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CHAPTER 4

The Infinitesimal Theory

1. Integrals and Fourier Transforms
Assume for this chapter that K is a field.

Lemma 4.1.1. Let C be a finite dimensional coalgebra. Every right C'-comodule
M is a left C*-module by c*m = Y mp(c*, mq)) and conversely by 6(m) = ), cim®
¢; where Y ¢f @ ¢; is the dual basis.
ProOF. We check that M becomes a left C*-module
(e*™)ym =Y muny(e™d™,ma)) = 2 man (e, may) (™, me))
=Y man(c, ma)) = c*("m).
It is easy to check that the two constructions are inverses of each other. In particular

assume that M is a right C-comodule. Choose m; such that 6(m) = > m; ®¢;. Then
c}*m:EmZ'(c;,c» =mjand Y, cm®@¢; =Y, m; @ ¢; = d(m). O

Definition 4.1.2. 1. Let A be an algebra with augmentation ¢ : A — K, an
algebra homomorphism. Let M be a left A-module. Then M = {m € M|am =
e(a)m} is called the space of left invariants of M.

This defines a functor 4-: A — Mod — Vec.

2. Let C be a coalgebra with a group-like element 1 € C. Let M be a right
C-comodule. Then MY := {m € M|§(m) = m @ 1} is called the space of right
coinvariants of M.

This defines a functor -<°“ : Comod-C — Vec.

Lemma 4.1.3. Let C be a finite dimensional coalgebra with a group like element
1 € C. Then A := C* is an augmented algebra with augmentation ¢ : C* 3 a —
(a,1) € K. Let M be a right C-comodule. Then M is a left C*-module and we have

C*M — MCOC‘

PROOF. Since 1 € C is group-like we have e4(ab) = (ab,1) = (a,1)(b,1) =
€A(CL)€A(Z)) and SA(lA) = <1A7 1c> = 50(1()) = 1.

We have m € M<H iff §(m) = Yoman @ may = m @ 1 Y man(a,may) =
m(a, 1) forall a € A = C* and by identifying C*®@C = Hom(C*, C*) iff am = e4(a)m
iff meAM. O

Remark 4.1.4. The theory of Fourier transforms contains the following state-
ments. Let H be the (Schwartz) space of infinitely differentiable functions f : R — C,
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118 4. THE INFINITESIMAL THEORY

such that f and all derivatives rapidly decrease at infinity. (f decreases rapidly at in-

finity if |2|™ f(x) is bounded for all m.) This space is an algebra (without unit) under

the multiplication of values. There is a second multiplication on H, the convolution
+co

(f g)(e) = @) [ f)gle — 1)

The Fourier transform is a homomorphism = : H — H defined by
“+ oo

fw) = o [ fmeear
It satisfies the identity (f * g)f = ff] hence it is an algebra homomorphism. We want
to find an analogue of this theory for finite quantum groups.

A similar example is the following. Let G be a locally compact topological group.
Let p be the (left) Haar measure on G and [ f := [, f(x)du(x) be the Haar integral.

The Haar measure is left invariant in the sense that p(F) = u(gF) for all g € G
and all compact subsets E of G. The Haar measure exists and is unique up to a
positive factor. The Haar integral is translation invariant i.e. for all y € G we have
S fyz)dp(x) = [ fz)dp(z).

If p is a left-invariant Haar measure then there is a continuous homomorphism
mod : G — (RY,:) such that [ f(zy™)du(z) = mod (y) [(f(z)du(z). The homo-
morphism g does not depend on f and is called the modulus of G. The group G is
called unimodular if the homomorphism mod is the identity.

If G is a compact, or discrete, or Abelian group, or a connected semisimple or
nilpotent Lie group, then G is unimodular.

Let GG be a quantum group (or a quantum monoid) with function algebra H an
arbitrary Hopf algebra. We also use the algebra of linear functionals H* = Hom(H, K)
(called the bialgebra of GG in the French literature). The operation H* @ H 3 a ®
f = (a,f) € K is nondegenerate on both sides. We denote the elements of H by
fig,h € H, the elements of H* by a,b,c € H*, the (non existing) elements of the
quantum group G by z,y,z € G.

Remark 4.1.5. In 2.4.8 we have seen that the dual vector space H* of a finite
dimensional Hopf algebra H is again a Hopf algebra. The Hopf algebra structures
are connected by the evaluation bilinear form

ev: HH@H3>a® fr—(a,f) e K

as follows:
(a ® bv Zf(l) f(2) = <abv f>7 <Z aq) @ a(2), f ® g> = <a7 fg>7
(a,1) = e(a), (L f) =<(f),
(a,5(f)) = (S(a), f).
Definition 4.1.6. 1. The linear functionals a € H* are called generalized inte-
grals on H ([Riesz-Nagy] S.123).
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2. An element [ € H* is called a left (invariant) integral on H if

af = <CL7 1H>f
or af = 5H*(a)f for all @ € H*.
3. An element § € H is called a left integral in H if

fo=e(f)o
for all f € H.
4. The set of left integrals in H is denoted by Int;(H), the set of right integrals
by Int,.(H). The set of left (right) integrals on H is Int;(H*) (Int,.(H*)).
5. A Hopf algebra H is called unimodular if Int;(H) = Int,(H).

Lemma 4.1.7. The left integrals Int;(H*) form a two sided ideal of H*. If the
antipode S is bijective then S induces an isomorphism S : Int;(H*) — Int,.(H*).

PROOF. For [ in Int;(H*) we have a [ = ¢(a) [ € Int;(H*) and a [ b= c(a) [b
hence [b € Int,(H*). If S is bijective then the induced map S : H* — H* is
also bijective and satisfies S([)b = S([)S(S7(b)) = S(S~(b) J) = S(J)e(b) hence
S(f) € Int,(H"). O

Remark 4.1.8. Maschke’s Theorem has an extension to finite dimensional Hopf
algebras: e([) # 0 iff H* is semisimple.

Corollary 4.1.9. Let H be a finite dimensional Hopf algebra. Then H* is a left
H*-module by the usual multiplication, hence a right H-comodule. We have

(H*)*H = Int,(H").
PROOF. By definition we have Int;(H*) = 7" H*. O

Example 4.1.10. Let G be a finite group. Let H := Map(G,K) be the Hopf
algebra defined by the following isomorphism

K% = Map(G, K) = Hom(KG, K) = (KG)*.

This isomorphism between the vector space K of all set maps from the group G to
the base ring K and the dual vector space (KG)* of the group algebra KG defines the
structure of a Hopf algebra on K.

We regard H := K% as the function algebra on the set (. In the sense of algebraic
geometry this is not quite true. The algebra K represents a functor from K-cAlg
to Set that has G as value for all connected algebras A in particular for all field
extensions of K.

As before we use the map ev : KG ® K — K. The multiplication of K% is
given by pointwise multiplication of maps since (z, ff') = Q_zq) ® 2@, f @ f) =
(z @z, f@f) = (x, f){x, f") for all f,f € K and all + € G. The unit element
lgs of K“ is the map ¢ : KG — K restricted to GG, hence e(z) = 1 = (z, 1gs) for all
z € (. The antipode of f € K% is given by S(f)(z) = (x, S(f)) = f(z71).
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The elements of the dual basis (z*|z € G) with (z,y*) = d,, considered as maps
from G to K form a basis of KY. They satisfy the conditions

z*y" = 0y 2" and Zaj* = lgo
zeG
since (z, 2" y*) = (2, 2%)(2,¥%) = 6,00y = 0oy(z,2") and (2, ) o 2%) = 1 = (2, Ia).
Hence the dual basis (z*|x € G) is a decomposition of the unit into a set of
minimal orthogonal idempotents and the algebra of K® has the structure

K¢ = @pecKe 2K x ... x K

In particular K% is commutative and semisimple.

The diagonal of K° is
yelG y,2€Gyz=x

since
(z@u, A(z*)) = (2u, %) = 0ppu = 0,-1,, = ZyeG Oy,20y=14
=2z Y N u, (y2)) = (2 @ u, 3 coy™ ® (¥~ 1)),
Let @ € KG. Then a defines a map @ : G — K € K% by a = Y, a(z)z. For
arbitrary f € K and a € KG this gives

(a, f) = FOO_alz)x) = () f(x).

z€G z€G
The counit of K“ is given by e(z*) = §, . where e € (¢ is the unit element.
The antipode is, as above, S(z*) = (z71)*.
We consider H = K% as the function algebra on the finite group GG and KG as
the dual space of H = K% hence as the set of distributions on H.
Then

(1) [=) zeH =KG

reG

is a (two sided) integral on H since ) cyr =3 ot =¢c(Y)D ,cc® =D ,cq Y.

We write
[ f@dei= 1.5 =3 fia),

z€G
We have seen that there is a decomposition of the unit 1 € K% into a set of
primitive orthogonal idempotents {z*|z € G} such that every element f € K% has
a unique representation f = Y f(z)z*. Since [y* = > . (z,y*) we get [ fy* =
2eec(® fy7) = 20 f(@)y™ () = f(y) hence

£ =3[ el @y
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Problem 4.1.1. Describe the group valued functor K-cAlg(K%, —) in terms of
sets and their group structure.

Definition and Remark 4.1.11. Let K be an algebraicly closed field and let
be a finite abelian group (replacing R above). Assume that the characteristic of K
does not divide the order of GG. Let H = K“. We identify K = Hom (K&, K) along
the linear expansion of maps as in Example 2.1.10.

Let us consider the set ¢ := {x : G — K*|x group homomorphism}. Since K* is
an abelian group, the set (i is an abelian group by pointwise multiplication.

The group G is called the character group of G.

Obviously the character group is a multiplicative subset of K¢ = Hom (K&, K).

Actually it is a subgroup of K-cAlg(KG, K) C Hom(KG, K) since the elements y € G

expand to algebra homomorphisms: x(ab) = x> azx>  By) = > azfyx(zy) =
x(a)x(b) and x(1) = x(e) = 1. Conversely an algebra homomorphism f €

K-cAlg(KG, K) restricts to a character f : G — K*. Thus G = K-cAlg(KG, K), the
set of rational points of the affine algebraic group represented by KG.

There is a more general observation behind this remark.

Lemma 4.1.12. Let H be a finite dimensional Hopf algebra. Then the set Gr(H*)
of group like elements of H* is equal to K-Alg(H, K).

PrOOF. In fact f : H — K is an algebra homomorphism iff (f ® f,a ® b) =

(F,a)(f,B) = (F,ab) = (A(f),a © b) and 1 = (f, 1) = e(f). -
Hence there is a Hopf algebra homomorphism ¢ : KG — K¢ by 2.1.5.
Proposition 4.1.13. The Hopf algebra homomorphism ¢ : KG — K% is bijec-

live.
Proor. We give the proof by several lemmas.

Lemma 4.1.14. Any set of group like elements in a Hopf algebra H is linearly
independent.

PROOF. Assume there is a linearly dependent set {zq,z1,...,2,} of group like
elements in H. Choose such a set with n minimal. Obviously n > 1 since all elements
are non zero. Thus zg = 2?21 a;x; and {xq,...,2,} linearly independent. We get

Z oo @ ;= 19 @ xg = A(g) = Z o @ T
i i
Since all a; # 0 and the z; ® x; are linearly independent we get n =1 and oy =1 so

that x¢ = x1, a contradiction. OJ

Corollary 4.1.15. (Dedekind’s Lemma) Any set of characters in K is linearly
independent.
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Thus ¢ : KG — K is injective. Now we prove that the map ¢ : KG — K% is
surjective.

Lemma 4.1.16. (Pontryagin duality) The evaluation G x G — K* is a non-
degenerate bilinear map of abelian groups.

PROOF. First we observe that Hom(C,,K*) = C, for a cyclic group of order n
since K has a primitive n-th root of unity (char(K)+ |G]).

Since the direct product and the direct sum coincide in Ab we can use the funda-
mental theorem for finite abelian groups G = C,,, x ... x Cy, to get Hom(G,K*) = ¢

for any abelian group (¢ with char(K)# |G|. Thus G & @ and (¢ = G. In particular
x(z) =1 for all x € G iff x = 1. By the symmetry of the situation we get that the

bilinear form (., .) : G x G — K* is non-degenerate. O
Thus |G| = |G| hence dim(KG) = dim(K®). This proves Proposition 2.1.13. [

Definition 4.1.17. Let H be a Hopf algebra. A K-module M that is a right
H-module by p: M @ H — M and a right H-comodule by § : M — M ® H is called
a Hopf module if the diagram

M@H—L"~H-—SMoH

SRA PRV
MoHOHOHYSMoH®H®H
commutes, i.e. if §(mh) = > manha) @ mayh) holds for all h € H and all m € M.

Observe that H is an Hopf module over itself. Furthermore each module of the
form V @ H is a Hopf module by the induced structure. More generally there is a
functor Vec 3 V = V @ H € Hopf-Mod-H.

Proposition 4.1.18. The two functors -°°H : Hopf-Mod-H — Vec and -® H :
Vec sV — V ® H € Hopf-Mod-H are inverse equivalences of each other.

PROOF. Define natural isomorphisms
a:MP@H>m@h—mheM
with inverse map
al:M3m— Zm(M)S(m(l)) @ my) € MeH @ H

and
B:Vovmovale (Ve H)!
with inverse map

(Ve H)*" 50® hw ve(h) €V.
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Obviously these homomorphisms are natural transformations in M and V. Fur-
thermore o is a homomorphism of H-modules. o' is well-defined since

(D> manS(m(1))) = X2 manS(mes)) @ mayS(m)

(since M i 1s a Hopf module)

= >_manS(ma)) @ne(mq))
ZEmWﬁ(UWM

hence Y m(M)S(m(l)) e M*H . Furthermore o' is a homomorphism of comodules
since

da~t(m) = 6(3° man)S(mu)) @ me) = 22 munS(mu)) @ ma) @ m)
—Za‘l( M)®m<>=( L@ 1)d(m).

Finally o and a™" are inverse to each other by

ZmM)S Zm m) = m

a_loz(m & h) = oz_l(mh) Em M ( my )h( )) & m(g)h(g)
—thl)S(h )®h (by5( J=m®1)=m®a h.
Thus « and a~! are mutually inverse homomorphisms of Hopf modules.
The image of #is in (V ® H)COH by d(v®@1)=v®@A(l) =(v®1)® 1. Both 8

and 47! are K-linear maps. Furthermore we have

BB =B (vel) =ve(l) = v

and

and
v ®@h) = B vie(hi)) = Y vie(hi) @1 =3 v @ e(hi)l
= > v; @ e(hi)) i) ( since Y v; @ h; € (V@ H)eeH Yy =3 v, @ h;.
Thus 3 and 87! are mutually inverse homomorphisms. O

Since H* = Hom(H,K) and S : H — H is an algebra antihomomorphism, the
dual H* is an H-module in four different ways:

) (f =a),9):=(a,9f),  ((a=][)9):=a[9g),
(f = a),9) :=(a,5(f)g), ((a [)g):={a;g5(f)).

If H is finite dimensional then H* is a Hopf algebra. The equality ((f — a),g) =
(a,9f) = > (any, 9){a@), f) implies
(3) (f N a) = Za(1)<a(2)7f>_
Analogously we have
(4) (a=f)= Z(au), Haw)

Proposition 4.1.19. Let H be a finite dimensional Hopf algebra. Then H* is a
right Hopf module over H.
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PrROOF. H* is a left H*-module by left multiplication hence by 2.1.1 a right H-
comodule by §(a) =Y. bfa®b;. Let f,g € H and a,b € H*. The (left) multiplication

of H* satisfies
Clb = Z b(H*) <CL, b(1)>

We use the right H-module structure

(a—f)= Z awy(S(f),ae)-

on H* = Hom(H, K).
Now we check the Hopf module property. Let a,b € H* and f,g € H. We apply
H* ® H to its dual H ® H* and get

éla~—f)lg®@b) =) ((a — f) 4, 9)(b, (
(e ~—f),g
MMQW%
(f(?) - b)a,gS(
(a@E((f2) = b),a(1)>) ), 9)

((ayy ~ fay)((f) = b),aq)), 9) = > _((aw ~ f1))(b; ey fi2), 9)

hence(S(a\—f):Z( H*) \_f )®a1)f(2)' =

Theorem 4.1.20. Let H be a finite dimensional Hopf algebra. Then the antipode
S is bijective, the space of left integrals Int;(H*) has dimension 1, and the homomor-
phism

=
\/

H3fe(f= )= Juyp )2 H
is bijective for any 0 # [ € Int;(H*).

PRrROOF. By Proposition 2.1.19 H* is a right Hopf module over H. By Proposition
2.1.18 there is an isomorphism o : (H*)*? @ H 3 a® f~ (a — f) = (S(f) — a) €
H*. Since (H*)®H = Int;(H*) by 2.1.9 we get

Int,(H*)® H =~ H*

as right H-Hopf modules by the given map. This shows dim(Int;(H*)) = 1. So
we get an isomorphism H 3 f — (f «— f) € H* that is a composition of S and
f = (f— [). Since H is finite dimensional both of these maps are bijective. O

If G is a finite group then every generalized integral @ € KG can be written with
a uniquely determined g € H = K% as

(5) N = [ 1086 =Y s

zeG

for all f € H.
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If G is a finite Abelian group then each group element (rational integral) y € G C

KG can be written as
y=> > Bla x)x

IEG XGG
since

f Z egﬁx\( f fS eéﬁxX)>
= Zx€G< >erGﬁx<$ S( )> <E$EGZXEGﬁX<x_17X>I7f>'

In particular the matrix ({(z™', x)) is invertible.
Let H be finite dimensional. Since ([, fg) = ((J < f).g) as a functional on g is
a generalized integral, there is a unique v(f) € H such that

(6) <f7fg>:<fvg’/(f)>

or

(7) [ @t = [ g

Although the functions f,g € H of the quantum group do not commute under mul-
tiplication, there is a simple commutation rule if the product is integrated.

Proposition and Definition 4.1.21. The map v : H — H is an algebra auto-
morphism, called the Nakayama automorphism.

PROOF It is Clear that v is a linear map. We have [ fv(gh) = [ghf =

[ hfv(g) = | frv(g)v(h) hence v(gh) = v(g)v(h) and [ fr(1) = [ f hence v(1) = 1.
Furthermore if v(g ) = 0 then 0 = ([, fv(9)) = ([,9f) =((f = [).g) for all f € H
hence (a,g) = 0 for all « € H* hence g = 0. So v is injective hence bijective. O

Corollary 4.1.22. The map H > f— ([ — f) € H* is an isomorphism.

PROOF. We have

(J == - /)

since ([ = f).g) = ([.fg) = ([, gv(f ((v(f) = J),g)- This implies the
corollary. O

If G is a finite group and H = K% then H is commutative hence v = id.

Definition 4.1.23. An element § € H is called a Dirac 0-function if ¢ is a left
invariant integral in H with ([,d) =1, i.e. if § satisfies

fo=c(f)d and /5(;17)d1: =1
for all f € H. If H has a Dirac d-function then we write

(8) /* a(z)dr = [Ta := (a,?).

Proposition 4.1.24.
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1. If H is finite dimensional then there exvists a unique Dirac 6-function 9.
2. If H is infinite dimensional then there exists no Dirac -function.

PROOF. 1. Since H 3 f — (f — J) € H* is an isomorphism there is a § € H
such that (§ = [) =e. Then (f6 = [N =(f = (0= [) =(f —¢) =c(f)e =
e(f)(6 = [) which implies fé = &(f)d. Furthermore we have ([,8) = ([,1nd) =
((6 = [),1u) = e(ln) = 1x.

2. is [Sweedler] exercise V.4. O

Lemma 4.1.25. Let H be a finite dimensional Hopf algebra. Then [ € H* is a
left integral iff

(9) o Sy @SUe) =0 foe s

uof

(10) 2 5@ 0@ f =23 Ju®ay
uf

(11) Y foll fe) =/, N

PROOF. Let [ be a left integral. Then

Y aw Sy @S p)Sae) =Y (af)m @ S((af)@) = (@)D [y ® 5[ )

for all @ € H. Hence

(Efu)@S(f(z)) =2 e(aq )f ®S(f2))a2)
= Za(l f(1 (f 2)) a 2))61
= Za(l f(l (f(z))g(a 2)) = a(2 f(l) ® S(f(2))).
Conversely a(32 [, e(5(fz)) = (X Ju)e(SJp)a)) = (@) (X [y s(S(fiz)))s

hence [ =3 f(1) 5(S(f(2))) is a left mtegral
Since S is bijective the following holds

a) f(1) ® f(2) =2_5(a) f(1) ®S_1(S(f2)))

=5 f, B S S(a) = 5 [y @a o

The converse follows easily.

If [ € Inty(H) is a left integral then Y (a, fa))([, fio)) = (a [, f) = (a, 1u)([, f)-
Conversely if A € H* with (11) is glven then (al, f) = > (a, f)){N fz)) =
(a,1g)(A, f) hence aX = e(a)A. O

If G is a finite group then

(12) 5($):{Oif;v7ée;

lifz =e.
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In fact since § is left invariant we get f(z)d(z) = f(e)d(z) for all z € G and f € K°.
Since G C H* = KG is a basis, we get 6(z) = 0 if  # e. Furthermore [ §(z)dx =
Y zec0(xz) = 1 implies §(e) = 1. So we have § = ¢*.

If G is a finite Abelian group we get § = a)_ 4 x for some o € K. The

evaluation gives 1 = ([,§) = @ eaxea(X, ). Now let A € (. Then Y oealxoa) =
Y ovee Ao a) = (A x) Yo ca(x, @), Since for each o € G\ {e} there is a A such that

(A, z) # 1 and we get
Z<X7$> = [Gde,z-

x€G
Hence 37 ca{x, ) = |G| = a™! and
(13) =167 Y v
x€G

Let H be finite dimensional for the rest of this section. In Corollary 1.22 we have
seen that the map H 3 f — ([ — f) € H* is an isomorphism. This map will be
called the Fourier transform.

Theorem 4.1.26. The Fourier transform H > f — fvE H” is byjective with

(14) f= (f= 1 :Z(f(1)7f>f(2)

The inverse Fourier transform is defined by

(15) a=Y_ S (6w)(a, 8.

Since these maps are tnverses of each other the following formulas hold

(16) f g) /f (a,b) = / Si_l(a)(:r:)b(;v)dm
f=>5" f d(2)) azz<f(1)7a> f(z)'

Proor. We use the isomorphisms H — H* defined by ]/C\ = f = ([ = f) =
E<f(1),f> f(2) and H* — H defined by @ := (¢ = §) = ) d(1){a, d(z)). Because of
(17) (a:) = (a, (b= 8)) = (b, 8)
and
(18) (f,9)=((J = 1).9) =], fq)

we get for all e € H* and f e H

(a J%> (af. ) = >(a, 50)(f. 8z) = Tla. 61))( [, f6(zy)  ( by Lemma 1.25 )
=2{(a,5(f)dq >(fv5(2)> = (a,S(f){[,0) = (a,S(f)).

~
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This givesf: S(f). So the inverse map of H — H* with ]/C\: ([ = f)= fvis H*
— H with S7'(@) = ) S7'(61))(a, d(z)) = @. Then the given inversion formulas are
clear.

We note for later use <a,g> = (a, S‘l(/g» = (S !(a),b) = (S7!(a)b,?). O
If (G is a finite group and H = K% then
f= Zf(r)r
z€G

Since A(d) = quer_l* ®@ z* where the z* € K are the dual basis to the z € G, we

get
a= Z(a, ™"

If G is a finite Abelian group then the groups G and G are isomorphic so the
Fourier transform induces a linear automorphism ~: K — K% and we have

a=a™) (a,0x
xeG

By substituting the formulas for the integral and the Dirac d-function (1) and (13)
we get

(19) }v: ZxEG f(”C)T,

- 7Y eq a0OX T
f=1G1" e FOOXT

eGa( )T,

a=|G

a=73,

This implies

(20) 7 = 0= [ fon

with inverse transform

1) i(e) = G173 )y (2).
xeG

Corollary 4.1.27. The Fourier transforms of the left invariant integrals in H
and H* are

(22) S=cevteH and [=1€H.
PRrROOF. We have 5 Ny = ([,0f) f,yzl(f)(S} = ev M ){[,d) = ev™I(f)
hence5z€u1.From1—(f/—1—fwegetle. O

Proposition 4.1.28. Define a convolution multiplication on H* by

(axb, f):=2 (a,57"(8w)f){b; )
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Then the following transformation rule holds for f,g € H:
(23) fg=1Ff=*g.

In particular H* with the convolution multiplication is an associative algebra with unit

1y = [, te
(24) [*xa=ax [ =a.
Proor. Given f,g,h € H*. Then

(fg.h)y = ([, fgh) = ffS (1i)gh) fé

= ([ FS7TH0w)gh) ([ 6@) = 22[ FSTHEw)A)I [, 9d¢z))
=Z<f75‘1(5< ) >< (@) = (F+3,h).
From(iZIZ)wegetngf.Sowehavelele*f:f*f O

If G is a finite Abelian group and a,b € H* = K%. Then
(axb)(uw) =G > a(Mb(x).
x,/\EG,XA:,u

In fact we have

(@ b)(p) = (@b, p) =3 (a, 57 (6)) ) (b, 0z))
=[G Xeala xT )b, x) = G171 2, sen=n @A)B(X)-

One of the most important formulas for Fourier transforms is the Plancherel for-
mula on the invariance of the inner product under Fourier transforms. We have

Theorem 4.1.29. (The Plancherel formula)

(25) (a. f) = (J.u(@)).

PROOF. First we have from (16)

(@, ) =20 0y @S 2 ST OIS b)) = (S, @57 ) f 0a))
= 32{J STHO@)V@NF, 2)) = 220, STHSW(@))d )N £, d(2))
= 2L, S7THO(f v(@)de) = 2, STHE) @) f, v(@)S(S7H ) )
= ([, 57N S, v(@))
Apply this to ([,d). Then we get
L= ([.0) = (.S @), () = (/.57 @)ev (1) = (f.57(5)).
Hence we get (a, f) = (f, ( )> O

Corollary 4.1.30. If H is unimodular then v = S2.
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PROOF. H unimodular means that ¢ is left and right invariant. Thus we get

(@.9) = S o DU 57 0T )

(@S () d) S 51 G S @ 5)
s @) (

(J.5

) 7
([,5Y(du (1) ><f, d(2) (a) since 5 is rlght invariant)
IR CNE (G)> (f, S*(@)).

Hence S? = v. O

We also get a special representation of the inner product H* ® H — K by both
integrals:

Corollary 4.1.31.

(26) (w1) = [ases = [ 57 @) o
PROOF. We have the rules for the Fourier transform From (18) we get <a f)y =
([,af) = [a(z)f(z)dz and from (17) (a, f) = (S7'(a = [F S5 (a)(x) ()d;v

O

The Fourier transform leads to an interesting integral transform on H by double
application.

Proposition 4.1.32. The double transform f := (6 = (J — f)) defines an
automorphism H — H with

PROOF. We have

(y, f)

since (z, (y — 9)) = (xy, ). O
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2. Derivations

Definition 4.2.1. Let A be a K-algebra and 4M4 be an A-A-bimodule (with
identical K-action on both sides). A linear map D : A — M is called a derivation if

D(ab) = aD(b) + D(a)b.

The set of derivations Derg(A, 4M4) is a K-module and a functor in 4 M.
By induction one sees that D satisfies

D(ay...a,) = Z ap...ai—1D(a;)aipr ... ap.
=1
Let A be a commutative K-algebra and 4M be an A-module. Consider M as
an A-A-bimodule by ma := am. We denote the set of derivations from A to M by
Derg(A, M)..

Proposition 4.2.2. 1. Let A be a K-algebra. Then the functor Derg(A,-) :
A-Mod-A — Vec is representable by the module of differentials 4.
2. Let A be a commutative K-algebra. Then the functor Derg(A,-). : A-Mod

— Vec is representable by the module of commutative differentials Q5.

PROOF. 1. Represent A as a quotient of a free K-algebra A := K(X;|1 € J)/I
where B = K(X;|i¢ € J) is the free algebra with generators X;. We first prove the
theorem for free algebras.

a) A representing module for Derg(B,-) is (Qp,d : B — Qpg) with

p:=BRFdX;ieJ)®B
where F\(dX;|i € J) is the free K-module on the set of formal symbols {dX;|i € J}
as a basis.

We have to show that for every derivation D : B — M there exists a unique
homomorphisms ¢ : Qg — M of B-B-bimodules such that the diagram

B—% +0p

M
commutes. The module 5 is a B-B-bimodule in the canonical way. The products
X1 ... X, of the generators X; of B form a basis for B. For any product X;...X,
we define d(X; ... X,) :=> ", Xi...X;o1 ®dX; ® Xiy1 ... X, in particular d(X;) =
1®dX;®1. To see that d is a derivation it suffices to show this on the basis elements:
d( X1 .o Xe X1 ... Xn)

=30 X1 X ®dX;® Xy X Xpgr - X

+ Z;?:Hl Xioo o XeXpy1 . X;m1 @dX; @ X1 ... X,

=d(X1... Xp)Xeg1 .- X + X1 Xpd( X1 - .- X0)
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Now let D : B — M be a derivation. Define ¢ by ¢(1 @ dX; @ 1) := D(X;). This

map obviously extends to a homomorphism of B-B-bimodules. Furthermore we have

hence pd = D.

To show the uniqueness of p let ¥ : Qg — M be a bimodule homomorphism such
that v»d = D. Then ¥(1 @ dX; ® 1) = ¥d(X;) = D(X;) = p(1 ® dX; ® 1). Since ¢
and ¢ are B-B-bimodules homomorphisms this extends to ¥ = ¢.

b) Now let A := K(X;|¢ € J)/I be an arbitrary algebra with B = K(X;|: € J)
free. Define

Ny :=Qp/(IQs + Qpl + Bdg(I)+ ds(I)B).

We first show that [Qg+Qpl+ Bdg(l)+ds(l)B is a B-B-subbimodule. Since Qg and
I are B-B-bimodules the terms /g and Q5! are bimodules. Furthermore we have
de(L)b/ = de(lb/) — bldB(b/) € BdB([) + [QB hence [QB + QB[ + BdB([) + dB([)B
is a bimodule.

Now IQp and Qpl are subbimodules of IQp + QI 4+ Bdg(l) + dg(I)B. Hence
A = B/I acts on both sides on Q4 so that 24 becomes an A-A-bimodule.

Let v : Qg — Q4 and also v : B — A be the residue homomorphisms. Since
vdp(i) € vdg(l) = 0 C Q4 we get a unique factorization map dg : A — Q4 such that

BLQB

ATA’\QA

commutes. Since d4(b) = dp(b) it is clear that d, is a derivation.

Let D : A — M be a derivation. The A-A-bimodule M is also a B-B-bimodule by
bm = bm. Furthermore Dv : B — A — M is again a derivation. Let pp : Qg — M
be the unique factorization map for the B-derivation Dv. Consider the following
diagram

BLQB

|

Ay e

N
M
We want to construct ¥ such that the diagram commutes. Let 1w € [Qp. Then
p(iw) = Eap_(w) = 0 and similarly p(wi) = 0. Let bdg(i) € Bdg(l) then p(bdg(i)) =
bpdp(i) = bD(7) = 0 and similarly ¢(dg()b) = 0. Hence » vanishes on IQp + Qpl +
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Bdg(l)+dg(I)B and thus factorizes through a unique map ¢ : Q4 — M. Obviously
¥ is a homomorphism of A-A-bimodules. Furthermore we have Dv = ¢dg = Yvdg =
Ydav and, since v is surjective, D = d4. It is clear that ¢ is uniquely determined
by this condition.

2. If A is commutative then we can write A = K[X;|t € J]/I and Qf = B®
F(dX;). With Q4 = Q%/(1Q% + Bdg(l)) the proof is analogous to the proof in the

noncommutative situation. O

Remark 4.2.3. 1. Q4 is generated by d(A) as a bimodule, hence all elements
are of the form . a;d(a})a?. These elements are called differentials.

2. If A=K(X;)/I, then Q4 is generated as a bimodule by the elements {d(X;)}.

3. Let f € B = K(X;). Let B be the algebra opposite to B (with opposite
multiplication). Then Qp = B® F(dX;)® B is the free B® B left module over the
free generating set {d(X;)}. Hence d(f) has a unique representation

N9

A =2 5x

d(X;)

with uniquely defined coefficients

af

B ® B,
8XZ-€ @

In the commutative situation we have unique coefficients

af
IX;

e K[X;].

4. We give the following examples for part 3:
0X;

ax, = dij,
ag(;f? =1® Xo,
82()1()2(2 =X, ®1,
Oy,
N o
This is obtained by direct calculation or by the product rule
o eg e
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The product rule follows from

d(fg)=d(f)g+ fd(g) =) (1®g)

af
0X;

Let A =K(X;)/I. If f €[ then d(f) =da(f) =0 hence

of o
G (%) = 0.

These are the defining relations for the A-A-bimodule 24 with the generators d4(X;).

dg
0X;

+(f®l) )d(X5).

For motivation of the quantum group case we consider an affine algebraic group
(¢ with representing commutative Hopf algebra A. Recall that Hom(A, R) is an alge-
bra with the convolution multiplication for every R € K-cAlg and that G(R) =
K-cAlg(A, R) € Hom(A, R) is a subgroup of the group of units of the algebra
Hom(A, R).

Definition and Remark 4.2.4. A linear map T : A — A is called left transla-
tion invariant, if the following diagram functorial in R € K-cAlg commutes:

G(R) x Hom(A, R) * Hom(A, R)

1®@Hom(T,R) Hom(T,R)

G(R) x Hom(A, R)

Hom(A, R)
1. e. if we have
Vg € G(R),Vo € Hom(A,R): g*(zoT)=(g*z)oT.

This condition is equivalent to

(27) AAOT=(1A®T)OAA.

In fact if (27) holds then g (z0T) =Vg(g @ 2)(la @ T)A4 = Vr(g®@ 2)A4T =
(gxax)oT.

Conversely if the diagram commutes, then take R = A, g = 14 and we get

VA(lA ® .I)(lA & T)AA = 1A * (”E e] T) = (1A * ”E) ol = VA(lA & $)AAT for all = €
Hom(A, A). To get (27) it suffices to show that the terms V 4(14®x) can be cancelled
in this equation. Let Y "  a;®b; € A®A be given such that V4(14®2)(>° a;®b;) =0
for all # € Hom(A, A) and choose such an element with a shortest representation (n
minimal). Then > a;z(b;) = 0 for all z. Since the b; are linearly independent in such
a shortest representation, there are z; with z;(b;) = ¢;;. Hence a; = > a;x;(b;) =0

and thus > a; ® b; = 0. From this follows (27).

Definition 4.2.5. Let H be an arbitrary Hopf algebra. An element 7" €
Hom(H, H) is called left translation invariant if it satisfies
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Proposition 4.2.6. Let H be an arbitrary Hopf algebra. Then ® : H* —
End(H) with ®(f) := id*ugf s an algebra monomorphism satisfying
O(fxg)=®(f)o?(g).
The image of @ is precisely the set of left translation invariant elements T' € End(H).

ProoOF. For f € Hom(H,K) we have uy f € End(H) hence id xug f € End(H).
Thus @ is a well defined homomorphism. Observe that

(f)(a) = (idu * wn f)(a) = 3 ap flae).

® is injective since it has a retraction End(H) 3 g — egog € Hom(H, K). In fact
we have (c®(f))(a) = (X a)f(aw)) = X elaw)flaw) = Felaq))a) = f(a)
hence e®(f) = f.

The map @ preserves the algebra unit since ®(1y«) = ®(ey) = idy *uyey = idgy.

The map @ is compatible with the multiplication: ®(f * g)(a) = > aq)(f *
9Naw) = Y an)flag)glae) = >(dxunf)law))glaz) = ()X anglaw)) =
3(1)9(g)(a) %o that &(f + g) = &(F] o ®()

For each f € H* the element ®(f) is left translation invariant since A®(f)(a) =
A e fle)) = 2 aq) ®ap fla) = (10 (f)A(a).

Let T' € End(H) be left translation invariant then S+7 = Vy(S®@1)(1®@T)Ag =
Vu(S @ D)AT = ugeyT. Thus ®(eT') = id*ugeyT =id*S +« T =T, so that T' is
in the image of ®. O

Proposition 4.2.7. Let d € Hom(H,K) and ®(d) = D € Hom(H, H) be given.
The following are equivalent:

1. d: H— K. is a derivation.
2. D: H — gHpy is a (left translation invariant) derivation.

In particular ® induces an isomorphism between the set of derivations d : H — K,
and the set of left translation invariant derivations D : H — gHpy.
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3. The Lie Algebra of Primitive Elements

Lemma 4.3.1. Let H be a Hopf algebra and H° be its Sweedler dual. If d €
Derg(H,.K.) € Hom(H,K) is a derivation then d is a primitive element of H°.
Furthermore every primitive element d € H° is a derivation in Derg(H, . K.).

PROOF. Let d : H — K be a derivation and let a,b € H. Then (b — d)(a) =
d(ab) = e(a)d(b) + d(a)e(b) = (d(b)e + e(b)d)(a) hence (b — d) = d(b)e + (b)d.
Consequently we have Hd = (H — d) C Ke + Kd so that dim Hd < 2 < oo. This
shows d € H°. Furthermore we have (Ad,a ® b) = (d,ab) = d(ab) = d(a)e(b) +
e(a)d(b)=(dRe,a®@b)+(c@d,a®@b) = (lge ®d+d® lyo,a @ b) hence A(d) =
d® lgo + 1go ® d so that d is a primitive element in H?.

Conversely let d € H° be primitive. then d(ab) = (A(d),a ® b) = d(a)e(b) +
e(a)d(b). O

Proposition and Definition 4.3.2. Let H be a Hopf algebra. The set of primi-
tive elements of H will be denoted by Lie(H) and is a Lie algebra. If char(K) = p > 0

then Lie(H) is a restricted Lie algebra or a p-Lie algebra.

PROOF. Let a,b € H be primitive elements. Then A([a,b]) = A(ab — ba) =
(a®14+1®a)(b@1+12b)—(b@1+1®b)(a®1+1®a)= (ab—ba)@1+1® (ab—ba)
hence Lie(H) C H" is a Lie algebra. If the characteristic of K is p > 0 then we have
(a®@1+1®a)) =a?®@1+1®da’. Thus Lie(H) is a restricted Lie subalgebra of HE

with the structure maps [a,b] = ab — ba and al?! = a?. O

Corollary 4.3.3. Let H be a Hopf algebra. Then the set of left translation in-
variant derivations D : H — H 1is a Lie algebra under [D,D']| = DD' — D'D. If

char = p then these derivations are a restricted Lie algebra with DP) = Dr .

PrOOF. The map ¥ : H° — H* 2, End(H) is a homomorphism of algebras
by 4.2.6. Hence U(d+d —d' xd) = ®(d+d —d xd) = ®(d)®(d') — ®(d')P(d).
If d is a primitive element in H° then by 4.2.7 and 4.3.1 the image D := ¥(d) in
End(H) is a left translation invariant derivation and all left translation invariant
derivations are of this form. Since [d,d'] = d*d' — d’'*d is again primitive we get that
[D,D'] = DD" — D'D is a left translation invariant derivation so that the set of left
translation invariant derivations Der (H, H) is a Lie algebra resp. a restricted Lie

algebra. 0

Definition 4.3.4. Let H be a Hopf algebra. An element ¢ € H is called cocom-
mutative if TA(c) = Ae), 1. e. if Y cqy @ cpy = D cp) @ cqy. Let C(H) := {c €
H|c is cocommutative }.

Let G(H) denote the set of group like elements of H.

Lemma 4.3.5. Let H be a Hopf algebra. Then the set of cocommutative elements
C(H) is a subalgebra of H and the group like elements G(H) form a linearly inde-

pendent subset of C(H). Furthermore G(H) is a multiplicative subgroup of the group
of units U(C(H)).
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PROOF. It is clear that C'(H) is a linear subspace of H. If a,b € C(H) then
A(ab) = A(a)A(b) = (TA)(a)(7A)(b) = T(A(a)A(b)) = TA(ab) and A(l) =1® 1 =
7A(1). Thus C(H) is a subalgebra of H.

The group like elements obviously are cocommutative and form a multiplicative
group, hence a subgroup of U(C(H)). They are linearly independent by Lemma
2.1.14. ]

Proposition 4.3.6. Let H be a Hopf algebra with S* = idy. Then there is a left
module structure
C(H)® Lie(H)>c®a+>» c-a € Lie(H)
with c-a:=Vg(Vp)(1r)(1eS®1)(A®1)(c®a) = ZC(l)aS(C(g)) such that

= Z[C(l) a,c

In particular G(H) acts by Lie automorphisms on Lie(H).

PROOF. The given action is actually the action H @ H — H with h-a =
Y- hayaS(h()), the so-called adjoint action.

We first show that the given map has image in Lie(H). For ¢ € C(H) and a €
Lie(H) we have A(c-a) = A(>] c(l)aS(C(Q))) > A( ))(a R1+1®a )A(S(C(Q))) =
3 Aley) (a DA(S(ep)) +3 Aey) 166)A(E ) = 3 cyaS(eqn) DenS(eqo) +
> 0(3)S(C(2)) ® 0(4)a5(0(1 J=c-a ® 1 +1® c-a since c is Cocommutatlve 52 = idy
and «a is primitive.

We show now that Lie(H) is a C'(H)-module. (cd) - a = ) cydnyaS(cid) =
Y cydmyaS(d))S(ce)) = ¢- (d- a). Furthermore we have 1-a = 1aS(1) = a.

To show the given formula let a,b € Lie(H) and ¢ € C(H). Then ¢ - [a,b] =
Y- cay(ab—=ba)S(c)) = D cayaS(c@))eEbS(cuy) = c)bS(ce))e@asS(cy) = 2 (cqy
a)(c)-b)=> (cay-b)(c)-a) = D [cuy-a, ¢)-b] again since ¢ € C(H ) is cocommutative.

Now let ¢ € G(H). Then g-a = gaS(g) = gag™ since S(g) = g~ ' for any
group like element. Furthermore ¢ - [a,b] = [g - a, g - b] hence g defines a Lie algebra
automorphism of Lie(H ). O

Problem 4.3.2. Show that the adjoint action HQH 3> h®@a + ) hyaS(hq)) €
H makes H an H-module algebra.

Definition and Remark 4.3.7. The algebra K(6) = K[d]/(6*) is called the al-
gebra of dual numbers. Observe that K(§) = K& Kd as a K-module.

We consider 0 as a "small quantity“ whose square vanishes.

The maps p : K(6) — K with p(6) = 0 and j : K — K(J) are algebra homomor-
phism satisfying pj = id.

Let K(8,6") := K[6,0']/(62,6"). Then K(§,6") = K& K§ & K& & K§6'. The map
K(d) 3 6 — 66" € K(4,¢") is an injective algebra homomorphism. Furthermore for
every a € K we have an algebra homomorphism ¢, : K(§) 3 § — ad € K(J).

These algebra homomorphisms induce algebra homomorphisms H @ K(§) — H ®
K(0) resp. H® K(0) — H @ K(4,4") for every Hopf algebra H.
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Proposition 4.3.8. The map
e’ : Lie(H) — H @ K(§) C H ® K(4,¢")
with % :=14+a® 35 =1+ da is called the exponential map and satisfies
eHlath) — ghaghh,
Saa __ Sa
eé&’[a,b] :e eéa;’zo(zgf)—)l’(eé’b)—l‘

Furthermore all elements €* € H @ K(§) are group like in the K(§)-Hopf algebra
H @ K(9).

PROOF. 1. f(att) — (I+8(a+b))=(14da)(l+db) = edaedh,

2. et = 1 4 Saa = 0ol +da) = gaa(e‘ga).

3. Since (14da)(1—0da) = 1 we have (65“) = 1—da. So we get e5¥lab] — 1+6[a,b] =
I+d(a—a)+6(b—>b)+ 6 (ab—ab—ba+ ab) = (1 + da)(1 4 0'b)(1 —da)(1 —4&'b) =
e‘gaeélb(eé“)_l(e‘glb)_l.

4. Agy(e®) = A1l+a®6) =10k l+(@@1+10a)@6 =1Qks 1+
da GK(s) 141 QK (5) da + da QK(s) da = (1 + 5@) QK (5) (1 + 5@) = ¢de QK (5) e’ and
€K(5)(€6a) = 5K(6)(1 + 5@) =1+ (56(@) =1. O

Corollary 4.3.9. (Lie(H),e’) is the kernel of the group homomorphism
b Grgy(H 5 K()) — G(H).

PrROOF. p=1®p: HRK(() - H® K= H is a homomorphism of K-algebras.

We show that it preserves group like elements. Observe that group like elements in
H @ K(J) are defined by the Hopf algebra structure over K(d). Let g € Ggs)(H ®
K(4)). Then (Ag ®1)(g) = g @xs) g and (eg @ 1)(g) = 1 € K(9).

Since p : K(6) — K is an algebra homomorphism the following diagram commutes

(H @ K(3)) @) (H @ K(8)) =+ H @ H @ K(6)

(18p)®(1®p) 1®p

(HRK) @ (HOK) —s—— Ho HOK

We identify elements along the isomorphisms. Thus we get (Ay @ 1g)(1g @ p)(g) =
(lnen @ p)(Ar @ lr@)(9) = ((1n @ p) Bxe) (1u @ p))(9 Bxe) 9) = (1u @ p)(
(1g ®p)(g), so that 1y @p: G (H @K(S)) — G(H). Now we have (15 ® p)(g9')
(1g @p)(9)(1g @ p)(¢') so that 1y ® p is a group homomorphism.

Nowlet g =go®1+¢g, ®9 € GK((g)(H(@ K(9)) € HKs H @ Kd. Then we have
(Il ®@p)(g) =1iff go=1iff g = 1g @ lgs) + g1 ® 6. Furthermore we have

Anere)(9) = 9 Oxe) 9 =

lg @1 @ lge)y + Ar(g) ® 6 = (g @ ki) + 61 ® 6) i) (1n @ ki) + 1 ® 6)
=1lp@1lp @k + (@@ 1lp+1lp @ ) Q6 =

A1) = @ 1lg+ 1y ® g1.
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Similarly we have ex(s))(g) = 1 iff 1 @ 1 4 ¢(g,) @8 = 1iff e(g1) = 0. O
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4. Derivations and Lie Algebras of Affine Algebraic Groups

Lemma and Definition 7.4.1. Let G : K-cAlg — Set be a group valued func-
tor. The kernel Lie (G)(R) of the sequence
g(r)
g(j)
is called the Lie algebra of G and is a group valued functor in R.

0 —— Lie (G)(R) — G(R(9)) G(R) —0

PROOF. For every algebra homomorphism f : R — S the following diagram of
groups comimutes

g(p)

0 ——— Lie(G)(R) — G(K(9)) G(R) ——0

g(4)
J \g(f(é)) \g(f)
G(p

0 —— Lie(G)(5) —=G(5(9))

Proposition 4.4.2. Let G : K-cAlg — Set be a group valued functor with mul-
tiplication *. Then there are functorial operations

G(R) x Lie(G)(R) 3 (g,z) = g-z € Lie(G)(R)

R x Lie(G)(R) 3 (a,z) — ax € Lie(G)(R)

such that
g-(e+y)=g-z+g-v,
h-(g-z)=(h*g)- =,
a(z +y) = ax + ay,
(ab)x = a(bz),
g (a2) = alg - 2).

PROOF. First observe that the composition + on Lie(G)(R) is induced by the
multiplication * of G(R(4)) so it is not necessarily commutative.

We define g-2 = G(j)(g) +2+G(j)(9)~'- Then G(p)(g-2) = G(p)G()(9)*G(p)(z)*
G(p)G(j)(9)~' =g+ 1xg ! =1hence g-z € Lie(G)(R).

Now let @ € R. To define a : Lie(G)(R) — Lie(G)(R) we use u, : R(d) — R(J)
defined by u4(d) := aéd and thus u,(b+¢d) := b+acd. Obviously u, is a homomorphism
of R-algebras. Furthermore we have pu, = p and u,j = 7. Thus we get a commutative
diagram

g(r)

0 —— Lie (G)(R) —— G(R(9)) G(R) —0

g(7)
J : \gw \
g(p)

0 —— Lie (G)(R) —— G(R(9)) G(R) —0

g
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that defines a group homomorphism a : Lie(G)(R) — Lie(G)(R) on the kernel of
the exact sequences. In particular we have then a(z + y) = ax + ay.

Furthermore we have uy, = u,u; hence (ab)x = a(bzx).

The next formula follows from g - (z +y) = G(j)(g) *x*y*G(7)(g9)™" = G(4)(g) *
v+ G(7)(9) " *G(U)9) xy*G()9) " =g -x+g-y.

We also see (hxg)-x = G(j)(h*g)xx+G(j)(hxg)~" = G(j)(h)*G(7)(g)*x+G(j)(g)~"
G(j)(h)~ = h (g x). Finally we have g - (az) = G(j)(g) * G(ua)(x) * G(5)(g7")
G(ua)(G(5)(g) * x+G(5)(g7")) = alg - z).

Proposition 4.4.3. Let G = K-cAlg(H,-) be an affine algebraic group. Then
Lie(G)(K) = Lie(H°) as additive groups. The isomorphism is compatible with the
operations given in 4.4.2 and 4.3.6.

Dll*

PRrOOF. We consider the following diagram

0 Lie (G)(K) —— K-cAlg(H, K(6)) 7 K-cAlg(H,K) —— 0
0 Lie(H°) —— Glys)(H° @ K(§)) —E— G(H*) — 0

We know by definition that the top sequence is exact. The bottom sequence is exact
by Corollary 4.3.9.

Let f € K-cAlg(H,K). Since Ker(f) is an ideal of codimension 1 we get f € H°.
The map f is an algebra homomorphism iff (f,ab) = (f ® f,a ® b) and (f,1) = 1 iff
Apo(f)=f® f and ego(f) = 1 iff f € G(H?). Hence we get the right hand vertical
isomorphism K-cAlg(H,K) = G(H°).

Consider an element f € K-cAlg(H,K(¢)) C Hom(H,K(d)). It can be written as
f = fo+ fid with fo, fi € Hom(H, K). The linear map f is an algebra homomorphism
iff fo: H — K is an algebra homomorphism and f; satisfies fi(1) = 0 and f;(ab) =
fola) f1(b) + fi(a) fo(b). In fact we have f(1) = fo(1) + fi(1)d = 1 iff fo(1) =1
and fi(1) = 0 (by comparing coefficients). Furthermore we have f(ab) = f(a)f(b )
iff fo(ab) + fi(ab)d = (fo(a) + fi(a)d)(fo(b) + f1(b)0) = fo(a)fo(b) + fo(a)f1(b)d +
Fi(@)JoB)3 HIE fo(ab) = fola) fo(d) and fi(ab) = fola)/(8) + i(a) fo(®)

Since fo is an algebra homomorphism we have as above fo € H°. For f; we
have (b — fi)(a) = fi(ab) = fo(a)f1(b) + fi(a)fo(b) = (f1(b)fo + fo(b)f1)(a) hence
(b— f1) = fi(b) fo+ fo(b) fr € Kfo +Kf1, a two dimensional subspace. Thus f; € H°.

In the following computations we will identify (H° ® K(J)) QK(5) (H°®@K(d)) with
H°® H° @ |K(9).

Let f=fo+fid=fo@l+fiwde H & H° = H° @ K(§). Then f is a
homomorphism of algebras iff f(ab) = f(a)f(b) and f(1) = 1 iff fo(ab) = fo(a)fo(b)
and fi(ab) = fo(a)f1(b)+ fi(a)fo(b) and fo(1) = 1 and fi(1) = 0iff Ape(fo) = fo® fo
and Ago(fi) = fo® fi+f1®@fo and ego(fo) = 1 and ego(f1) = 0 iff (AHo®ldK )(fo@
1+4f1®0) = foR @1+ fo@fiRI+ 1R fu®d = (f0®1+f1®5)®]1< (f0®1+f1®5)
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and (ego @ idi)(fo®@ 1+ fi ®@0) = 1@ 1 iff (Age ® idx)(f) = f Oxs f and
(e @ idk(s ))(f) =1iff f e Gge)(H® @K(6)).

Hence we have a bijective map w : K-cAlg(H,K(0)) > f=fo+ fid— fo®@ 1 +
fi ®9 € Gy (H? @ K(d)). Since the group multiplication in K-cAlg(H,K(d)) C
Hom(H, K(5)) is the convolution * and the group multiplication in Gs)(H°®K(d)) C
H° @ K(6) is the ordinary algebra multiplication, where the multlphcatlon of H®
again is the convolution, it is clear that w is a group homomorphism. Furthermore
the right hand square of the above diagram commutes. Thus we get an isomorphism
e : Lie(H°) — Lie(G)(K) on the kernels. This map is defined by e(d) = 1+ dé €
K-cAlg(H,K(J)).

To show that this isomorphism is compatible with the actions of K resp. G(H?)
let « € K, a € H, and d € Lie(H°). We have e(ad)(a) = c(a) + ad(a)d = us(c(a) +
d(a)d) = (ug 0o (1 4+ dd))(a) = (us 0 e(d))(a) = (ae(d))(a) hence e(ad) = ae(d).

Furthermore let g € G(H°) = K-cAlg(H,K), « € H, and d € Lie(H?). Then we
have ¢(g - d)(a) = e(gdg~')(a) = (1 + gdg~'é)(a) = e(a) + gdg™'(a)d =
> glaw))e(ag))gS(aE) + 22 glaw))d(aw)gS(aE)d = 32 glaw))e(d)(a@z)gS(a@) =
(jog*e(d)xjog™t)(a)=(g-e(d))(a) hence e(g-d) = g - e(d). O

Proposition 4.4.4. Let H be a Hopf algebra and let I := Ker(e). Then
Der.(H,-) : Vec — Vec is representable by I/I1* and d : H s I/1% in

particular
Der.(H,-) = Hom([/I?,-) and Lie(H°) = Hom(I/I* K).

PROOF. Because of e(id —ue)(a) = e(a) — cue(a) = 0 we have Im(id —¢) C [. Let
i € I. Then we have i = i —&(i) = (id —¢)(7) hence Im(id —¢) = Ker(e). We have I* 5
(id —¢)(a)(id —€)(b) = ab — e(a)b — ac(b) + e(a)e(b) = (id —e)(ab) — e(a)(id —)(b) —
(id —¢)(b). Hence we have in [/I* the equation (id —¢)(ab) = e(a)(id —¢)(b) +
(id —¢)(a)e(b) so that v(id —¢) : H — I — I/1* is an e-derivation.

Now let D : H — M be an e-derivation. Then D(1) = D(11) = 1D(1) + D(1)1
hence D(1) = 0. It follows D(a) = D(id —¢)(a). From e(I) = 0 we get D(I*) C
e(l)D(I)+ D(I)e(1) = 0 hence there is a unique factorization

1d —€ d=e g [/[2

\\l

Corollary 4.4.5. Let H be a Hopf algebra that is finitely generated a s an algebra.
Then Lie(H®) is finite dimensional.

PrOOF. Let H = K(ay,...,a,). Since H = K& [ we can choose a; = 1 and
az,...,a, € I. Thus any element in i € I can be written as ) aya;, ...a;, so that

I/1I* =Ka; + ...+ @,. This gives the result. O

O
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Proposition 4.4.6. Let H be a commutative Hopf algebra and gM be an H-
module. Then we have Oy = H Q@ [/1* and d : H — H @ [/I? is given by d(a) =
2 a) @ (id —¢)(ag)-

PROOF. Consider the algebra B := H & M with (a,m)(a’,m’)
a'm). Let G = K-cAlg(H,-). Then we have G(B) C Hom(H, B)
Hom(H, M). An element (¢, D) € Hom(H, B) is in G(B) iff (¢, D)(1
= (1,0), hence (1) = 1 and D(1) = 0, and (p(ab), D(ab)) = a
(¢ D)(a)(p. D)(b) = (p(a). D(a))(#(B). D) = (ola)eb). (@) D(b) £ Dla)olb).
hence p(ab) = p(a)p(b) and D(ab) = ¢(a)D(b) + D(a)p(b). So (¢, D) is in G(B) iff
¢ € G(H) and D is a p-derivation. The #-multiplication in Hom(H, B) is given by
(g, D) * (¢, D) = (px¢,ox D'+ D« ") by applying this to an element a € H.
Since (p,0) € G(B) and (ue, D) € G(B) for every e-derivation D, there is a bi-
jection Der.(H, M) = {(ue,D.) € G.(B)} = {(1g,D1) € Gi(B)} = Derg(H, M)
by (ue, D¢) + (1,0) * (ue, D.) = (1,1 x D.) € Gi(B) with inverse map (1, D;) —
(5,0) * (1, D1) = (ue, S+ Dy) € G(B). Hence we have isomorphisms Derg(H, M) =
Der.(H, M) = Hom(I/I*, M) =< Homy(H ® I/I*, M).

The universal e-derivation for vector spaces is id —¢ : A — I/I%. The universal
e-derivation for H-modules is D.(a) = 1 ® (id—¢)(a) € A ® I/I*. The universal
l-derivation for H-modules is 1 * D, with (1 *x D.)(a) = > aq) @ (id —¢)(ag)) €
AR /I O



