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8. Reconstruction and C-categories

Now we show that an arbitrary coalgebra C can be reconstructed by the methods
introduced above from its (co-)representations or more precisely from the underlying
functor ! : Comod-C �! Vec. In this case one can not use the usual construction
of coend(!) that is restricted to �nite dimensional comodules.

The following Theorem is an example that shows that the restriction to �nite
dimensional comodules in general is too strong for Tannaka reconstruction. There
may be universal coendomorphism bialgebras for more general diagrams. On the
other hand the following Theorem also holds if one only considers �nite dimensional
corepresentations of C. However the proof then becomes somewhat more complicated.

De�nition 3.8.1. Let C be a monoidal category. A category D together with a
bifunctor 
 : C�D �! D and natural isomorphisms � : (A
B)
M �! A
(B
M),
� : I 
M �!M is called a C-category if the following diagrams commute

((A
B)
C)
M (A
 (B 
 C))
M-�(A;B;C)
1
A
 ((B 
 C)
M)-�(A;B
C;M)

?
�(A
B;C;M)

?
1
�(B;C;M)

(A
B)
 (C 
M) A
 (B 
 (C 
M))-�(A;B;C
M)

(A
 I)
M A
 (I 
M)-�(A;I;M)

A
M

�(A)
1

Q
Q
Q
QQs

1
�(M)

�
�
�
��+

A C-category is called strict if the morphisms �; � are the identities.
Let (D;
) and (D0;
) be C-categories. A functor F : D �! D0 together with a

natural transformation �(A;M) : A
F(M) �! F(A
M) is called a weak C-functor
if the following diagrams commute

(A
B)
F(M) F((A
B)
M)-�

?
�

?
F(�)

A
 (B 
F(M)) A
F(B 
M)-1
�
F(A
 (B 
M))-�

I 
F(M) F(I 
M)-�

F(M)

�
@
@
@@R

F(�)
�
�
��	

If, in addition, � is an isomorphism then we call F a C-functor. The functor is
called a strict C-functor if � is the identity morphism.
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A natural transformation ' : F �! F 0 between (weak) C-functors is called a
C-transformation if

A
F 0(M) F 0(A
M)-
�0

A
F(M) F(A
M)-�

?

1A
'(M)

?

'(A
M)

commutes.

Example 3.8.2. Let C be a coalgebra and C := Vec. Then the categoryComod-C
of right C-comodules is a C-category since N 2 Comod-C and V 2 C = Vec implies
that V 
N is a comodules with the comodule structure of N .

The underlying functor ! : Comod-C �! Vec is a strict C-functor since we have
V 
 !(N) = !(V 
 N). Similarly ! 
M : Comod-C �! Vec is a C-functor since
V 
 (!(N) 
M) �= !(V 
N) 
M .

Lemma 3.8.3. Let C be a coalgebra. Let ! : Comod-C �! Vec be the un-

derlying functor. Let ' : ! �! ! 
M be a natural transformation. Then ' is a

C-transformation with C = Vec.

Proof. It su�ces to show 1V 
'(N) = '(V 
N) for an arbitrary comodule N .
We show that the diagram

V 
N V 
N 
M-
1V
'(N)

V 
N V 
N 
M-'(V
N)

?

1

?

1

commutes. Let (vi) be a basis of V . For an arbitrary vector space W let pi : V 
W
�!W be the projections de�ned by pi(t) = pi(

P
j vj 
wj) = wi where

P
j vj 
wj is

the unique representation of an arbitrary tensor in V 
W . So we get

t =
X
i

vi 
 pi(t)

for all t 2 V 
W . Now we consider V 
N as a comodule by the comodule structure of
N . Then the pi : V 
N �! N are homomorphisms of comodules. Hence all diagrams
of the form

N N 
M:-
'(N)

V 
N V 
N 
M-'(V
N)

?

pi

?

pi
M
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commute. Expressed in formulas this means '(N)pi(t) = pi'(V 
 N)(t) for all
t 2 V 
N . Hence we have

(1V 
 '(N))(t) = (1V 
 '(N))(
P

vi 
 pi(t)) =
P

vi 
 '(N)pi(t)
=
P

i
vi 
 pi'(V 
N)(t) = '(V 
N)(t)

So we have 1V 
 '(N) = '(V 
N) as claimed.

We prove the following Theorem only for the category C = Vec of vector spaces.
The Theorem holds in general and says that in an arbitrary symmetric monoidal
category C the coalgebra C represents the functor C- Nat(!; ! 
M) �= MorC(C;M)
of natural C-transformations.

Theorem 3.8.4. (Reconstruction of coalgebras) Let C be a coalgebra. Let ! :
Comod-C �! Vec be the underlying functor. Then C �= coend(!).

Proof. Let M in Vec and let ' : ! �! ! 
M be a natural transformation. We
de�ne the homomorphism e' : C �!M by e' = (�
 1)'(C) using the fact that C is a
comodule.

Let N be a C-comodule. Then N is a subcomodule of N 
C by � : N �! N 
C
since the diagram

N 
C N 
 C 
 C-
�
1

N N 
C-�

?

�

?

1
�

commutes. Thus the following diagram commutes

N N 
 C-�

N 
M N 
 C 
M-�
1
?

'(N)

?

'(N
C)=1N
'(C)

N 
M

1

XXXXXXXXXXXXXXXXXz

1
�
1

HHHHHHHHHj

1
e'

@
@
@
@
@
@
@
@
@
@@R

In particular we have shown that the diagram

! ! 
C-�

'

@
@
@
@@R
! 
M
?

1
e'

commutes.
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To show the uniqueness of e' let g : C �! M be another homomorphism with
(1 
 g)� = '. For c 2 C we have g(c) = g(� 
 1)�(c) = (� 
 1)(1 
 g)�(c) =
(�
 1)'(C)(c) = e'(c).

The coalgebra structure from Corollary 3.5.1 is the original coalgebra structure
of C. This can be seen as follows. The comultiplication � : ! �! ! 
 C is a natural
transformation hence (� 
 1C)� : ! �! ! 
 C 
 C is also a natural transformation.
As in Corollary 3.5.1 this induced a unique homomorphism � : C �! C 
 C so that
the diagram

! 
 coend(!) ! 
 coend(!) 
 coend(!)-
�
1

! ! 
 coend(!)-�

?

�

?

1
�

commutes. In a similar way the natural isomorphism ! �= ! 
 K induces a unique
homomorphism � : C �! K so that the diagram

! ! 
 coend(!)-�

id!

@
@
@
@@R
! 
 I
?

1
�

commutes. Because of the uniqueness these must be the structure homomorphisms
of C.

We need a more general version of this Theorem in the next chapter. So let C be
a coalgebra. Let ! : Comod-C �! Vec be the underlying functor and � : ! �! !
C
the universal natural transformation for C �= coend(!).

We use the permutation map � on the tensor product that gives the natural
isomorphism

� : N1 
 T1 
N2 
 T2 
 : : :
Nn 
 Tn �= N1 
N2 
 : : :
Nn 
 T1 
 T2 : : :

Tn

which is uniquely determined by the coherence theorems and is constructed by suitable
applications of the 
ip � : N 
 T �= T 
N .

Let !n : Comod-C � Comod-C � : : : � Comod-C �! Vec be the functor
!n(N1; N2; : : : ; Nn) = !(N1) 
 !(N2) 
 : : :
 !(Nn). For notational convenience we
abbreviate fNgn := N1 
 N2 
 : : : 
 Nn, similarly fCgn = C 
 C 
 : : : 
 C and
ffgn := f1 
 f2 
 : : :
 fn. So we get � : fN 
 Tgn �= fNgn 
 fTgn:
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Lemma 3.8.5. Let ' : !n �! !n 
M be a natural transformation. Then ' is a

C-transformation in the sense that the diagrams

fV gn 
 fNgn fV gn 
 fNgn 
M-
fV gn
'(N1;::: ;Nn)

fV 
Ngn fV 
Ngn 
M-'(V1
N1;::: ;Vn
Nn)

?
�

?
�
M

commute for all vector spaces Vi and C-comodules Ni.

Proof. Choose bases fvijg of the vector spaces Vi with corresponding projections
pij : Vi 
Ni �! Ni. Then we have � (t1 
 : : :
 tn) =

P
v1i1 
 : : :
 vnin 
 p1i1(t1)


: : :
 pnin(tn) so � =
P

v1i1 
 : : :
 vnin 
 fpg
n.

The piji : Vi
Ni �! Ni are homomorphisms of C-comodules. Hence the diagrams

fNgn fNgn 
M-
'(N1;::: ;Nn)

fV 
Ngn fV 
Ngn 
M-'(V1
N1;::: ;Vn
Nn)

?

fpgn

?

fpgn
M

commute for all choices of fpgn = p1i1 
 : : :
 pnin .
So we get for all ti 2 Vi 
Ni

(fV gn 
 '(N1; : : : ; Nn))� (t1 
 : : :
 tn) =
= (fV gn 
 '(N1; : : : ; Nn))(

P
v1i1 
 : : :
 vnin 
 p1i1(t1)
 : : :
 pnin(tn))

=
P

v1i1 
 : : :
 vnin 
 '(N1; : : : ; Nn)fpgn(t1 
 : : :
 tn)
=
P

v1i1 
 : : :
 vnin 
 (fpgn 
M)'(V1 
N1; : : : ; Vn 
Nn)(t1 
 : : :
 tn)
= (� 
M)'(V1 
N1; : : : ; Vn 
Nn)(t1 
 : : :
 tn):

Theorem 3.8.6. With the notation given above we have

coend(!n) �= C 
C 
 : : :
 C

with the universal natural transformation

�(n)(N1; N2; : : : ; Nn) := � (�(N1)
 �(N2)
 : : :
 �(Nn)) :
!(N1)
 !(N2)
 : : :
 !(Nn) �! !(N1)
C 
 !(N2)
 C 
 : : :
 !(Nn)
 C

�= !(N1)
 !(N2)
 : : :
 !(Nn)
 C 
 C 
 : : :
 C:

Proof. We proceed as in the proof of the previous Theorem.
Let M in Vec and let ' : !n �! !n 
M be a natural transformation. We de�ne

the homomorphism e' : Cn = !(C)
 !(C)
 : : :
 !(C) = C 
C 
 : : :
C �!M by
e' = ("n 
 1M )'(C; : : : ; C) using the fact that C is a comodule.



8. RECONSTRUCTION AND C-CATEGORIES 111

As in the preceding proof we get that � : Ni �! Ni 
 C are homomorphisms of
C-comodules. Thus the following diagram commutes

N1 
 : : :
Nn N1 
 C 
 : : :
Nn 
 C-�
:::
� N1 
 : : :
Nn
-�

C 
 : : :
 C

N1 
 : : :
Nn 
M N1 
 C 
 : : :
Nn 
C 
M-�
:::
�
M N1 
 : : :
Nn
-�
M
C 
 : : :
 C 
M

?

'(N1
:::
Nn)

?

'(N1
C;::: ;Nn
C)

?
N1
:::
Nn
'(C;::: ;C)

1

XXXXXXXXXXXXXXXXXz

f1
"gn
1

HHHHHHHHHj
N1 
 : : :
Nn 
M

?

1
f�gn
1

Hence we get the commutative diagram

!n !n 
 fCgn-�(n)

'

@
@
@
@@R
!n 
M

?

1
e'

To show the uniqueness of e' let g : Cn �! M be another homomorphism with
(1!n 
 g)�(n) = '. We have g = g("n 
 1Cn)��n = g("n 
 1Cn)�(n)(C; : : : ; C) =
("n 
 1M )(1Cn 
 g)�(n)(C; : : : ; C) = ("n 
 1M )'(C; : : : ; C) = e'.

Now we prove the �nite dimensional case of reconstruction of coalgebras.

Proposition 3.8.7. (Reconstruction) Let C be a coalgebra. Let Comod0-C be

the category of �nite dimensional C-comodules and ! : Comod0-C �! Vec be the

underlying functor. Then we have C �= coend(!).

Proof. Let M be in Vec and let ' : ! �! ! 
M be a natural transformation.
We de�ne the homomorphism e' : C �! M as follows. Let c 2 C. Let N be a
�nite dimensional C-subcomodule of C containing c. Then we de�ne g(c) := (�jN 

1)'(N)(c). If N 0 is another �nite dimensional subcomodule of C with c 2 N 0 and
with N � N 0 then the following commutes

N N 
M-'(N)

? ?
N 0 N 0 
M-'(N 0)

HHj

��*
C 
M M-

�
1

Thus the de�nition of e'(c) is independent of the choice of N . Furthermore e' : N
�! M is obviously a linear map. For any two elements c; c0 2 C there is a �nite
dimensional subcomodule N � C with c; c0 2 N e. g. the sum of the �nite dimensional
subcomodules containing c and c0 separately. Thus e' can be extended to all of C.
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The rest of the proof is essentially the same as the proof of the �rst reconstruction
theorem.

The representations allow to reconstruct further structure of the coalgebra. We
prove a reconstruction theorem about bialgebras. Recall that the category of B-
comodules over a bialgebra B is a monoidal category, furthermore that the underlying
functor ! : Comod-B �! Vec is a monoidal functor. From this information we can
reconstruct the full bialgebra structure of B. We have

Theorem 3.8.8. Let B be a coalgebra. Let Comod-B be a monoidal category

such that the underlying functor ! : Comod-B �! Vec is a monoidal functor. Then

there is a unique bialgebra structure on B that induces the given monoidal structure

on the corepresentations.

Proof. First we prove the uniqueness of the multiplication r : B 
 B �! B
and of the unit � : K �! B. The natural transformation � : ! �! ! 
 B becomes a
monoidal natural transformation with r : B
B �! B and � : K �! B We show that
r and � are uniquely determined by ! and �.

Let r0 : B 
 B �! B and �0 : B �! K be morphisms that make � a monoidal
natural transformation. The diagrams

!(X)
 !(Y ) !(X)
 !(Y )
B 
B-�(X)
�(Y )

?

�

?

�
r0

!(X 
 Y ) !(X 
 Y )
B-�(X
Y )

and

K K 
 K-�=

? ?

1 
 �0

!(K) !(K) 
B-�(K)

commute. In particular the following diagrams commute

!(B)
 !(B) !(B)
 !(B)
B 
B-�(B)
�(B)

?

�

?

�
r0

!(B 
B) !(B 
B)
B-�(B
B)
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and

K K 
 K-�=

? ?

1 
 �0

!(K) !(K) 
B-�(K)

Hence we get
P

b(1)
c(1)
b(2)c(2) =
P

b(1)
c(1)
r
0(b(2)
c(2)) and 1
1 = 1
�0(1).

This implies bc =
P

�(b(1))�(c(1))b(2)c(2) =
P

�(b(1))�(c(1))r
0(b(2) 
 c(2)) = r0(b 
 c)

and 1 = �0(1).
Now we show the existence of a bialgebra structure. Let B be a coalgebra only and

let ! : Comod-B �! Vec be a monoidal functor with � : !(M)
!(N) �! !(M
N)
and �0 : K �! !(K). First we observe that the new tensor product between the
comodules M and N coincides with the tensor product of the underlying vector
spaces (up to an isomorphism �). Because of the coherence theorems for monoidal
categories (that also hold in our situation) we may identify along the maps � and �0.

We de�ne � := (K
�(K)
�! K 
B �= B) and r := (B 
B

�(B
B)
�! B 
 B 
 B

�
�
1B�!
K 
 K 
B �= B).

Since the structural morphism for the comodule � : M �!M 
B is a homomor-
phism of of B comodules where the comodule structure on M 
 B is only given by
the diagonal of B that is the C-structure on ! : Comod-B �! Vec we get that also
�(M)
 �(N) :M 
N �!M 
N 
B is a comodule homomorphism. Hence the �rst
square in the following diagram commutes

M 
N M 
B 
N 
B-�(M)
�(N)

M 
N 
B M 
B 
N 
B 
B-�(M)
�(N)
1B

M 
N 
B 
B-1
�
1

M 
N 
B 
B 
B-1
�
1
1
?

�(M
N)

?
�(M
B
N
B)

?
1
1
�(B
B)

The second square commutes by a similar reasoning since the comodule structure on
M 
B resp. N 
B is given by the diagonal on B hence M 
N can be factored out
of the natural (C-)transformation. Now we attach

1M 
 1N 
 �
 �
 1B : M 
N 
B 
B 
B �!M 
N 
B

to the commutative rectangle and obtain �(M
N) = (1M
1N
r)(1
�
1)(�(M)

�(N). Thus the comodule structure on M 
 N is induced by the multiplication
r : B 
B �! B de�ned above.
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So the following diagrams commute

B 
B B 
B 
B 
B-�
�
B 
B 
B 
B-1
�
1

B 
B B 
B 
B-�(B
B)

B 
B 
B B 
B 
B 
B-1
1
�

B B 
B-�

?
1B
1B

?
1
r

�(B
B)

Q
Q
Q
QQs

�(B
B)
1

�
�

�
��+

?

r

?

r
1

�
�
1

�
�

�
��+

�
�
1
1

Q
Q
Q
QQs

B 
B B-r

B 
B K-
�
�

B 
B 
B

�(B
B)

HHHHHHHj
�
�
1

��
��
���*

?

1

1
1
�

��������

�

�
�
�
�

�
�
�
�	

K B-
�

K 
B K 
B 
B-�(K)
1
B 
B-�=

B B 
B-�
1

K 
B

�(K)

XXXXXXXXXXXXXz
�(K)

@
@
@
@
@
@
@
@R

�=

��
��
���*

�=

��������
�
1

HHHHHHHj
1B

��������?

�

?
1
�

?

�=

?

�

and
K K-

1

K 
B

�(K)

HHHHHHHj
1
�

��
��
���*

�

@
@
@
@
@
@
@
@R

�

�
�
�
�
�
�
�
��

B
?

�=

Hence � and r are coalgebra homomorphisms.
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To show the associativity of r we identify along the maps � : (M 
 N) 
 P �=
M
(N
P ) and furthermore simplify the relevant diagram by �xing that � represents
a suitable permutation of the tensor factors. Then the following commute

B 
B 
B B 
B 
B 
B 
B 
B-�(�(B)
�(B)
�(B)
B 
B 
B-�
�
�
1

B 
B 
B B 
B 
B 
B 
B 
B
-�(�(B
B)
�(B))

-
�(�(B)
�(B
B))

B 
B-�
�
�
1

B 
B 
B B 
B 
B 
B-�(B
B
B)
B-

�
�
�
1

?

1

?

1

?

1
(r
1)

?

1
(1
r)

?

r
1

?

1
r

?

1
r

?

r

The upper row is the identity hence we get the associative law.
For the proof that � has the properties of a unit we must explicitly consider the

coherence morphisms � and � By reasons of symmetry we will only show one half
of of the unit axiom. This axiom follows from the commutativity of the following
diagram

B B 
B-�(B)
B 
B 
 K-�

�1

B 
B-�
B-

�
1

B 
 K B 
B 
 K 
B-�(B)
�(K)
B 
 K 
B 
B-1
�
1

B 
B 
B-�
1
1
B 
B-�
1
1

B 
 K B 
 K 
B-�(B
K)

B B 
B-�(B)
B-

�
1

?
��1

?
1
1
�(K)

?
1
1
�

?
1
�

?
=

?
1
1
r

?

1
r

?

r

?
�

�(B)
1

��
��

���*

�
1

HHHHHHHj


