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CHAPTER 4

The Infinitesimal Theory

1. Integrals and Fourier Transforms
Assume for this chapter that K is a field.

Lemma 4.1.1. Let C be a finite dimensional coalgebra. Every right C'-comodule
M is a left C*-module by c*m = Y mp(c*, mq)) and conversely by 6(m) = ), cim®
¢; where Y ¢f @ ¢; is the dual basis.
ProOF. We check that M becomes a left C*-module
(e*™)ym =Y muny(e™d™,ma)) = 2 man (e, may) (™, me))
=Y man(c, ma)) = c*("m).
It is easy to check that the two constructions are inverses of each other. In particular

assume that M is a right C-comodule. Choose m; such that 6(m) = > m; ®¢;. Then
c}*m:EmZ'(c;,c» =mjand Y, cm®@¢; =Y, m; @ ¢; = d(m). O

Definition 4.1.2. 1. Let A be an algebra with augmentation ¢ : A — K, an
algebra homomorphism. Let M be a left A-module. Then M = {m € M|am =
e(a)m} is called the space of left invariants of M.

This defines a functor 4-: A — Mod — Vec.

2. Let C be a coalgebra with a group-like element 1 € C. Let M be a right
C-comodule. Then MY := {m € M|§(m) = m @ 1} is called the space of right
coinvariants of M.

This defines a functor -<°“ : Comod-C — Vec.

Lemma 4.1.3. Let C be a finite dimensional coalgebra with a group like element
1 € C. Then A := C* is an augmented algebra with augmentation ¢ : C* 3 a —
(a,1) € K. Let M be a right C-comodule. Then M is a left C*-module and we have

C*M — MCOC‘

PROOF. Since 1 € C is group-like we have e4(ab) = (ab,1) = (a,1)(b,1) =
€A(CL)€A(Z)) and SA(lA) = <1A7 1c> = 50(1()) = 1.

We have m € M<H iff §(m) = Yoman @ may = m @ 1 Y man(a,may) =
m(a, 1) forall a € A = C* and by identifying C*®@C = Hom(C*, C*) iff am = e4(a)m
iff meAM. O

Remark 4.1.4. The theory of Fourier transforms contains the following state-
ments. Let H be the (Schwartz) space of infinitely differentiable functions f : R — C,
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118 4. THE INFINITESIMAL THEORY

such that f and all derivatives rapidly decrease at infinity. (f decreases rapidly at in-

finity if |2|™ f(x) is bounded for all m.) This space is an algebra (without unit) under

the multiplication of values. There is a second multiplication on H, the convolution
+co

(f g)(e) = @) [ f)gle — 1)

The Fourier transform is a homomorphism = : H — H defined by
“+ oo

fw) = o [ fmeear
It satisfies the identity (f * g)f = ff] hence it is an algebra homomorphism. We want
to find an analogue of this theory for finite quantum groups.

A similar example is the following. Let G be a locally compact topological group.
Let p be the (left) Haar measure on G and [ f := [, f(x)du(x) be the Haar integral.

The Haar measure is left invariant in the sense that p(F) = u(gF) for all g € G
and all compact subsets E of G. The Haar measure exists and is unique up to a
positive factor. The Haar integral is translation invariant i.e. for all y € G we have
S fyz)dp(x) = [ fz)dp(z).

If p is a left-invariant Haar measure then there is a continuous homomorphism
mod : G — (RY,:) such that [ f(zy™)du(z) = mod (y) [(f(z)du(z). The homo-
morphism g does not depend on f and is called the modulus of G. The group G is
called unimodular if the homomorphism mod is the identity.

If G is a compact, or discrete, or Abelian group, or a connected semisimple or
nilpotent Lie group, then G is unimodular.

Let GG be a quantum group (or a quantum monoid) with function algebra H an
arbitrary Hopf algebra. We also use the algebra of linear functionals H* = Hom(H, K)
(called the bialgebra of GG in the French literature). The operation H* @ H 3 a ®
f = (a,f) € K is nondegenerate on both sides. We denote the elements of H by
fig,h € H, the elements of H* by a,b,c € H*, the (non existing) elements of the
quantum group G by z,y,z € G.

Remark 4.1.5. In 2.4.8 we have seen that the dual vector space H* of a finite
dimensional Hopf algebra H is again a Hopf algebra. The Hopf algebra structures
are connected by the evaluation bilinear form

ev: HH@H3>a® fr—(a,f) e K

as follows:
(a ® bv Zf(l) f(2) = <abv f>7 <Z aq) @ a(2), f ® g> = <a7 fg>7
(a,1) = e(a), (L f) =<(f),
(a,5(f)) = (S(a), f).
Definition 4.1.6. 1. The linear functionals a € H* are called generalized inte-
grals on H ([Riesz-Nagy] S.123).
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2. An element [ € H* is called a left (invariant) integral on H if

af = <CL7 1H>f
or af = 5H*(a)f for all @ € H*.
3. An element § € H is called a left integral in H if

fo=e(f)o
for all f € H.
4. The set of left integrals in H is denoted by Int;(H), the set of right integrals
by Int,.(H). The set of left (right) integrals on H is Int;(H*) (Int,.(H*)).
5. A Hopf algebra H is called unimodular if Int;(H) = Int,(H).

Lemma 4.1.7. The left integrals Int;(H*) form a two sided ideal of H*. If the
antipode S is bijective then S induces an isomorphism S : Int;(H*) — Int,.(H*).

PROOF. For [ in Int;(H*) we have a [ = ¢(a) [ € Int;(H*) and a [ b= c(a) [b
hence [b € Int,(H*). If S is bijective then the induced map S : H* — H* is
also bijective and satisfies S([)b = S([)S(S7(b)) = S(S~(b) J) = S(J)e(b) hence
S(f) € Int,(H"). O

Remark 4.1.8. Maschke’s Theorem has an extension to finite dimensional Hopf
algebras: e([) # 0 iff H* is semisimple.

Corollary 4.1.9. Let H be a finite dimensional Hopf algebra. Then H* is a left
H*-module by the usual multiplication, hence a right H-comodule. We have

(H*)*H = Int,(H").
PROOF. By definition we have Int;(H*) = 7" H*. O

Example 4.1.10. Let G be a finite group. Let H := Map(G,K) be the Hopf
algebra defined by the following isomorphism

K% = Map(G, K) = Hom(KG, K) = (KG)*.

This isomorphism between the vector space K of all set maps from the group G to
the base ring K and the dual vector space (KG)* of the group algebra KG defines the
structure of a Hopf algebra on K.

We regard H := K% as the function algebra on the set (. In the sense of algebraic
geometry this is not quite true. The algebra K represents a functor from K-cAlg
to Set that has G as value for all connected algebras A in particular for all field
extensions of K.

As before we use the map ev : KG ® K — K. The multiplication of K% is
given by pointwise multiplication of maps since (z, ff') = Q_zq) ® 2@, f @ f) =
(z @z, f@f) = (x, f){x, f") for all f,f € K and all + € G. The unit element
lgs of K“ is the map ¢ : KG — K restricted to GG, hence e(z) = 1 = (z, 1gs) for all
z € (. The antipode of f € K% is given by S(f)(z) = (x, S(f)) = f(z71).
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The elements of the dual basis (z*|z € G) with (z,y*) = d,, considered as maps
from G to K form a basis of KY. They satisfy the conditions

z*y" = 0y 2" and Zaj* = lgo
zeG
since (z, 2" y*) = (2, 2%)(2,¥%) = 6,00y = 0oy(z,2") and (2, ) o 2%) = 1 = (2, Ia).
Hence the dual basis (z*|x € G) is a decomposition of the unit into a set of
minimal orthogonal idempotents and the algebra of K® has the structure

K¢ = @pecKe 2K x ... x K

In particular K% is commutative and semisimple.

The diagonal of K° is
yelG y,2€Gyz=x

since
(z@u, A(z*)) = (2u, %) = 0ppu = 0,-1,, = ZyeG Oy,20y=14
=2z Y N u, (y2)) = (2 @ u, 3 coy™ ® (¥~ 1)),
Let @ € KG. Then a defines a map @ : G — K € K% by a = Y, a(z)z. For
arbitrary f € K and a € KG this gives

(a, f) = FOO_alz)x) = () f(x).

z€G z€G
The counit of K“ is given by e(z*) = §, . where e € (¢ is the unit element.
The antipode is, as above, S(z*) = (z71)*.
We consider H = K% as the function algebra on the finite group GG and KG as
the dual space of H = K% hence as the set of distributions on H.
Then

(1) [=) zeH =KG

reG

is a (two sided) integral on H since ) cyr =3 ot =¢c(Y)D ,cc® =D ,cq Y.

We write
[ f@dei= 1.5 =3 fia),

z€G
We have seen that there is a decomposition of the unit 1 € K% into a set of
primitive orthogonal idempotents {z*|z € G} such that every element f € K% has
a unique representation f = Y f(z)z*. Since [y* = > . (z,y*) we get [ fy* =
2eec(® fy7) = 20 f(@)y™ () = f(y) hence

£ =3[ el @y
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Problem 4.1.1. Describe the group valued functor K-cAlg(K%, —) in terms of
sets and their group structure.

Definition and Remark 4.1.11. Let K be an algebraicly closed field and let
be a finite abelian group (replacing R above). Assume that the characteristic of K
does not divide the order of GG. Let H = K“. We identify K = Hom (K&, K) along
the linear expansion of maps as in Example 2.1.10.

Let us consider the set ¢ := {x : G — K*|x group homomorphism}. Since K* is
an abelian group, the set (i is an abelian group by pointwise multiplication.

The group G is called the character group of G.

Obviously the character group is a multiplicative subset of K¢ = Hom (K&, K).

Actually it is a subgroup of K-cAlg(KG, K) C Hom(KG, K) since the elements y € G

expand to algebra homomorphisms: x(ab) = x> azx>  By) = > azfyx(zy) =
x(a)x(b) and x(1) = x(e) = 1. Conversely an algebra homomorphism f €

K-cAlg(KG, K) restricts to a character f : G — K*. Thus G = K-cAlg(KG, K), the
set of rational points of the affine algebraic group represented by KG.

There is a more general observation behind this remark.

Lemma 4.1.12. Let H be a finite dimensional Hopf algebra. Then the set Gr(H*)
of group like elements of H* is equal to K-Alg(H, K).

PrOOF. In fact f : H — K is an algebra homomorphism iff (f ® f,a ® b) =

(F,a)(f,B) = (F,ab) = (A(f),a © b) and 1 = (f, 1) = e(f). -
Hence there is a Hopf algebra homomorphism ¢ : KG — K¢ by 2.1.5.
Proposition 4.1.13. The Hopf algebra homomorphism ¢ : KG — K% is bijec-

live.
Proor. We give the proof by several lemmas.

Lemma 4.1.14. Any set of group like elements in a Hopf algebra H is linearly
independent.

PROOF. Assume there is a linearly dependent set {zq,z1,...,2,} of group like
elements in H. Choose such a set with n minimal. Obviously n > 1 since all elements
are non zero. Thus zg = 2?21 a;x; and {xq,...,2,} linearly independent. We get

Z oo @ ;= 19 @ xg = A(g) = Z o @ T
i i
Since all a; # 0 and the z; ® x; are linearly independent we get n =1 and oy =1 so

that x¢ = x1, a contradiction. OJ

Corollary 4.1.15. (Dedekind’s Lemma) Any set of characters in K is linearly
independent.



122 4. THE INFINITESIMAL THEORY

Thus ¢ : KG — K is injective. Now we prove that the map ¢ : KG — K% is
surjective.

Lemma 4.1.16. (Pontryagin duality) The evaluation G x G — K* is a non-
degenerate bilinear map of abelian groups.

PROOF. First we observe that Hom(C,,K*) = C, for a cyclic group of order n
since K has a primitive n-th root of unity (char(K)+ |G]).

Since the direct product and the direct sum coincide in Ab we can use the funda-
mental theorem for finite abelian groups G = C,,, x ... x Cy, to get Hom(G,K*) = ¢

for any abelian group (¢ with char(K)# |G|. Thus G & @ and (¢ = G. In particular
x(z) =1 for all x € G iff x = 1. By the symmetry of the situation we get that the

bilinear form (., .) : G x G — K* is non-degenerate. O
Thus |G| = |G| hence dim(KG) = dim(K®). This proves Proposition 2.1.13. [

Definition 4.1.17. Let H be a Hopf algebra. A K-module M that is a right
H-module by p: M @ H — M and a right H-comodule by § : M — M ® H is called
a Hopf module if the diagram

M@H—L"~H-—SMoH

SRA PRV
MoHOHOHYSMoH®H®H
commutes, i.e. if §(mh) = > manha) @ mayh) holds for all h € H and all m € M.

Observe that H is an Hopf module over itself. Furthermore each module of the
form V @ H is a Hopf module by the induced structure. More generally there is a
functor Vec 3 V = V @ H € Hopf-Mod-H.

Proposition 4.1.18. The two functors -°°H : Hopf-Mod-H — Vec and -® H :
Vec sV — V ® H € Hopf-Mod-H are inverse equivalences of each other.

PROOF. Define natural isomorphisms
a:MP@H>m@h—mheM
with inverse map
al:M3m— Zm(M)S(m(l)) @ my) € MeH @ H

and
B:Vovmovale (Ve H)!
with inverse map

(Ve H)*" 50® hw ve(h) €V.
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Obviously these homomorphisms are natural transformations in M and V. Fur-
thermore o is a homomorphism of H-modules. o' is well-defined since

(D> manS(m(1))) = X2 manS(mes)) @ mayS(m)

(since M i 1s a Hopf module)

= >_manS(ma)) @ne(mq))
ZEmWﬁ(UWM

hence Y m(M)S(m(l)) e M*H . Furthermore o' is a homomorphism of comodules
since

da~t(m) = 6(3° man)S(mu)) @ me) = 22 munS(mu)) @ ma) @ m)
—Za‘l( M)®m<>=( L@ 1)d(m).

Finally o and a™" are inverse to each other by

ZmM)S Zm m) = m

a_loz(m & h) = oz_l(mh) Em M ( my )h( )) & m(g)h(g)
—thl)S(h )®h (by5( J=m®1)=m®a h.
Thus « and a~! are mutually inverse homomorphisms of Hopf modules.
The image of #is in (V ® H)COH by d(v®@1)=v®@A(l) =(v®1)® 1. Both 8

and 47! are K-linear maps. Furthermore we have

BB =B (vel) =ve(l) = v

and

and
v ®@h) = B vie(hi)) = Y vie(hi) @1 =3 v @ e(hi)l
= > v; @ e(hi)) i) ( since Y v; @ h; € (V@ H)eeH Yy =3 v, @ h;.
Thus 3 and 87! are mutually inverse homomorphisms. O

Since H* = Hom(H,K) and S : H — H is an algebra antihomomorphism, the
dual H* is an H-module in four different ways:

) (f =a),9):=(a,9f),  ((a=][)9):=a[9g),
(f = a),9) :=(a,5(f)g), ((a [)g):={a;g5(f)).

If H is finite dimensional then H* is a Hopf algebra. The equality ((f — a),g) =
(a,9f) = > (any, 9){a@), f) implies
(3) (f N a) = Za(1)<a(2)7f>_
Analogously we have
(4) (a=f)= Z(au), Haw)

Proposition 4.1.19. Let H be a finite dimensional Hopf algebra. Then H* is a
right Hopf module over H.
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PrROOF. H* is a left H*-module by left multiplication hence by 2.1.1 a right H-
comodule by §(a) =Y. bfa®b;. Let f,g € H and a,b € H*. The (left) multiplication

of H* satisfies
Clb = Z b(H*) <CL, b(1)>

We use the right H-module structure

(a—f)= Z awy(S(f),ae)-

on H* = Hom(H, K).
Now we check the Hopf module property. Let a,b € H* and f,g € H. We apply
H* ® H to its dual H ® H* and get

éla~—f)lg®@b) =) ((a — f) 4, 9)(b, (
(e ~—f),g
MMQW%
(f(?) - b)a,gS(
(a@E((f2) = b),a(1)>) ), 9)

((ayy ~ fay)((f) = b),aq)), 9) = > _((aw ~ f1))(b; ey fi2), 9)

hence(S(a\—f):Z( H*) \_f )®a1)f(2)' =

Theorem 4.1.20. Let H be a finite dimensional Hopf algebra. Then the antipode
S is bijective, the space of left integrals Int;(H*) has dimension 1, and the homomor-
phism

=
\/

H3fe(f= )= Juyp )2 H
is bijective for any 0 # [ € Int;(H*).

PRrROOF. By Proposition 2.1.19 H* is a right Hopf module over H. By Proposition
2.1.18 there is an isomorphism o : (H*)*? @ H 3 a® f~ (a — f) = (S(f) — a) €
H*. Since (H*)®H = Int;(H*) by 2.1.9 we get

Int,(H*)® H =~ H*

as right H-Hopf modules by the given map. This shows dim(Int;(H*)) = 1. So
we get an isomorphism H 3 f — (f «— f) € H* that is a composition of S and
f = (f— [). Since H is finite dimensional both of these maps are bijective. O

If G is a finite group then every generalized integral @ € KG can be written with
a uniquely determined g € H = K% as

(5) N = [ 1086 =Y s

zeG

for all f € H.
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If G is a finite Abelian group then each group element (rational integral) y € G C

KG can be written as
y=> > Bla x)x

IEG XGG
since

f Z egﬁx\( f fS eéﬁxX)>
= Zx€G< >erGﬁx<$ S( )> <E$EGZXEGﬁX<x_17X>I7f>'

In particular the matrix ({(z™', x)) is invertible.
Let H be finite dimensional. Since ([, fg) = ((J < f).g) as a functional on g is
a generalized integral, there is a unique v(f) € H such that

(6) <f7fg>:<fvg’/(f)>

or

(7) [ @t = [ g

Although the functions f,g € H of the quantum group do not commute under mul-
tiplication, there is a simple commutation rule if the product is integrated.

Proposition and Definition 4.1.21. The map v : H — H is an algebra auto-
morphism, called the Nakayama automorphism.

PROOF It is Clear that v is a linear map. We have [ fv(gh) = [ghf =

[ hfv(g) = | frv(g)v(h) hence v(gh) = v(g)v(h) and [ fr(1) = [ f hence v(1) = 1.
Furthermore if v(g ) = 0 then 0 = ([, fv(9)) = ([,9f) =((f = [).g) for all f € H
hence (a,g) = 0 for all « € H* hence g = 0. So v is injective hence bijective. O

Corollary 4.1.22. The map H > f— ([ — f) € H* is an isomorphism.

PROOF. We have

(J == - /)

since ([ = f).g) = ([.fg) = ([, gv(f ((v(f) = J),g)- This implies the
corollary. O

If G is a finite group and H = K% then H is commutative hence v = id.

Definition 4.1.23. An element § € H is called a Dirac 0-function if ¢ is a left
invariant integral in H with ([,d) =1, i.e. if § satisfies

fo=c(f)d and /5(;17)d1: =1
for all f € H. If H has a Dirac d-function then we write

(8) /* a(z)dr = [Ta := (a,?).

Proposition 4.1.24.
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1. If H is finite dimensional then there exvists a unique Dirac 6-function 9.
2. If H is infinite dimensional then there exists no Dirac -function.

PROOF. 1. Since H 3 f — (f — J) € H* is an isomorphism there is a § € H
such that (§ = [) =e. Then (f6 = [N =(f = (0= [) =(f —¢) =c(f)e =
e(f)(6 = [) which implies fé = &(f)d. Furthermore we have ([,8) = ([,1nd) =
((6 = [),1u) = e(ln) = 1x.

2. is [Sweedler] exercise V.4. O

Lemma 4.1.25. Let H be a finite dimensional Hopf algebra. Then [ € H* is a
left integral iff

(9) o Sy @SUe) =0 foe s

uof

(10) 2 5@ 0@ f =23 Ju®ay
uf

(11) Y foll fe) =/, N

PROOF. Let [ be a left integral. Then

Y aw Sy @S p)Sae) =Y (af)m @ S((af)@) = (@)D [y ® 5[ )

for all @ € H. Hence

(Efu)@S(f(z)) =2 e(aq )f ®S(f2))a2)
= Za(l f(1 (f 2)) a 2))61
= Za(l f(l (f(z))g(a 2)) = a(2 f(l) ® S(f(2))).
Conversely a(32 [, e(5(fz)) = (X Ju)e(SJp)a)) = (@) (X [y s(S(fiz)))s

hence [ =3 f(1) 5(S(f(2))) is a left mtegral
Since S is bijective the following holds

a) f(1) ® f(2) =2_5(a) f(1) ®S_1(S(f2)))

=5 f, B S S(a) = 5 [y @a o

The converse follows easily.

If [ € Inty(H) is a left integral then Y (a, fa))([, fio)) = (a [, f) = (a, 1u)([, f)-
Conversely if A € H* with (11) is glven then (al, f) = > (a, f)){N fz)) =
(a,1g)(A, f) hence aX = e(a)A. O

If G is a finite group then

(12) 5($):{Oif;v7ée;

lifz =e.
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In fact since § is left invariant we get f(z)d(z) = f(e)d(z) for all z € G and f € K°.
Since G C H* = KG is a basis, we get 6(z) = 0 if  # e. Furthermore [ §(z)dx =
Y zec0(xz) = 1 implies §(e) = 1. So we have § = ¢*.

If G is a finite Abelian group we get § = a)_ 4 x for some o € K. The

evaluation gives 1 = ([,§) = @ eaxea(X, ). Now let A € (. Then Y oealxoa) =
Y ovee Ao a) = (A x) Yo ca(x, @), Since for each o € G\ {e} there is a A such that

(A, z) # 1 and we get
Z<X7$> = [Gde,z-

x€G
Hence 37 ca{x, ) = |G| = a™! and
(13) =167 Y v
x€G

Let H be finite dimensional for the rest of this section. In Corollary 1.22 we have
seen that the map H 3 f — ([ — f) € H* is an isomorphism. This map will be
called the Fourier transform.

Theorem 4.1.26. The Fourier transform H > f — fvE H” is byjective with

(14) f= (f= 1 :Z(f(1)7f>f(2)

The inverse Fourier transform is defined by

(15) a=Y_ S (6w)(a, 8.

Since these maps are tnverses of each other the following formulas hold

(16) f g) /f (a,b) = / Si_l(a)(:r:)b(;v)dm
f=>5" f d(2)) azz<f(1)7a> f(z)'

Proor. We use the isomorphisms H — H* defined by ]/C\ = f = ([ = f) =
E<f(1),f> f(2) and H* — H defined by @ := (¢ = §) = ) d(1){a, d(z)). Because of
(17) (a:) = (a, (b= 8)) = (b, 8)
and
(18) (f,9)=((J = 1).9) =], fq)

we get for all e € H* and f e H

(a J%> (af. ) = >(a, 50)(f. 8z) = Tla. 61))( [, f6(zy)  ( by Lemma 1.25 )
=2{(a,5(f)dq >(fv5(2)> = (a,S(f){[,0) = (a,S(f)).

~
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This givesf: S(f). So the inverse map of H — H* with ]/C\: ([ = f)= fvis H*
— H with S7'(@) = ) S7'(61))(a, d(z)) = @. Then the given inversion formulas are
clear.

We note for later use <a,g> = (a, S‘l(/g» = (S !(a),b) = (S7!(a)b,?). O
If (G is a finite group and H = K% then
f= Zf(r)r
z€G

Since A(d) = quer_l* ®@ z* where the z* € K are the dual basis to the z € G, we

get
a= Z(a, ™"

If G is a finite Abelian group then the groups G and G are isomorphic so the
Fourier transform induces a linear automorphism ~: K — K% and we have

a=a™) (a,0x
xeG

By substituting the formulas for the integral and the Dirac d-function (1) and (13)
we get

(19) }v: ZxEG f(”C)T,

- 7Y eq a0OX T
f=1G1" e FOOXT

eGa( )T,

a=|G

a=73,

This implies

(20) 7 = 0= [ fon

with inverse transform

1) i(e) = G173 )y (2).
xeG

Corollary 4.1.27. The Fourier transforms of the left invariant integrals in H
and H* are

(22) S=cevteH and [=1€H.
PRrROOF. We have 5 Ny = ([,0f) f,yzl(f)(S} = ev M ){[,d) = ev™I(f)
hence5z€u1.From1—(f/—1—fwegetle. O

Proposition 4.1.28. Define a convolution multiplication on H* by

(axb, f):=2 (a,57"(8w)f){b; )
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Then the following transformation rule holds for f,g € H:
(23) fg=1Ff=*g.

In particular H* with the convolution multiplication is an associative algebra with unit

1y = [, te
(24) [*xa=ax [ =a.
Proor. Given f,g,h € H*. Then

(fg.h)y = ([, fgh) = ffS (1i)gh) fé

= ([ FS7TH0w)gh) ([ 6@) = 22[ FSTHEw)A)I [, 9d¢z))
=Z<f75‘1(5< ) >< (@) = (F+3,h).
From(iZIZ)wegetngf.Sowehavelele*f:f*f O

If G is a finite Abelian group and a,b € H* = K%. Then
(axb)(uw) =G > a(Mb(x).
x,/\EG,XA:,u

In fact we have

(@ b)(p) = (@b, p) =3 (a, 57 (6)) ) (b, 0z))
=[G Xeala xT )b, x) = G171 2, sen=n @A)B(X)-

One of the most important formulas for Fourier transforms is the Plancherel for-
mula on the invariance of the inner product under Fourier transforms. We have

Theorem 4.1.29. (The Plancherel formula)

(25) (a. f) = (J.u(@)).

PROOF. First we have from (16)

(@, ) =20 0y @S 2 ST OIS b)) = (S, @57 ) f 0a))
= 32{J STHO@)V@NF, 2)) = 220, STHSW(@))d )N £, d(2))
= 2L, S7THO(f v(@)de) = 2, STHE) @) f, v(@)S(S7H ) )
= ([, 57N S, v(@))
Apply this to ([,d). Then we get
L= ([.0) = (.S @), () = (/.57 @)ev (1) = (f.57(5)).
Hence we get (a, f) = (f, ( )> O

Corollary 4.1.30. If H is unimodular then v = S2.
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PROOF. H unimodular means that ¢ is left and right invariant. Thus we get

(@.9) = S o DU 57 0T )

(@S () d) S 51 G S @ 5)
s @) (

(J.5

) 7
([,5Y(du (1) ><f, d(2) (a) since 5 is rlght invariant)
IR CNE (G)> (f, S*(@)).

Hence S? = v. O

We also get a special representation of the inner product H* ® H — K by both
integrals:

Corollary 4.1.31.

(26) (w1) = [ases = [ 57 @) o
PROOF. We have the rules for the Fourier transform From (18) we get <a f)y =
([,af) = [a(z)f(z)dz and from (17) (a, f) = (S7'(a = [F S5 (a)(x) ()d;v

O

The Fourier transform leads to an interesting integral transform on H by double
application.

Proposition 4.1.32. The double transform f := (6 = (J — f)) defines an
automorphism H — H with

PROOF. We have

(y, f)

since (z, (y — 9)) = (xy, ). O



