a homomorphism of R-algebras. Furthermore we have $pu_a = p$ and $u_aj = j$. Thus we get a commutative diagram

$$0 \longrightarrow \mathcal{L}ie(\mathcal{G})(R) \longrightarrow \mathcal{G}(R(\delta)) \xrightarrow{\mathcal{G}(p)} \mathcal{G}(R) \longrightarrow 0$$

$$\downarrow a \qquad \qquad \downarrow \mathcal{G}(u_a) \qquad \qquad \downarrow id$$

$$0 \longrightarrow \mathcal{L}ie(\mathcal{G})(R) \longrightarrow \mathcal{G}(R(\delta)) \xrightarrow{\mathcal{G}(p)} \mathcal{G}(R) \longrightarrow 0$$

that defines a group homomorphism $a: \mathcal{L}ie(\mathcal{G})(R) \to \mathcal{L}ie(\mathcal{G})(R)$ on the kernel of the exact sequences. In particular we have then a(x+y) = ax + ay.

Furthermore we have $u_{ab} = u_a u_b$ hence (ab)x = a(bx).

The next formula follows from $g \cdot (x+y) = \mathcal{G}(j)(g) * x * y * \mathcal{G}(j)(g)^{-1} = \mathcal{G}(j)(g) * x * \mathcal{G}(j)(g)^{-1} * \mathcal{G}(j)(g) * y * \mathcal{G}(j)(g)^{-1} = g \cdot x + g \cdot y.$

We also see $(h*g)\cdot x = \mathcal{G}(j)(h*g)*x*\mathcal{G}(j)(h*g)^{-1} = \mathcal{G}(j)(h)*\mathcal{G}(j)(g)*x*\mathcal{G}(j)(g)^{-1}*$ $\mathcal{G}(j)(h)^{-1} = h\cdot (g\cdot x)$. Finally we have $g\cdot (ax) = \mathcal{G}(j)(g)*\mathcal{G}(u_a)(x)*\mathcal{G}(j)(g^{-1}) = \mathcal{G}(u_a)(\mathcal{G}(j)(g)*x*\mathcal{G}(j)(g^{-1})) = a(g\cdot x)$.

Proposition 4.4.3. Let $\mathcal{G} = \mathbb{K}\text{-}\mathbf{cAlg}(H, \text{-})$ be an affine algebraic group. Then $\mathcal{L}ie(\mathcal{G})(\mathbb{K}) \cong \mathbf{Lie}(H^{\circ})$ as additive groups. The isomorphism is compatible with the operations given in 4.4.2 and 4.3.6.

PROOF. We consider the following diagram

$$0 \longrightarrow \mathcal{L}ie\left(\mathcal{G}\right)(\mathbb{K}) \longrightarrow \mathbb{K}\text{-}\mathbf{cAlg}(H,\mathbb{K}(\delta)) \stackrel{p}{\longleftarrow} \mathbb{K}\text{-}\mathbf{cAlg}(H,\mathbb{K}) \longrightarrow 0$$

$$\downarrow^{e} \qquad \qquad \downarrow^{\omega} \qquad \qquad \downarrow^{\cong}$$

$$0 \longrightarrow \mathbf{Lie}(H^{o}) \stackrel{e^{\delta^{-}}}{\longrightarrow} G_{\mathbb{K}(\delta)}(H^{o} \otimes \mathbb{K}(\delta)) \stackrel{p}{\longrightarrow} G(H^{o}) \longrightarrow 0$$

We know by definition that the top sequence is exact. The bottom sequence is exact by Corollary 4.3.9.

Let $f \in \mathbb{K}$ - $\mathbf{cAlg}(H, \mathbb{K})$. Since $\mathrm{Ker}(f)$ is an ideal of codimension 1 we get $f \in H^{\circ}$. The map f is an algebra homomorphism iff $\langle f, ab \rangle = \langle f \otimes f, a \otimes b \rangle$ and $\langle f, 1 \rangle = 1$ iff $\Delta_{H^{\circ}}(f) = f \otimes f$ and $\varepsilon_{H^{\circ}}(f) = 1$ iff $f \in G(H^{\circ})$. Hence we get the right hand vertical isomorphism \mathbb{K} - $\mathbf{cAlg}(H, \mathbb{K}) \cong G(H^{\circ})$.

Consider an element $f \in \mathbb{K}$ - $\mathbf{cAlg}(H, \mathbb{K}(\delta)) \subseteq \mathrm{Hom}(H, \mathbb{K}(\delta))$. It can be written as $f = f_0 + f_1 \delta$ with $f_0, f_1 \in \mathrm{Hom}(H, \mathbb{K})$. The linear map f is an algebra homomorphism iff $f_0 : H \to \mathbb{K}$ is an algebra homomorphism and f_1 satisfies $f_1(1) = 0$ and $f_1(ab) = f_0(a)f_1(b) + f_1(a)f_0(b)$. In fact we have $f(1) = f_0(1) + f_1(1)\delta = 1$ iff $f_0(1) = 1$ and $f_1(1) = 0$ (by comparing coefficients). Furthermore we have f(ab) = f(a)f(b) iff $f_0(ab) + f_1(ab)\delta = (f_0(a) + f_1(a)\delta)(f_0(b) + f_1(b)\delta) = f_0(a)f_0(b) + f_0(a)f_1(b)\delta + f_1(a)f_0(b)\delta$ iff $f_0(ab) = f_0(a)f_0(b)$ and $f_1(ab) = f_0(a)f_1(b) + f_1(a)f_0(b)$.

Since f_0 is an algebra homomorphism we have as above $f_0 \in H^{\circ}$. For f_1 we have $(b \rightharpoonup f_1)(a) = f_1(ab) = f_0(a)f_1(b) + f_1(a)f_0(b) = (f_1(b)f_0 + f_0(b)f_1)(a)$ hence $(b \rightharpoonup f_1) = f_1(b)f_0 + f_0(b)f_1 \in \mathbb{K}f_0 + \mathbb{K}f_1$, a two dimensional subspace. Thus $f_1 \in H^{\circ}$.

In the following computations we will identify $(H^o \otimes \mathbb{K}(\delta)) \otimes_{\mathbb{K}(\delta)} (H^o \otimes \mathbb{K}(\delta))$ with $H^o \otimes H^o \otimes |K(\delta)|$.

Let $f = f_0 + f_1 \delta = f_0 \otimes 1 + f_1 \otimes \delta \in H^o \oplus H^o \delta = H^o \otimes \mathbb{K}(\delta)$. Then f is a homomorphism of algebras iff f(ab) = f(a)f(b) and f(1) = 1 iff $f_0(ab) = f_0(a)f_0(b)$ and $f_1(ab) = f_0(a)f_1(b) + f_1(a)f_0(b)$ and $f_0(1) = 1$ and $f_1(1) = 0$ iff $\Delta_{H^o}(f_0) = f_0 \otimes f_0$ and $\Delta_{H^o}(f_1) = f_0 \otimes f_1 + f_1 \otimes f_0$ and $\varepsilon_{H^o}(f_0) = 1$ and $\varepsilon_{H^o}(f_1) = 0$ iff $(\Delta_{H^o} \otimes \mathrm{id}_{\mathbb{K}(\delta)})(f_0 \otimes 1 + f_1 \otimes \delta) = f_0 \otimes f_0 \otimes 1 + f_0 \otimes f_1 \otimes \delta + f_1 \otimes f_0 \otimes \delta = (f_0 \otimes 1 + f_1 \otimes \delta) \otimes_{\mathbb{K}(\delta)}(f_0 \otimes 1 + f_1 \otimes \delta)$

and $(\varepsilon_{H^o} \otimes \mathrm{id}_{\mathbb{K}(\delta)})(f_0 \otimes 1 + f_1 \otimes \delta) = 1 \otimes 1$ iff $(\Delta_{H^o} \otimes \mathrm{id}_{\mathbb{K}(\delta)})(f) = f \otimes_{\mathbb{K}(\delta)} f$ and $(\varepsilon_{H^o} \otimes \mathrm{id}_{\mathbb{K}(\delta)})(f) = 1$ iff $f \in G_{\mathbb{K}(\delta)}(H^o \otimes \mathbb{K}(\delta))$.

Hence we have a bijective map $\omega : \mathbb{K}\text{-}\mathbf{cAlg}(H, \mathbb{K}(\delta)) \ni f = f_0 + f_1\delta \mapsto f_0 \otimes 1 + f_1 \otimes \delta \in G_{\mathbb{K}(\delta)}(H^o \otimes \mathbb{K}(\delta))$. Since the group multiplication in $\mathbb{K}\text{-}\mathbf{cAlg}(H, \mathbb{K}(\delta)) \subseteq \mathrm{Hom}(H, \mathbb{K}(\delta))$ is the convolution * and the group multiplication in $G_{\mathbb{K}(\delta)}(H^o \otimes \mathbb{K}(\delta)) \subseteq H^o \otimes \mathbb{K}(\delta)$ is the ordinary algebra multiplication, where the multiplication of H^o again is the convolution, it is clear that ω is a group homomorphism. Furthermore the right hand square of the above diagram commutes. Thus we get an isomorphism $e : \mathbf{Lie}(H^o) \to \mathcal{L}ie(\mathcal{G})(\mathbb{K})$ on the kernels. This map is defined by $e(d) = 1 + d\delta \in \mathbb{K}\text{-}\mathbf{cAlg}(H, \mathbb{K}(\delta))$.

To show that this isomorphism is compatible with the actions of \mathbb{K} resp. $G(H^{\circ})$ let $\alpha \in \mathbb{K}$, $a \in H$, and $d \in \mathbf{Lie}(H^{\circ})$. We have $e(\alpha d)(a) = \varepsilon(a) + \alpha d(a)\delta = u_{\alpha}(\varepsilon(a) + d(a)\delta) = (u_{\alpha} \circ (1 + d\delta))(a) = (u_{\alpha} \circ e(d))(a) = (\alpha e(d))(a)$ hence $e(\alpha d) = \alpha e(d)$.

Furthermore let $g \in G(H^{\circ}) = \mathbb{K}\text{-}\operatorname{\mathbf{cAlg}}(H,\mathbb{K}), \ a \in H, \ \text{and} \ d \in \operatorname{\mathbf{Lie}}(H^{\circ}).$ Then we have $e(g \cdot d)(a) = e(gdg^{-1})(a) = (1 + gdg^{-1}\delta)(a) = \varepsilon(a) + gdg^{-1}(a)\delta = \sum g(a_{(1)})\varepsilon(a_{(2)})gS(a_{(3)}) + \sum g(a_{(1)})d(a_{(2)})gS(a_{(3)})\delta = \sum g(a_{(1)})e(d)(a_{(2)})gS(a_{(3)}) = (j \circ g * e(d) * j \circ g^{-1})(a) = (g \cdot e(d))(a) \text{ hence } e(g \cdot d) = g \cdot e(d).$

Proposition 4.4.4. Let H be a Hopf algebra and let $I := \operatorname{Ker}(\varepsilon)$. Then $\operatorname{Der}_{\varepsilon}(H, \operatorname{-}) : \operatorname{Vec} \to \operatorname{Vec}$ is representable by I/I^2 and $d : H \xrightarrow{1-\varepsilon} I \xrightarrow{\nu} I/I^2$, in particular

$$\mathrm{Der}_{\varepsilon}(H, -) \cong \mathrm{Hom}(I/I^2, -)$$
 and $\mathrm{Lie}(H^{\circ}) \cong \mathrm{Hom}(I/I^2, \mathbb{K}).$

PROOF. Because of $\varepsilon(\operatorname{id} - u\varepsilon)(a) = \varepsilon(a) - \varepsilon u\varepsilon(a) = 0$ we have $\operatorname{Im}(\operatorname{id} - \varepsilon) \subseteq I$. Let $i \in I$. Then we have $i = i - \varepsilon(i) = (\operatorname{id} - \varepsilon)(i)$ hence $\operatorname{Im}(\operatorname{id} - \varepsilon) = \operatorname{Ker}(\varepsilon)$. We have $I^2 \ni (\operatorname{id} - \varepsilon)(a)(\operatorname{id} - \varepsilon)(b) = ab - \varepsilon(a)b - a\varepsilon(b) + \varepsilon(a)\varepsilon(b) = (\operatorname{id} - \varepsilon)(ab) - \varepsilon(a)(\operatorname{id} - \varepsilon)(b) - (\operatorname{id} - \varepsilon)(b)$. Hence we have in I/I^2 the equation $(\operatorname{id} - \varepsilon)(ab) = \varepsilon(a)(\operatorname{id} - \varepsilon)(b) + (\operatorname{id} - \varepsilon)(a)\varepsilon(b)$ so that $\nu(\operatorname{id} - \varepsilon) : H \to I \to I/I^2$ is an ε -derivation.

Now let $D: H \to M$ be an ε -derivation. Then D(1) = D(11) = 1D(1) + D(1)1 hence D(1) = 0. It follows $D(a) = D(\operatorname{id} - \varepsilon)(a)$. From $\varepsilon(I) = 0$ we get $D(I^2) \subseteq \varepsilon(I)D(I) + D(I)\varepsilon(I) = 0$ hence there is a unique factorization

Corollary 4.4.5. Let H be a Hopf algebra that is finitely generated a s an algebra. Then $\mathbf{Lie}(H^{\circ})$ is finite dimensional.

PROOF. Let $H = \mathbb{K}\langle a_1, \ldots, a_n \rangle$. Since $H = \mathbb{K} \oplus I$ we can choose $a_1 = 1$ and $a_2, \ldots, a_n \in I$. Thus any element in $i \in I$ can be written as $\sum \alpha_J a_{j_1} \ldots a_{j_k}$ so that $I/I^2 = \mathbb{K}\overline{a_2} + \ldots + \overline{a_n}$. This gives the result.

Proposition 4.4.6. Let H be a commutative Hopf algebra and $_HM$ be an H-module. Then we have $\Omega_H \cong H \otimes I/I^2$ and $d: H \to H \otimes I/I^2$ is given by $d(a) = \sum a_{(1)} \otimes \overline{(\mathrm{id} - \varepsilon)(a_{(2)})}$.

PROOF. Consider the algebra $B:=H\oplus M$ with (a,m)(a',m')=(aa',am'+a'm). Let $\mathcal{G}=\mathbb{K}\text{-}\operatorname{\mathbf{cAlg}}(H,-)$. Then we have $\mathcal{G}(B)\subseteq\operatorname{Hom}(H,B)\cong\operatorname{Hom}(H,H)\oplus\operatorname{Hom}(H,M)$. An element $(\varphi,D)\in\operatorname{Hom}(H,B)$ is in $\mathcal{G}(B)$ iff $(\varphi,D)(1)=(\varphi(1),D(1))=(1,0)$, hence $\varphi(1)=1$ and D(1)=0, and $(\varphi(ab),D(ab))=(\varphi,D)(ab)=(\varphi,D)(a)(\varphi,D)(b)=(\varphi(a),D(a))(\varphi(b),D(b))=(\varphi(a)\varphi(b),\varphi(a)D(b)+D(a)\varphi(b),$ hence $\varphi(ab)=\varphi(a)\varphi(b)$ and $D(ab)=\varphi(a)D(b)+D(a)\varphi(b)$. So (φ,D) is in $\mathcal{G}(B)$ iff $\varphi\in\mathcal{G}(H)$ and D is a φ -derivation. The *-multiplication in $\operatorname{Hom}(H,B)$ is given by $(\varphi,D)*(\varphi',D')=(\varphi*\varphi',\varphi*D'+D*\varphi')$ by applying this to an element $a\in H$. Since $(\varphi,0)\in\mathcal{G}(B)$ and $(u\varepsilon,D)\in\mathcal{G}(B)$ for every ε -derivation D, there is a bijection $\operatorname{Der}_{\varepsilon}(H,M)\cong\{(u\varepsilon,D_{\varepsilon})\in\mathcal{G}_{\varepsilon}(B)\}\cong\{(1_H,D_1)\in\mathcal{G}_1(B)\}\cong\operatorname{Der}_{\mathbb{K}}(H,M)$ by $(u\varepsilon,D_{\varepsilon})\mapsto (1,0)*(u\varepsilon,D_{\varepsilon})=(1,1*D_{\varepsilon})\in\mathcal{G}_1(B)$ with inverse map $(1,D_1)\mapsto (S,0)*(1,D_1)=(u\varepsilon,S*D_1)\in\mathcal{G}_{\varepsilon}(B)$. Hence we have isomorphisms $\operatorname{Der}_{\mathbb{K}}(H,M)\cong\operatorname{Der}_{\varepsilon}(H,M)\cong\operatorname{Hom}(I/I^2,M)\cong\operatorname{Hom}_H(H\otimes I/I^2,M)$.

The universal ε -derivation for vector spaces is $\operatorname{id} - \varepsilon : A \to I/I^2$. The universal ε -derivation for H-modules is $D_{\varepsilon}(a) = 1 \otimes \overline{(\operatorname{id} - \varepsilon)(a)} \in A \otimes I/I^2$. The universal 1-derivation for H-modules is $1 * D_{\varepsilon}$ with $(1 * D_{\varepsilon})(a) = \sum a_{(1)} \otimes \overline{(\operatorname{id} - \varepsilon)(a_{(2)})} \in A \otimes I/I^2$.