CHAPTER 4

The Infinitesimal Theory

3. The Lie Algebra of Primitive Elements

Lemma 4.3.1. Let H be a Hopf algebra and H° be its Sweedler dual. If $d \in \operatorname{Der}_{\mathbb{K}}(H,_{\varepsilon}\mathbb{K}_{\varepsilon}) \subseteq \operatorname{Hom}(H,\mathbb{K})$ is a derivation then d is a primitive element of H° . Furthermore every primitive element $d \in H^{\circ}$ is a derivation in $\operatorname{Der}_{\mathbb{K}}(H,_{\varepsilon}\mathbb{K}_{\varepsilon})$.

PROOF. Let $d: H \to \mathbb{K}$ be a derivation and let $a, b \in H$. Then $(b \to d)(a) = d(ab) = \varepsilon(a)d(b) + d(a)\varepsilon(b) = (d(b)\varepsilon + \varepsilon(b)d)(a)$ hence $(b \to d) = d(b)\varepsilon + \varepsilon(b)d$. Consequently we have $Hd = (H \to d) \subseteq \mathbb{K}\varepsilon + \mathbb{K}d$ so that $\dim Hd \leq 2 < \infty$. This shows $d \in H^{\circ}$. Furthermore we have $\langle \Delta d, a \otimes b \rangle = \langle d, ab \rangle = d(ab) = d(a)\varepsilon(b) + \varepsilon(a)d(b) = \langle d \otimes \varepsilon, a \otimes b \rangle + \langle \varepsilon \otimes d, a \otimes b \rangle = \langle 1_{H^{\circ}} \otimes d + d \otimes 1_{H^{\circ}}, a \otimes b \rangle$ hence $\Delta(d) = d \otimes 1_{H^{\circ}} + 1_{H^{\circ}} \otimes d$ so that d is a primitive element in H° .

Conversely let $d \in H^o$ be primitive. then $d(ab) = \langle \Delta(d), a \otimes b \rangle = d(a)\varepsilon(b) + \varepsilon(a)d(b)$.

Proposition and Definition 4.3.2. Let H be a Hopf algebra. The set of primitive elements of H will be denoted by $\mathbf{Lie}(H)$ and is a Lie algebra. If $\mathrm{char}(\mathbb{K}) = p > 0$ then $\mathbf{Lie}(H)$ is a restricted Lie algebra or a p-Lie algebra.

PROOF. Let $a, b \in H$ be primitive elements. Then $\Delta([a, b]) = \Delta(ab - ba) = (a \otimes 1 + 1 \otimes a)(b \otimes 1 + 1 \otimes b) - (b \otimes 1 + 1 \otimes b)(a \otimes 1 + 1 \otimes a) = (ab - ba) \otimes 1 + 1 \otimes (ab - ba)$ hence $\mathbf{Lie}(H) \subseteq H^L$ is a Lie algebra. If the characteristic of \mathbb{K} is p > 0 then we have $(a \otimes 1 + 1 \otimes a)^p = a^p \otimes 1 + 1 \otimes a^p$. Thus $\mathbf{Lie}(H)$ is a restricted Lie subalgebra of H^L with the structure maps [a, b] = ab - ba and $a^{[p]} = a^p$.

Corollary 4.3.3. Let H be a Hopf algebra. Then the set of left translation invariant derivations $D: H \to H$ is a Lie algebra under [D, D'] = DD' - D'D. If $\operatorname{char} = p$ then these derivations are a restricted Lie algebra with $D^{[p]} = D^p$.

PROOF. The map $\Psi: H^o \to H^* \xrightarrow{\Phi} \operatorname{End}(H)$ is a homomorphism of algebras by 4.2.6. Hence $\Psi(d*d'-d'*d) = \Phi(d*d'-d'*d) = \Phi(d)\Phi(d') - \Phi(d')\Phi(d)$. If d is a primitive element in H^o then by 4.2.7 and 4.3.1 the image $D:=\Psi(d)$ in $\operatorname{End}(H)$ is a left translation invariant derivation and all left translation invariant derivations are of this form. Since [d,d']=d*d'-d'*d is again primitive we get that [D,D']=DD'-D'D is a left translation invariant derivation so that the set of left translation invariant derivations $\operatorname{Der}_{\mathbb{K}}^H(H,H)$ is a Lie algebra resp. a restricted Lie algebra.

Definition 4.3.4. Let H be a Hopf algebra. An element $c \in H$ is called *cocommutative* if $\tau \Delta(c) = \Delta(c)$, i. e. if $\sum c_{(1)} \otimes c_{(2)} = \sum c_{(2)} \otimes c_{(1)}$. Let $C(H) := \{c \in H | c \text{ is cocommutative } \}$.

Let G(H) denote the set of group like elements of H.

Lemma 4.3.5. Let H be a Hopf algebra. Then the set of cocommutative elements C(H) is a subalgebra of H and the group like elements G(H) form a linearly independent subset of C(H). Furthermore G(H) is a multiplicative subgroup of the group of units U(C(H)).

PROOF. It is clear that C(H) is a linear subspace of H. If $a, b \in C(H)$ then $\Delta(ab) = \Delta(a)\Delta(b) = (\tau\Delta)(a)(\tau\Delta)(b) = \tau(\Delta(a)\Delta(b)) = \tau\Delta(ab)$ and $\Delta(1) = 1 \otimes 1 = \tau\Delta(1)$. Thus C(H) is a subalgebra of H.

The group like elements obviously are cocommutative and form a multiplicative group, hence a subgroup of U(C(H)). They are linearly independent by Lemma 2.1.14.

Proposition 4.3.6. Let H be a Hopf algebra with $S^2 = id_H$. Then there is a left module structure

$$C(H) \otimes \mathbf{Lie}(H) \ni c \otimes a \mapsto c \cdot a \in \mathbf{Lie}(H)$$

with $c \cdot a := \nabla_H(\nabla_H \otimes 1)(1 \otimes \tau)(1 \otimes S \otimes 1)(\Delta \otimes 1)(c \otimes a) = \sum_{a \in S} c_{(1)}aS(c_{(2)})$ such that

$$c \cdot [a, b] = \sum [c_{(1)} \cdot a, c_{(2)} \cdot b].$$

In particular G(H) acts by Lie automorphisms on Lie(H).

PROOF. The given action is actually the action $H \otimes H \to H$ with $h \cdot a = \sum h_{(1)} a S(h_{(2)})$, the so-called *adjoint action*.

We first show that the given map has image in $\mathbf{Lie}(H)$. For $c \in C(H)$ and $a \in \mathbf{Lie}(H)$ we have $\Delta(c \cdot a) = \Delta(\sum c_{(1)}aS(c_{(2)})) = \sum \Delta(c_{(1)})(a \otimes 1 + 1 \otimes a)\Delta(S(c_{(2)})) = \sum \Delta(c_{(1)})(a \otimes 1)\Delta(S(c_{(2)})) + \sum \Delta(c_{(2)})(1 \otimes a)\Delta(S(c_{(1)})) = \sum c_{(1)}aS(c_{(4)})\otimes c_{(2)}S(c_{(3)}) + \sum c_{(3)}S(c_{(2)})\otimes c_{(4)}aS(c_{(1)}) = c \cdot a \otimes 1 + 1 \otimes c \cdot a \text{ since } c \text{ is cocommutative, } S^2 = \mathrm{id}_H$ and a is primitive.

We show now that $\mathbf{Lie}(H)$ is a C(H)-module. $(cd) \cdot a = \sum c_{(1)} d_{(1)} a S(c_{(2)} d_{(2)}) = \sum c_{(1)} d_{(1)} a S(d_{(2)}) S(c_{(2)}) = c \cdot (d \cdot a)$. Furthermore we have $1 \cdot a = 1aS(1) = a$.

To show the given formula let $a, b \in \text{Lie}(H)$ and $c \in C(H)$. Then $c \cdot [a, b] = \sum c_{(1)}(ab-ba)S(c_{(2)}) = \sum c_{(1)}aS(c_{(2)})c_{(3)}bS(c_{(4)}) - \sum c_{(1)}bS(c_{(2)})c_{(3)}aS(c_{(4)}) = \sum (c_{(1)}aS(c_{(2)})c_{(3)}aS(c_{(4)}) = \sum (c_{(1)}aS(c_{(4)})c_{(4)}aS(c_{(4)}) = \sum$

Now let $g \in G(H)$. Then $g \cdot a = gaS(g) = gag^{-1}$ since $S(g) = g^{-1}$ for any group like element. Furthermore $g \cdot [a, b] = [g \cdot a, g \cdot b]$ hence g defines a Lie algebra automorphism of $\mathbf{Lie}(H)$.

Problem 4.3.1. Show that the adjoint action $H \otimes H \ni h \otimes a \mapsto \sum h_{(1)} aS(h_{(2)}) \in H$ makes H an H-module algebra.

Definition and Remark 4.3.7. The algebra $\mathbb{K}(\delta) = \mathbb{K}[\delta]/(\delta^2)$ is called the algebra of *dual numbers*. Observe that $\mathbb{K}(\delta) = \mathbb{K} \oplus \mathbb{K}\delta$ as a \mathbb{K} -module.

We consider δ as a "small quantity" whose square vanishes.

The maps $p: \mathbb{K}(\delta) \to K$ with $p(\delta) = 0$ and $j: \mathbb{K} \to \mathbb{K}(\delta)$ are algebra homomorphism satisfying $pj = \mathrm{id}$.

Let $\mathbb{K}(\delta, \delta') := \mathbb{K}[\delta, \delta']/(\delta^2, {\delta'}^2)$. Then $\mathbb{K}(\delta, \delta') = \mathbb{K} \oplus \mathbb{K}\delta \oplus \mathbb{K}\delta' \oplus \mathbb{K}\delta\delta'$. The map $\mathbb{K}(\delta) \ni \delta \mapsto \delta\delta' \in \mathbb{K}(\delta, \delta')$ is an injective algebra homomorphism. Furthermore for every $\alpha \in \mathbb{K}$ we have an algebra homomorphism $\varphi_{\alpha} : \mathbb{K}(\delta) \ni \delta \mapsto \alpha\delta \in \mathbb{K}(\delta)$.

These algebra homomorphisms induce algebra homomorphisms $H \otimes \mathbb{K}(\delta) \to H \otimes \mathbb{K}(\delta)$ resp. $H \otimes \mathbb{K}(\delta) \to H \otimes \mathbb{K}(\delta, \delta')$ for every Hopf algebra H.

Proposition 4.3.8. The map

$$e^{\delta^{-}}: \mathbf{Lie}(H) \longrightarrow H \otimes \mathbb{K}(\delta) \subseteq H \otimes \mathbb{K}(\delta, \delta')$$

with $e^{\delta a} := 1 + a \otimes \delta = 1 + \delta a$ is called the exponential map and satisfies

$$e^{\delta(a+b)} = e^{\delta a} e^{\delta b},$$

$$e^{\delta \alpha a} = \varphi_{\alpha}(e^{\delta a}),$$

$$e^{\delta \delta'[a,b]} = e^{\delta a} e^{\delta' b} (e^{\delta a})^{-1} (e^{\delta' b})^{-1}.$$

Furthermore all elements $e^{\delta a} \in H \otimes \mathbb{K}(\delta)$ are group like in the $\mathbb{K}(\delta)$ -Hopf algebra $H \otimes \mathbb{K}(\delta)$.

PROOF. 1. $e^{\delta(a+b)} = (1 + \delta(a+b)) = (1 + \delta a)(1 + \delta b) = e^{\delta a}e^{\delta b}$.

- 2. $e^{\delta \alpha a} = 1 + \delta \alpha a = \varphi_{\alpha}(1 + \delta a) = \varphi_{\alpha}(e^{\delta a}).$
- 3. Since $(1+\delta a)(1-\delta a) = 1$ we have $(e^{\delta a}) = 1-\delta a$. So we get $e^{\delta \delta'[a,b]} = 1+\delta[a,b] = 1+\delta(a-a)+\delta'(b-b)+\delta\delta'(ab-ab-ba+ab) = (1+\delta a)(1+\delta'b)(1-\delta a)(1-\delta'b) = e^{\delta a}e^{\delta'b}(e^{\delta a})^{-1}(e^{\delta'b})^{-1}$.
- 4. $\Delta_{\mathbb{K}(\delta)}(e^{\delta a}) = \Delta(1 + a \otimes \delta) = 1 \otimes_{\mathbb{K}(\delta)} 1 + (a \otimes 1 + 1 \otimes a) \otimes \delta = 1 \otimes_{\mathbb{K}(\delta)} 1 + \delta a \otimes_{\mathbb{K}(\delta)} 1 + 1 \otimes_{\mathbb{K}(\delta)} \delta a + \delta a \otimes_{\mathbb{K}(\delta)} \delta a = (1 + \delta a) \otimes_{\mathbb{K}(\delta)} (1 + \delta a) = e^{\delta a} \otimes_{\mathbb{K}(\delta)} e^{\delta a}$ and $\varepsilon_{\mathbb{K}(\delta)}(e^{\delta a}) = \varepsilon_{\mathbb{K}(\delta)}(1 + \delta a) = 1 + \delta \varepsilon(a) = 1$.

Corollary 4.3.9. (Lie(H), e^{δ}) is the kernel of the group homomorphism $p: G_{\mathbb{K}(\delta)}(H \otimes \mathbb{K}(\delta)) \longrightarrow G(H)$.

PROOF. $p=1\otimes p: H\otimes \mathbb{K}(\delta)\to H\otimes \mathbb{K}=H$ is a homomorphism of \mathbb{K} -algebras. We show that it preserves group like elements. Observe that group like elements in $H\otimes \mathbb{K}(\delta)$ are defined by the Hopf algebra structure over $\mathbb{K}(\delta)$. Let $g\in G_{\mathbb{K}(\delta)}(H\otimes \mathbb{K}(\delta))$. Then $(\Delta_H\otimes 1)(g)=g\otimes_{\mathbb{K}(\delta)}g$ and $(\varepsilon_H\otimes 1)(g)=1\in \mathbb{K}(\delta)$.

Since $p: \mathbb{K}(\delta) \to \mathbb{K}$ is an algebra homomorphism the following diagram commutes

$$(H \otimes \mathbb{K}(\delta)) \otimes_{\mathbb{K}(\delta)} (H \otimes \mathbb{K}(\delta)) \xrightarrow{\cong} H \otimes H \otimes \mathbb{K}(\delta)$$

$$\downarrow^{(1 \otimes p) \otimes (1 \otimes p)} \qquad \qquad \downarrow^{1 \otimes p}$$

$$(H \otimes \mathbb{K}) \otimes (H \otimes \mathbb{K}) \xrightarrow{\cong} H \otimes H \otimes \mathbb{K}.$$

We identify elements along the isomorphisms. Thus we get $(\Delta_H \otimes 1_{\mathbb{K}})(1_H \otimes p)(g) = (1_{H \otimes H} \otimes p)(\Delta_H \otimes 1_{\mathbb{K}(\delta)})(g) = ((1_H \otimes p) \otimes_{\mathbb{K}(\delta)} (1_H \otimes p))(g \otimes_{\mathbb{K}(\delta)} g) = (1_H \otimes p)(g) \otimes (1_H \otimes p)(g)$, so that $1_H \otimes p : G_{\mathbb{K}(\delta)}(H \otimes \mathbb{K}(\delta)) \to G(H)$. Now we have $(1_H \otimes p)(gg') = (1_H \otimes p)(g)(1_H \otimes p)(g')$ so that $1_H \otimes p$ is a group homomorphism.

Now let $g = g_0 \otimes 1 + g_1 \otimes \delta \in G_{\mathbb{K}(\delta)}(H \otimes \mathbb{K}(\delta)) \subseteq H \otimes \mathbb{K} \oplus H \otimes \mathbb{K} \delta$. Then we have $(1_H \otimes p)(g) = 1$ iff $g_0 = 1$ iff $g = 1_H \otimes 1_{\mathbb{K}(\delta)} + g_1 \otimes \delta$. Furthermore we have

$$\Delta_{H \otimes \mathbb{K}(\delta)}(g) = g \otimes_{\mathbb{K}(\delta)} g \iff 1_H \otimes 1_H \otimes 1_{\mathbb{K}(\delta)} + \Delta_H(g_1) \otimes \delta = (1_H \otimes 1_{\mathbb{K}(\delta)} + g_1 \otimes \delta) \otimes_{\mathbb{K}(\delta)} (1_H \otimes 1_{\mathbb{K}(\delta)} + g_1 \otimes \delta) \\
= 1_H \otimes 1_H \otimes 1_{\mathbb{K}(\delta)} + (g_1 \otimes 1_H + 1_H \otimes g_1) \otimes \delta \iff \Delta_H(g_1) = g_1 \otimes 1_H + 1_H \otimes g_1.$$

Similarly we have $\varepsilon_{\mathbb{K}(\delta)}(g) = 1$ iff $1 \otimes 1 + \varepsilon(g_1) \otimes \delta = 1$ iff $\varepsilon(g_1) = 0$.