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3. The Lie Algebra of Primitive Elements

Lemma 4.3.1. Let H be a Hopf algebra and H° be its Sweedler dual. If d €
Derg(H,.K.) € Hom(H,K) is a derivation then d is a primitive element of H°.
Furthermore every primitive element d € H° is a derivation in Derg(H, . K.).

PROOF. Let d : H — K be a derivation and let a,b € H. Then (b — d)(a) =
d(ab) = e(a)d(b) + d(a)e(b) = (d(b)e + e(b)d)(a) hence (b — d) = d(b)e + (b)d.
Consequently we have Hd = (H — d) C Ke + Kd so that dim Hd < 2 < oco. This
shows d € H°. Furthermore we have (Ad,a ® b) = (d,ab) = d(ab) = d(a)e(b) +
e(a)d(b)=(dRe,a®@b)+ (c®@d,a®@b) = (lge ®d+d® lyo,a @ b) hence A(d) =
d® lgo + 1go ® d so that d is a primitive element in H°.

Conversely let d € H° be primitive. then d(ab) = (A(d),a ® b) = d(a)e(b) +
e(a)d(b). O

Proposition and Definition 4.3.2. Let H be a Hopf algebra. The set of primi-
tive elements of H will be denoted by Lie(H) and is a Lie algebra. If char(K) =p > 0

then Lie(H) is a restricted Lie algebra or a p-Lie algebra.

PROOF. Let a,b € H be primitive elements. Then A([a,b]) = A(ab — ba) =
(a®@14+1®a)(b@1+12b)—(ba1+1®b)(a®1+1®a)= (ab—ba)@1+1® (ab—ba)
hence Lie(H) C H" is a Lie algebra. If the characteristic of K is p > 0 then we have
(a®@1+1®a)) =a?®@1+1®da’. Thus Lie(H) is a restricted Lie subalgebra of HE

with the structure maps [a,b] = ab — ba and al?! = a?. O

Corollary 4.3.3. Let H be a Hopf algebra. Then the set of left translation in-
variant derivations D : H — H is a Lie algebra under [D,D']| = DD' — D'D. If

char = p then these derivations are a restricted Lie algebra with DP) = Dr .

PrOOF. The map ¥ : H° — H* 2, End(H) is a homomorphism of algebras
by 4.2.6. Hence U(d+d —d' *xd) = ®(d+d —d xd) = ®(d)®(d') — ®(d')P(d).
If d is a primitive element in H° then by 4.2.7 and 4.3.1 the image D := ¥(d) in
End(H) is a left translation invariant derivation and all left translation invariant
derivations are of this form. Since [d,d'] = d*d' — d'*d is again primitive we get that
[D,D'] = DD" — D'D is a left translation invariant derivation so that the set of left
translation invariant derivations Der (H, H) is a Lie algebra resp. a restricted Lie

algebra. 0

Definition 4.3.4. Let H be a Hopf algebra. An element ¢ € H is called cocom-
mutative if TA(c) = A(e), 1. e. if Y cqy @ cpy = D cp) @ cqy. Let C(H) := {c €
H|c is cocommutative }.

Let G(H) denote the set of group like elements of H.

Lemma 4.3.5. Let H be a Hopf algebra. Then the set of cocommutative elements
C(H) is a subalgebra of H and the group like elements G(H) form a linearly inde-

pendent subset of C(H). Furthermore G(H) is a multiplicative subgroup of the group
of units U(C(H)).
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PROOF. It is clear that C'(H) is a linear subspace of H. If a,b € C(H) then
A(ab) = A(a)A(b) = (TA)(a)(7A)(b) = T(A(a)A(b)) = TA(ab) and A(l) =1® 1 =
7A(1). Thus C(H) is a subalgebra of H.

The group like elements obviously are cocommutative and form a multiplicative

group, hence a subgroup of U(C(H)). They are linearly independent by Lemma
2.1.14. ]

Proposition 4.3.6. Let H be a Hopf algebra with S* = idy. Then there is a left
module structure
C(H)® Lie(H)>c®a+> c-a € Lie(H)
with c-a:=Vg(Vg1)(17)(1S®1)(A®1)(c®a) = ZC(l)aS(C(g)) such that

c-[a,b] = [eq) - a, ) - bl.
In particular G(H) acts by Lie automorphisms on Lie(H).

PROOF. The given action is actually the action H @ H — H with h-a =
Y- hayaS(h()), the so-called adjoint action.

We first show that the given map has image in Lie(H). For ¢ € C(H) and a €
Lie(H) we have A(c-a) = A(Y cqyaS(cw))) = D Alcq))(a®@14+1® a)A(S(ce))) =
> Ale)(a®@1)A(S(e(z)) 420 Alee)) (1@a)A(S(cq))) = 22 cyad(cu) @ee)S(ee)+
Yo ¢)S(c) @ cwyaS(cqy) =c¢-a@1+1® ¢ asince ¢ is cocommutative, 5? = idy
and a is primitive.

We show now that Lie(H) is a C'(H)-module. (cd) - a = ) cydnyaS(c@da) =
Y cydmyaS(d))S(ce)) = ¢+ (d- a). Furthermore we have 1-a = 1aS(1) = a.

To show the given formula let a,b € Lie(H) and ¢ € C(H). Then ¢ - [a,b] =
Y- cay(ab—=ba)S(c)) = D cayaS(c@))eEbS(cuy) = c)bS(ce))e@asS(cy) = 2 (cqy
a)(c)-b)=>(cay-b)(c)-a) = D [cay-a, ¢)-b] again since ¢ € C(H ) is cocommutative.

Now let ¢ € G(H). Then g-a = gaS(g) = gag™ since S(g) = g~ ' for any
group like element. Furthermore ¢ - [a,b] = [g - a, g - b] hence g defines a Lie algebra
automorphism of Lie(H ). O

Problem 4.3.1. Show that the adjoint action HQH 3> h®@a + ) hyaS(hq)) €
H makes H an H-module algebra.

Definition and Remark 4.3.7. The algebra K(6) = K[d]/(6*) is called the al-
gebra of dual numbers. Observe that K(§) = K& Kd as a K-module.

We consider 0 as a "small quantity“ whose square vanishes.

The maps p : K(6) — K with p(6) = 0 and j : K — K(J) are algebra homomor-
phism satisfying pj = id.

Let K(8,6") := K[6,0']/(62,6). Then K(§,8") = K& K§ & K& & K§6'. The map
K(d) 3 6 — d6" € K(4,¢") is an injective algebra homomorphism. Furthermore for
every a € K we have an algebra homomorphism ¢, : K(§) 3 § = ad € K(J).

These algebra homomorphisms induce algebra homomorphisms H @ K(§) — H ®
K(0) resp. H®@ K(0) — H @ K(4,4") for every Hopf algebra H.
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Proposition 4.3.8. The map
e’ : Lie(H) — H @ K(§) C H ® K(4,¢")
with ¢ :=1+a® 35 =1+ da is called the exponential map and satisfies
eHlath) — gdaghh
Saa __ Sa
eé&’[a,b] :e eéa;’zo(zgf)—)l’(eé’b)—l‘

Furthermore all elements €* € H @ K(§) are group like in the K(8§)-Hopf algebra
H @ K(9).

PROOF. 1. f(att) — (I+8(a+b))=(14da)(l+db) = edaedh,

2. b2 = 1 4 Saa = 0ol +da) = gaa(e‘ga).

3. Since (14da)(1—0da) = 1 we have (65“) = 1—da. So we get e5¥lab] — 1+6[a,b] =
1+d(a—a)+6(b—>b)+ 6 (ab—ab—ba+ ab) = (1 + da)(1 4 0'b)(1 —da)(1 —4&'b) =
65“65/6(65“)_1(65%)_1.

4. Agy(e®) = Al+a®6) =10k l+(@@1+1Qa)@6 =1Qks 1+
da GK(s) 141 QK (5) da + da GK(s) da = (1 + 5@) QK (5) (1 + 5@) = ¢de QK (5) €% and
€K(5)(€6a) = 5K(6)(1 + 5@) =1+ (56(@) =1. O

Corollary 4.3.9. (Lie(H),e’) is the kernel of the group homomorphism
b Grgy(H 5 K()) — G(H).

PrROOF. p=1®p: HRK(() - H® K= H is a homomorphism of K-algebras.

We show that it preserves group like elements. Observe that group like elements in
H @ K(J) are defined by the Hopf algebra structure over K(d). Let g € Ggs)(H ®
K(4)). Then (Ag ®1)(g) = g @xs) g and (eg @ 1)(g) = 1 € K(9).

Since p : K(6) — K is an algebra homomorphism the following diagram commutes

(H @ K(3)) @) (H @ K(8)) =+ H @ H @ K()

(18p)®(1®p) 1®p

(HRK) @ (HOK) —s— Ho HOK

We identify elements along the isomorphisms. Thus we get (Ay @ 1g)(1g @ p)(g) =
(lnen @ p)(Ar @ lr@)(9) = ((1n @ p) Bxe) (1u @ p))(9 Bxe) 9) = (1u @ p)(
(1g ®@p)(g), so that 1y @p: G (H @K(S)) — G(H). Now we have (15 ® p)(g9’)
(1g @p)(9)(1g @ p)(¢') so that 1y @ p is a group homomorphism.

Nowlet g =go®1+¢g, ®9 € GK((g)(H(@ K(9)) € HRK® H ®Kd. Then we have
(Il ®@p)(g) =1iff go =1iff g = 1g @ lgs) + g1 ® 6. Furthermore we have

Anere)(9) = 9 Oxe) 9 =

lg @1 @ lge)y + Ar(g) ® 6 = (g @ ki) + 61 ® 6) i) (1n @ ki) + 1 ® 6)
=1lp@1lp @k + (@@ 1lp+1lp @ ) ® 6 =

A1) = @ 1lg+ 1y ® g1.
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Similarly we have ex(s))(g) = 1 iff 1 @ 1 4 ¢(g,) @6 = 1iff e(g1) = 0. O



