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140 4. THE INFINITESIMAL THEORY

4. Derivations and Lie Algebras of Affine Algebraic Groups

Lemma and Definition 7.4.1. Let G : K-cAlg — Set be a group valued func-
tor. The kernel Lie (G)(R) of the sequence
g(r)
g(j)
is called the Lie algebra of G and is a group valued functor in R.

0 ——— Lie(G)(R) — G(R(9)) G(R) —0

PROOF. For every algebra homomorphism f : R — S the following diagram of
groups comimutes

g(p)

0 ——— Lie(G)(R) — G(R(9)) G(R) ——0

g(4)
J \g(f(é)) \g(f)
G(p

0 ——— Lie(9)(5) —G(5(9))

Proposition 4.4.2. Let G : K-cAlg — Set be a group valued functor with mul-
tiplication x. Then there are functorial operations

G(R) x Lie(G)(R) 3 (¢g,2) — g-z € Lie(G)(R)

R x Lie(G)(R) 3 (a,z) — ax € Lie(G)(R)

such that
g-(e+y)=g-z+g-v,
h-(g-z)=(h*g)- =,
a(z +y) = ax + ay,
(ab)x = a(bz),
g (a2) = alg - 2).

PROOF. First observe that the composition + on Lie(G)(R) is induced by the
multiplication * of G(R(4)) so it is not necessarily commutative.

We define g-2 = G(j)(g) +2+G(j)(9)~'- Then G(p)(g-2) = G(p)G()(9)*G(p)(z)*
G(p)G(j)(9)~' =g+ 1xg ! =1hence g-z € Lie(G)(R).

Now let @ € R. To define a : Lie(G)(R) — Lie(G)(R) we use u, : R(d) — R(J)
defined by u4(d) := aé and thus u,(b+¢d) := b+acd. Obviously u, is a homomorphism
of R-algebras. Furthermore we have pu, = p and u,j7 = 7. Thus we get a commutative
diagram

g(r)

0 —— Lie (G)(R) —— G(R(9)) G(R) —0

g(7)
J : \gw \
g(p)

0 ——— Lie(G)(R) —— G(R(9)) G(R) —0

g
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that defines a group homomorphism a : Lie(G)(R) — Lie(G)(R) on the kernel of
the exact sequences. In particular we have then a(z + y) = ax + ay.

Furthermore we have u,, = u,u; hence (ab)x = a(bzx).

The next formula follows from g - (z +y) = G(j)(g) *x*y*G(7)(g9)™" = G(4)(g) *
r+G(7)(9) " *G()9) xy*G()9) " =g -z +g-y.

We also see (hxg)-x = G(j)(h*g)xx+G(j)(hxg)~" = G(j)(h)*G(7)(g)*x+G(j)(g)~"
G(j)(h)~ = h (g x). Finally we have g - (az) = G(j)(g) * G(ua)(z) * G(5)(g7")
G(ua)(G(5)(g) *x+G(5)(g7")) = alg - z).

Proposition 4.4.3. Let G = K-cAlg(H,-) be an affine algebraic group. Then
Lie(G)(K) = Lie(H°) as additive groups. The isomorphism is compatible with the
operations given in 4.4.2 and 4.3.6.

Dll*

PRrOOF. We consider the following diagram

0 Lie (G)(K) —— K-cAlg(H, K(6)) 7 K-cAlg(H,K) —— 0
0 Lie(H°) —— Glys)(H° @ K(§)) —E— G(H*) — 0

We know by definition that the top sequence is exact. The bottom sequence is exact
by Corollary 4.3.9.

Let f € K-cAlg(H,K). Since Ker(f) is an ideal of codimension 1 we get f € H°.
The map f is an algebra homomorphism iff (f,ab) = (f ® f,a ® b) and (f,1) = 1 iff
Apo(f)=f® f and ego(f) = 1 iff f € G(H?). Hence we get the right hand vertical
isomorphism K-cAlg(H,K) = G(H°).

Consider an element f € K-cAlg(H,K(¢)) C Hom(H,K(d)). It can be written as
f = fo+ fié with fo, fi € Hom(H, K). The linear map f is an algebra homomorphism
iff fo: H — K is an algebra homomorphism and f; satisfies fi(1) = 0 and f;(ab) =
fola) f1(b) + fi(a) fo(b). In fact we have f(1) = fo(1) + fi(1)d = 1 iff fo(1) =1
and fi(1) = 0 (by comparing coefficients). Furthermore we have f(ab) = f(a)f(b )
iff fo(ab) + fi(ab)d = (fo(a) + fi(a)d)(fo(b) + f1(b)0) = fo(a)fo(b) + fo(a)f1(b)d +
(@) JoB)3 I fo(ab) = fola) fo(B) and fi(ab) = fola)1(8) + (@) fo(B)

Since fo is an algebra homomorphism we have as above fo € H°. For f; we
have (b — fi)(a) = fi(ab) = fo(a)f1(b) + fi(a)fo(b) = (f1(b)fo + fo(b)f1)(a) hence
(b— f1) = fi(b) fo+ fo(b) fr € Kfo +Kf1, a two dimensional subspace. Thus f; € H°.

In the following computations we will identify (H° ® K(J)) QK(5) (H°®K(d)) with
H°® H° @ |K(9).

Let f=fo+fid=fo@l+fiwde H & H° = H° @ K(§). Then f is a
homomorphism of algebras iff f(ab) = f(a)f(b) and f(1) = 1 iff fo(ab) = fo(a)fo(b)
and fi(ab) = fo(a)f1(b)+ fi(a)fo(b) and fo(1) = 1 and fi(1) = 0iff Ape(fo) = fo® fo
and Ago(fi) = fo® fi+f1®@fo and ego(fo) = 1 and ego(f1) = 0 iff (AHo®ldK )(fo@
14 f1®0) = fo® @1+ fo@fIRI+ 1R fu®d = (f0®1+f1®5)®]1< (f0®1+f1®5)



142 4. THE INFINITESIMAL THEORY

and (ego @ idi)(fo®@ 1+ fi ®@0) = 1@ 1 iff (Age @ idxs)(f) = f Oxs f and
(en- @ 1dK(5))(f) = 1iff f € Gi)(H° @ K(9)).

Hence we have a bijective map w : K-cAlg(H,K(0)) > f=fo+ fid— fo@ 1 +
fi ®0 € Gg)(H? @ K(d)). Since the group multiplication in K-cAlg(H,K(d)) C
Hom(H, K(5)) is the convolution * and the group multiplication in Gs)(H°®K(d)) C
H° @ K(6) is the ordinary algebra multiplication, where the multlphcatlon of H®
again is the convolution, it is clear that w is a group homomorphism. Furthermore
the right hand square of the above diagram commutes. Thus we get an isomorphism
e : Lie(H°) — Lie(G)(K) on the kernels. This map is defined by e(d) = 1+ dé €
K-cAlg(H,K(J)).

To show that this isomorphism is compatible with the actions of K resp. G(H?)
let « € K, a € H, and d € Lie(H°). We have e(ad)(a) = c(a) + ad(a)d = us(c(a) +
d(a)d) = (ug 0o (1 4+ dd))(a) = (us 0 e(d))(a) = (ae(d))(a) hence e(ad) = ae(d).

Furthermore let g € G(H°) = K-cAlg(H,K), a € H, and d € Lie(H?). Then we
have e(g - d)(a) = e(gdg~')(a) = (1 + gdg~'é)(a) = e(a) + gdg™'(a)d =
> glaw))elag))gS(aE) + 22 glaw))d(aw)gS(aE)d = 32 glaw))e(d)(a@z)gS(a@) =
(jog*e(d)xjog™t)(a)=(g-e(d))(a) hence e(g-d) = g - ¢e(d). O

Proposition 4.4.4. Let H be a Hopf algebra and let I := Ker(e). Then
Der.(H,-) : Vec — Vec is representable by I/I1* and d : H Ly LN I/1% in

particular
Der.(H,-) = Hom(I/I?,-) and Lie(H°) = Hom(I/I* K).

PROOF. Because of e(id —ue)(a) = e(a) — cue(a) = 0 we have Im(id —¢) C [. Let
i € I. Then we have i = i —¢(i) = (id —¢)(7) hence Im(id —¢) = Ker(e). We have I* 5
(id —¢)(a)(id —€)(b) = ab — e(a)b — ac(b) + e(a)e(b) = (id —e)(ab) — e(a)(id —)(b) —
(id —¢)(b). Hence we have in [/I* the equation (id—¢)(ab) = e(a)(id —¢)(b) +
(id —¢)(a)e(b) so that v(id —¢) : H — I — I/1* is an e-derivation.

Now let D : H — M be an e-derivation. Then D(1) = D(11) = 1D(1) + D(1)1
hence D(1) = 0. It follows D(a) = D(id —¢)(a). From e(I) = 0 we get D(I*) C
e(1)D(I)+ D(I)e(1) = 0 hence there is a unique factorization

1d —€ d=e g [/[2

\\l

Corollary 4.4.5. Let H be a Hopf algebra that is finitely generated a s an algebra.
Then Lie(H?) is finite dimensional.

PrOOF. Let H = K(ay,...,a,). Since H = K& [ we can choose a; = 1 and
az,...,a, € I. Thus any element in i € I can be written as ) aya;, ...a;, so that

I/1I* =Ka; + ...+ @,. This gives the result. O

O
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Proposition 4.4.6. Let H be a commutative Hopf algebra and gM be an H-
module. Then we have Qg = H Q@ [/1* and d : H — H @ [/I? is given by d(a) =
2 a) ® (id —¢)(ag)-

PROOF. Consider the algebra B := H & M with (a,m)(a’,m’)
a’'m). Let G = K-cAlg(H,-). Then we have G(B) C Hom(H, B)
Hom(H, M). An element (¢, D) € Hom(H, B) is in G(B) iff (¢, D)(1
= (1,0), hence (1) = 1 and D(1) = 0, and (p(ab), D(ab)) = a
(¢ D)(a)(p. D)(b) = (p(a). D(a))(#(B). D) = (ola)e(b). (@) D(b) £ Dla)olb).
hence p(ab) = p(a)p(b) and D(ab) = ¢(a)D(b) + D(a)p(b). So (¢, D) is in G(B) iff
¢ € G(H) and D is a p-derivation. The #-multiplication in Hom(H, B) is given by
(g, D) * (¢, D) = (px¢,px D'+ D« ¢') by applying this to an element a € H.
Since (p,0) € G(B) and (ue, D) € G(B) for every e-derivation D, there is a bi-
jection Der.(H, M) = {(ue,D.) € G.(B)} = {(1g,D1) € Gi(B)} = Derg(H, M)
by (ue, D¢) + (1,0) * (ue, D.) = (1,1 x D.) € G1(B) with inverse map (1, D;) —
(5,0) * (1, D1) = (ue, S * Dy) € G(B). Hence we have isomorphisms Derg(H, M) =
Der.(H, M) = Hom(I/I*, M) =2 Homy(H ® I/I*, M).

The universal e-derivation for vector spaces is id —¢ : A — I/I%. The universal
e-derivation for H-modules is D.(a) = 1 ® (id—¢)(a) € A ® I/I*. The universal
l-derivation for H-modules is 1 * D, with (1 * D.)(a) = > aq) @ (id —¢)(ag)) €
AR /I O



