CHAPTER 4

The Infinitesimal Theory
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2. Derivations

Definition 4.2.1. Let A be a K-algebra and 4M4 be an A-A-bimodule (with
identical K-action on both sides). A linear map D : A — M is called a derivation if

D(ab) = aD(b) + D(a)b.

The set of derivations Derg(A, 4M4) is a K-module and a functor in 4 M4.
By induction one sees that D satisfies

D(ay...a,) = Z ay...ai—1D(a;)aipr ... ay.
=1
Let A be a commutative K-algebra and 4M be an A-module. Consider M as
an A-A-bimodule by ma := am. We denote the set of derivations from A to M by
Derg (A, M)..

Proposition 4.2.2. 1. Let A be a K-algebra. Then the functor Derg(A,-) :
A-Mod-A — Vec is representable by the module of differentials 4.
2. Let A be a commutative K-algebra. Then the functor Derg(A,-). : A-Mod

— Vec is representable by the module of commutative differentials Q5.

PROOF. 1. Represent A as a quotient of a free K-algebra A := K(X;|1 € J)/I
where B = K(X;|i¢ € J) is the free algebra with generators X;. We first prove the
theorem for free algebras.

a) A representing module for Derg(B,-) is (Qp,d : B — Qpg) with

p:=BRFdXieJ)®B
where F(dX;|i € J) is the free K-module on the set of formal symbols {dX;|i € J}
as a basis.

We have to show that for every derivation D : B — M there exists a unique
homomorphisms ¢ : Qg — M of B-B-bimodules such that the diagram

B—% +0p

M
commutes. The module 25 is a B-B-bimodule in the canonical way. The products
X1 ... X, of the generators X; of B form a basis for B. For any product X;...X,
we define d(X; ... X,) :=> " Xi...X;o1 ®dX; ® Xiy1 ... X, in particular d(X;) =
1®dX;®1. To see that d is a derivation it suffices to show this on the basis elements:
d( X1 .. Xe X1 ... Xn)

=30 X1 XL ®dX;® Xy X Xpgr - X

+ Z;?:Hl Xioo XeXgy1 . X;m1 @dX; @ Xjpr ... X,

=d(X1... Xp)Xeg1 - X + X1 Xpd(Xpgg1 - .- X3)
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Now let D : B — M be a derivation. Define ¢ by ¢(1 @ dX; @ 1) := D(X;). This

map obviously extends to a homomorphism of B-B-bimodules. Furthermore we have

hence pd = D.

To show the uniqueness of p let ¥ : Qg — M be a bimodule homomorphism such
that v»d = D. Then ¢(1 @ dX; ® 1) = ¥d(X;) = D(X;) = p(1 ® dX; ® 1). Since ¢
and ¢ are B-B-bimodules homomorphisms this extends to ¥ = ¢.

b) Now let A := K(X;|¢ € J)/I be an arbitrary algebra with B = K(X;|: € J)
free. Define

Ny :=Qp/(IOQs + Qpl + Bdg(l)+ ds(I)B).

We first show that IQg+Qpl+ Bdg(l)+dp(l)B is a B-B-subbimodule. Since Qg and
I are B-B-bimodules the terms /g and Q5! are bimodules. Furthermore we have
de(L)b/ = de(lb/) — deB(b/) € BdB([) + [QB hence [QB + QB[ + BdB([) + dB([)B
is a bimodule.

Now IQp and Qpl are subbimodules of IQp + Qpl + Bdg(l) + dg(I)B. Hence
A = B/I acts on both sides on Q4 so that 24 becomes an A-A-bimodule.

Let v : Qg — Q4 and also v : B — A be the residue homomorphisms. Since
vdp(i) € vdg(l) = 0 C Q4 we get a unique factorization map dg : A — Q4 such that

BLQB

AT\QA

commutes. Since d4(b) = dp(b) it is clear that d, is a derivation.

Let D : A — M be a derivation. The A-A-bimodule M is also a B-B-bimodule by
bm = bm. Furthermore Dv : B — A — M is again a derivation. Let pp : Qg — M
be the unique factorization map for the B-derivation Dv. Consider the following
diagram

BLQB

|

Ay e

N
M
We want to construct ¥ such that the diagram commutes. Let 1w € [Qp. Then
pliw) = Eap_(w) = 0 and similarly p(wi) = 0. Let bdg(i) € Bdg(l) then p(bdg(i)) =
bpdp(i) = bD(7) = 0 and similarly ¢(dg()b) = 0. Hence o vanishes on IQp + Qpl +
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Bdg(I)+dg(I)B and thus factorizes through a unique map ¢ : Q4 — M. Obviously
¥ is a homomorphism of A-A-bimodules. Furthermore we have Dv = ¢dg = Yvdg =
Ydav and, since v is surjective, D = d4. It is clear that ¢ is uniquely determined
by this condition.

2. If A is commutative then we can write A = K[X;|t € J]/I and Qf = B®
F(dX;). With Q4 = Q%/(19Q% + Bdg(l)) the proof is analogous to the proof in the

noncommutative situation. O

Remark 4.2.3. 1. Q4 is generated by d(A) as a bimodule, hence all elements
are of the form . a;d(a})a?. These elements are called differentials.

2. If A=K(X;)/I, then Q4 is generated as a bimodule by the elements {d(X;)}.

3. Let f € B =K(X;). Let B be the algebra opposite to B (with opposite
multiplication). Then Qp = B® F(dX;)® B is the free B® B left module over the
free generating set {d(X;)}. Hence d(f) has a unique representation

N9

A =2 5x

d(X;)

with uniquely defined coefficients

af

B ® B,
8XZ-€ @

In the commutative situation we have unique coefficients

af
IX;

e K[X;].

4. We give the following examples for part 3:
0X;

ax, = dij,
ag(;f? =1® Xo,
82()1()2(2 =X, ®1,
Oy,
N o
This is obtained by direct calculation or by the product rule
o eg e
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The product rule follows from

d(fg) =d(f)g+ fd(g) =) (1 ®g)

af
0X;

Let A =K(X;)/I. If f €[ then d(f) =da(f) =0 hence

of o
G (%) = 0.

These are the defining relations for the A-A-bimodule 24 with the generators d4(X;).

dg
0X;

+(f®l) )d(X5).

For motivation of the quantum group case we consider an affine algebraic group
(¢ with representing commutative Hopf algebra A. Recall that Hom(A, R) is an alge-
bra with the convolution multiplication for every R € K-cAlg and that G(R) =
K-cAlg(A, R) € Hom(A, R) is a subgroup of the group of units of the algebra
Hom(A, R).

Definition and Remark 4.2.4. A linear map T : A — A is called left transla-
tion invariant, if the following diagram functorial in R € K-cAlg commutes:

G(R) x Hom(A, R) * Hom(A, R)

1®@Hom(T,R) Hom(T,R)

G(R) x Hom(A, R)

Hom(A, R)
1. e. if we have
Vg € G(R),Vz € Hom(A,R): g*(zoT)=(g*z)oT.

This condition is equivalent to

(1) AAOT=(1A®T)OAA.

In fact if (1) holds then g* (z 0T) = Ve(g @ 2)(14 @ T)A4 = Vi(g @ 2)A4T =
(gxax)oT.

Conversely if the diagram commutes, then take R = A, g = 14 and we get

VA(lA ® .I)(lA & T)AA = 1A * (”E e] T) = (1A * ”E) ol = VA(lA & $)AAT for all = €
Hom(A, A). To get (1) it suffices to show that the terms V 4(14 ® ) can be cancelled
in this equation. Let > "  a;®b; € A®A be given such that V4(14®2)(>° a;®b;) =0
for all # € Hom(A, A) and choose such an element with a shortest representation (n
minimal). Then > a;z(b;) = 0 for all z. Since the b; are linearly independent in such
a shortest representation, there are x; with z;(b;) = 6;;. Hence a; = > a;x;(b;) =0

and thus > a; ® b; = 0. From this follows (1).

Definition 4.2.5. Let H be an arbitrary Hopf algebra. An element 7" €
Hom(H, H) is called left translation invariant if it satisfies
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Proposition 4.2.6. Let H be an arbitrary Hopf algebra. Then ® : H* —
End(H) with ®(f) := id*ugf ts an algebra monomorphism satisfying
O(fxg)=d(f)o?(g).
The image of @ is precisely the set of left translation invariant elements T' € End(H).

ProoF. For f € Hom(H,K) we have uy f € End(H) hence id xugy f € End(H).
Thus @ is a well defined homomorphism. Observe that

(f)(a) = (idu * wn f)(a) = Y ap flae).

® is injective since it has a retraction End(H) 3 g — egog € Hom(H, K). In fact
we have (c®(f))(a) = (X a)f(aw)) = X elaw)flaw) = Felaq)a) = f(a)
hence e®(f) = f.

The map @ preserves the algebra unit since ®(1y«) = ®(cy) = idy *uyey = idgy.

The map @ is compatible with the multiplication: ®(f * g)(a) = > aq)(f *
9aw) = Y an)flag)glae) = Y (dxunf)law))glae) = ()X anglaw)) =
3(1)9(g)(a) %o that &(f + g) = &(F] o ®(g).

For each f € H* the element ®(f) is left translation invariant since A®(f)(a) =
A e fle)) = 2 aq) ®ap flaE) = (10 (f)A(a).

Let T' € End(H) be left translation invariant then S+7 = Vy(S®@1)(1®@T)Ag =
Vu(S @ D)AT = ugeyT. Thus ®(eT') = id*uyeyT =id*S +« T =T, so that T' is
in the image of ®. O

Proposition 4.2.7. Let d € Hom(H,K) and ®(d) = D € Hom(H, H) be given.
The following are equivalent:

1. d: H— K. is a derivation.
2. D: H — ygHpy is a (left translation invariant) derivation.

In particular ® induces an isomorphism between the set of derivations d : H — K,
and the set of left translation invariant derivations D : H — gHpy.



