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3. Dual Objects

At the end of the first section in Corollary 3.1.15 we saw that the dual of an H-
module can be constructed. We did not show the corresponding result for comodules.
In fact such a construction for comodules needs some finiteness conditions. With this
restriction the notion of a dual object can be introduced in an arbitrary monoidal
category.

Definition 3.3.1. Let (C,®) be a monoidal category M € C be an object. An
object M* € C together with a morphism ev : M* @ M — [ is called a left dual for
M if there exists a morphism db : [ — M @ M* in C such that

db ®1 1Qev

(M— MoM @M —M)=1y
(M 2L Mo M @ M* 22 M) = 1y,

A monoidal category is called left rigid if each object M € C has a left dual.

Symmetrically we define: an object *M € C together with a morphismev : M@*M
— [ is called a right dual for M if there exists a morphism db : [ — *M @ M in C
such that

(MR MoMaoM™ M) =1y
MBS Mo Mo M ES M) = 1y,

A monoidal category is called right rigid if each object M € C has a left dual.

The morphisms ev and db are called the evaluation respectively the dual basis.

Remark 3.3.2. If (M*,ev) is a left dual for M then obviously (M,ev) is a right
dual for M* and conversely. One uses the same morphism db : [ — M @ M™.

Lemma 3.3.3. Let (M*,ev) be a left dual for M. Then there is a natural iso-
morphism
More(-® M, -) = More(-, - @ M™),
i. e. the functor - @ M : C — C is left adjoint to the functor - M* : C — C.

ProoOF. We give the unit and the counit of the pair of adjoint functors. We define
P(A)=14,0db: A—>AMaM and V(B) :=1lp@ev: B M* @ M — B.

These are obviously natural transformations. We have commutative diagrams

Fo(A)= y UF(A)=
(AoM— 0 Ao MOM oM —— 2 A M) = Lo
and
« ®G(B)= « « gu(B)= «
(BaM 1501+ @db BeM e@MeM 15@ev @17+ B® M) = 1pom-
thus the Lemma has been proved by Corollary A.9.11. O

The converse holds as well. If - @ M is left adjoint to - @ M™ then the unit &
gives a morphism db := ®(/) : I — M @ M* and the counit ¥ gives a morphism
ev:=U(l): M* @ M — [ satisfying the required properties. Thus we have
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Corollary 3.3.4. If-@ M :C — C s left adjoint to -@ M* : C — C then M~ is
a left dual for M.

Corollary 3.3.5. (M*,ev) is a left dual for M if and only if there is a natural
isomorphism

More(M™ @ -, -) = More(-, M @ -),
i. e. the functor M* @ -:C — C s left adjoint to the functor M @ -:C — C. The

natural isomorphism if given by
(f  MON—=P)— (ly@ fildb@ly): N = MM @N — M@ P)
and
(g: N—=>MP)— ((evalp)(ly»®@g)  M"@N —- M" @M ® P — P).
ProOOF. We have a natural isomorphism
More(M* @ -,-) & More(-, M @ -),

iff (M,ev) is a right dual for M* (as a symmetric statement to Lemma 3.3.3) iff
(M~*,ev) is a left dual for M. O

Corollary 3.3.6. If M has a left dual then this is unique up to isomorphism.

PROOF. Let (M*,ev) and (M*,ev') be left duals for M. Then the functors - @ M*
and - @ M" are isomorphic by Lemma A.9.7. In particular we have M* = [ @ M* =
I © M = M' 1If we consider the construction of the isomorphism then we get
in particular that (evl®1)(1 @ db) : M — M'© M@ M* — M~* is the given

isomorphism. O

Problem 3.3.1. Let (M*,ev) be a left dual for M. Then there is a unique mor-
phism db : [ — M ©@ M™ satisfying the conditions of Definition 3.3.1.

Definition 3.3.7. Let (M*, evys) and (N*,evy) be left duals for M resp. N. For
each morphism f: M — N we define the transposed morphism

(f* i N* — M7) o= (N 220 N= o Mo M 25 N o v e M ST ),

With this definition we get that the left dual is a contravariant functor, since we
have

Lemma 3.3.8. Let (M*,evy), (N*,evn), and (P*,evp) be left duals for M, N
and P respectively.

1. We have (1p)* = 1.

2. Iff: M — N and g: N — P are given then (gf)* = f*¢* holds.

PrROOF. 1. (1) = (ev@1)(1 @1 @ 1)(1 @ db) = L.
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2. The following diagram commutes

dby ®1
_—

M NoN“oM
f 1018 f
NM,N@@N*@NM,N

901Q1 g

P@N*@Nﬂp

Hence we have gf = (1 @ evy)(g ® 1 @ f)(dby @1). Thus the following diagram

commutes

P 1®db 19gQ1

P o N® N~ P @ P @ N*
1®db 1®db
1®db ev®l
PraoMoM 2P pro No N oMo M*

\\\\\\l@g@l
10gf®1 10g®18 fO1 PQPRIN*"QM»M* N*
4/1@@1
ProPoM 228 propoN 9N @M

ev®1 1®db
ev®1 ev®1

M* 1Gev N*@N@ M <22 N g Mo M

O

Problem 3.3.2. 1. In the category of N-graded vector spaces determine all ob-
jects M that have a left dual.

2. In the category of chain complexes K-Comp determine all objects M that
have a left dual.

3. In the category of cochain complexes K-Cocomp determine all objects M that
have a left dual.

4. Let (M*,ev) be a left dual for M. Show that db : I — M @ M* is uniquely
determined by M, M*, and ev. (Uniqueness of the dual basis.)

5. Let (M*,ev) be a left dual for M. Show that ev: M* @ M — [ is uniquely
determined by M, M*, and db.
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Corollary 3.3.9. Let M, N have the left duals (M*,evyr) and (N*,evy) and let
f: M — N be a morphism in C. Then the following diagram commutes

dbs

I

M & M~
dby fe1

N®N*@:N®M*.

ProoF. The following diagram commutes

MEE NN~ M

f l l 1910f

N2 NN o N

\ ll@ev
N
This implies (f & 1M*) dby = ((1]\7 & eVN)(lN @ 1y ® f)(de ®1M) X 1M*) dbpy =
(Iv@evy @1l )(In@1In+ @ f@ Lame ) (dby @1ar @ 1age ) dbar = (In@evy @1+ )(In @
Iye @ f @ L )(In @ 1yx @ dbar)dby = (Ixy @ (evy @1a)(Ine @ f @ Lage)(Ine @
dba)) dby = (1 @ f*) dby. O

Corollary 3.3.10. Let M, N have the left duals (M*,evpr) and (N*,evy) and let
f: M — N be a morphism in C. Then the following diagram commutes

N oMI% oM

1®f eviyg

N*@ N —g— 1.

PROOF. This statement follows immediately from the symmetry of the definition
of a left dual. O

Example 3.3.11. Let M € pMp be an R-R-bimodule. Then Hompg(M., R.)
is an R-R-bimodule by (rfs)(x) = rf(sx). Furthermore we have the morphism
ev: Homp(M., R.) @p M — R defined by ev(f @rm) = f(m).

(Dual Basis Lemma:) A module M € Mg is called finitely generated and projective
if there are elements my,... ,m, € M und m*,... ,m" € Homg(M., R.) such that

Vm e M : Zmzml(m) =m.
=1
Actually this is a consequence of the dual basis lemma. But this definition is
equivalent to the usual definition.
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Let M € pMp. M as a right R-module is finitely generated and projective iff M
has a left dual. The left dual is isomorphic to Homg(M., R.).

If Mg is finitely generated projective then we use db: R — M @r Homp(M., R.)
with db(1) = Y0, m; @g m'. In fact we have (1 @g ev)(db@gl)(m) = (1 @g
ev) (Yo m; @r m' @pm) = >.mmm‘(m) = m. We have furthermore (ev@rl)(1 @r
ab)(F(m) = (ev Srl) (St F Onm; Gpm)(m) = X f(mim'(m) = F(3 mom(m))
= f(m) for all m € M hence (ev@gl)(1 @rdb)(f) = f.

Conversely if M has a left dual M* then ev : M* @r M — R defines a homo-
morphism ¢ : M* — Hompg(M., R.) in g Mg by ¢«(m*)(m) = ev(m* @rm). We define
S mi@mti=db(1) € M@ M*, thenm = (1@ev)(db@1)(m) = (1 @ev)(> m; @
m' @ m) = > mu(m')(m) so that my,...,m, € M and «(m'),... (m") €
Homp(M., R.) form a dual basis for M, i. e. M is finitely generated and projec-
tive as an R-module. Thus M* and Hompg(M., R.) are isomorphic by the map ¢.

Analogously Hompg(.M,.R) is a right dual for M iff M is finitely generated and

projective as a left R-module.

Problem 3.3.3. Find an example of an object M in a monoidal category C that
has a left dual but no right dual.

Definition 3.3.12. Given objects M, N in C. An object [M, N] is called a
left inner Hom of M and N if there is a natural isomorphism Morc(- @ M, N) =
More(-, [M, N]), i. e. if it represents the functor More(- @ M, N).

If there is an isomorphism Mor¢(P @ M, N) = Mor¢(P,[M, N]) natural in the
three variable M, N, P then the category C is called monoidal and left closed.

If there is an isomorphism Mor¢(M @ P, N) = Morc(P,[M, N]) natural in the
three variable M, N, P then the category C is called monoidal and right closed.

If M has a left dual M* in C then there are inner Homs [M, -] defined by
[M,N]:= N ® M~. In particular left rigid monoidal categories are left closed.

Example 3.3.13. 1. The category of finite dimensional vector spaces is a
monoidal category where each object has a (left and right) dual. Hence it is
(left and right) closed and rigid.

2. Let Ban be the category of (complex) Banach spaces where the morphisms
satisfy || f(m) ||<]| m || i. e. the maps are bounded by 1 or contracting. Ban is
a monoidal category by the complete tensor product M@N. In Ban exists an
inner Hom functor [M, N] that consists of the set of bounded linear maps from
M to N made into a Banach space by an appropriate topology. Thus Ban is
a monoidal closed category.

3. Let H be a Hopf algebra. The category H-Mod of left H-modules is a monoidal
category (see Example 3.2.4 2.). Then Homg(M, N) is an object in H-Mod
by the multiplication

(Rf)(m) := > hay f(mS(h)
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as in Proposition 3.1.14.
Homg (M, N) is an inner Hom functor in the monoidal category H-Mod.
The isomorphism ¢ : Homg (P, Homg (M, N)) = Homg(P @ M, N) can be re-

stricted to an isomorphism

because cb(f)(h(p ©m)) = ¢
(1)

2y (f()(hym) = 3 ha(
(p@m)) and Conversely (h(f(p)) m (
(p @ S(hizy)m)) = 22 (f)(hayp @ hz)S(hz)m) = ¢
Thus H- Mod is left closed.

It M € H-Mod is a finite dimensional vector space then the dual vector
space M* := Homg(M,K) again is an H-module by (hf)(m) := f(S(h)m).
Furthermore M* is a left dual for M with the morphisms

db:KBlHZmiQ@miEM@M*

and

ev: M"@M>3 feom— f(m)eK
where m; and m' are a dual basis of the vector space M. Clearly we have
(1@ev)(db®@1) = 1 and (ev @1)(1®db) = 1+ since M is a finite dimensional

vector space. We have to show that db and ev are H-module homomorphisms.

We have

(hdb( ))(m) = (R3S m; @ m))(m) = (3 haym; @ hgym')(m) =
> (hymi)((haym®)(m)) = Z(h m;)(m (S(h(z)) m)) =

> hay (2)) m = e(h)m (h)(zmz@@m)(m) e(h)db(1)(m) =
db(e ( )L)(m) = db( 1)(m )

hence hdb(1) = h1). Furthermore we have

hev(f @m) = hf(m) =3 ha)f(S(ha)h@m) =3 (ha[)(hem) =
> ev(h(l)f ® h(g)m) =ev(h(f @m)).

4. Let H be a Hopf algebra. Then the category of left H-comodules (see Example
3.2.4 3.) is a monoidal category. Let M € H-Comod be a finite dimensional
vector space. Let m; be a basis for M and let the comultiplication of the
comodule be §(m;) = > h;; @m;j. Then we have A(hip) = > hyj @ hjr. M* =
Homy (M, K) becomes a left H-comodule §(m?) := > S(h;;) @m*. One verifies
that M™ is a left dual for M.

7 \

Lemma 3.3.14. Let M € C be an object with left dual (M*,ev). Then
1. M @ M* is an algebra with multiplication

Vi=lyQevRlys - MM QMo M — Mo M*
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and unit
u:=db: I — M @ M~;
2. M* @ M s a coalgebra with comultiplication
A=l @dbh@lyy - MM —-> M QMM @M

and counit

ci=ev: M" @M — 1.

PROOF. 1. The associativity is given by (V@ 1)V = (1yy @ ev@ly+ @ 1y @
Iap ) (I @ ev@lpyx) = Iy @ev@ev@lyx = (I @ Ly @ Iy @ ev@lys)(ly @
ev@lpyx) = (1@ V)V. The axiom for the left unit is V(u®@1) = (1yy @ev @1p+)(db @

2. 1s dual to the statement for algebras. 0

Lemma 3.3.15. 1. Let A be an algebra in C and left M € C be a left rigid object
with left dual (M*,ev). There is a bijection between the set of morphisms f: A@ M

— M making M a left A-module and the set of algebra morphisms ]}v: A— Mo M.
2. Let C be a coalgebra in C and left M € C be a left rigid object with left dual (M*,ev).
There is a bijection between the set of morphisms f: M — M @ C making M a right
C'-comodule and the set of coalgebra morphisms f: M* @ M — C'.

PROOF. 1. By Lemma 3.3.14 the object M @ M* is an algebra. Given f: A@ M
— M such that M becomes an A-module. By Lemma 3.3.3 we associate [ :=
(fol)l®db): A — A M@ M* — M @ M*. The compatibility of f with the

multiplication is given by the commutative diagram
A®A = A
\gi1®db 1®V
l 1@f®1 f®1
fof A@ Mo M — M & M~ 7

®M®M*®M®M*—>A®M®M 1

Ml@l 1R1Rev®1

MM @M@ M

19f

fe1m1

1Qev @1 M ® M~
The unit axiom is given by
[ —P— Mo M
u l u@l J 191
A1®db A@M@M*f(X)IM@M*
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Conversely let g : A — M ® M* be an algebra homomorphism and consider g :=
(l@ev)(gal): AM — M@ M@ M — M. Then M becomes a left A-module

since

A@A@M Vol Ao M

1®g®1 2g®1 g®1/
1®ev ®1R1
A@M@M* M— MM OMOIM QM —MM QM
gR1IR1IR1
107 J1®1®1®ev g
1R01Rev M ® M* ® M 1Qev
AR M M
and
M
A@M M@M*(@MWM
commute.

2. (M*,ev) is a left dual for M in the category C if and only if (M*,db) is the
right dual for M in the dual category C°?. So if we dualize the result of part 1. we
have to change sides, hence 2. O



