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2. Monoidal Categories

For our further investigations we need a generalized version of the tensor product
that we are going to introduce in this section. This will give us the possibility to
study more general versions of the notion of algebras and representations.

De�nition 3.2.1. A monoidal category (or tensor category) consists of
a category C,
a covariant functor 
 : C � C �! C, called the tensor product,
an object I 2 C, called the unit,
natural isomorphisms

�(A;B;C) : (A
B)
 C �! A
 (B 
 C);
�(A) : I 
A �! A;
�(A) : A
 I �! A;

called associativity, left unit and right unit, such that the following diagrams commute:

((A
B)
 C)
D (A
 (B 
C))
D-�(A;B;C)
1
A
 ((B 
C)
D)-�(A;B
C;D)

?
�(A
B;C;D)

?
1
�(B;C;D)

(A
B)
 (C 
D) A
 (B 
 (C 
D))-�(A;B;C
D)

(A
 I)
B A
 (I 
B)-�(A;I;B)

A
B

�(A)
1

Q
Q
Q
QQs

1
�(B)

�
�

�
��+

These diagrams are called coherence diagrams or constraints.
A monoidal category is called a strict monoidal category, if the morphisms �; �; �

are the identity morphisms.

Remark 3.2.2. We de�ne A1 
 : : :
An := (: : : (A1 
A2)
 : : : )
An.
There is an important theorem of S. MacLane that says that all diagrams whose

morphisms are constructed by using copies of �, �, �, identities, inverses, tensor
products and compositions of such commute. We will not prove this theorem. It
implies that each monoidal category can be replaced by (is monoidally equivalent to)
a strict monoidal category. That means that we may omit in diagrams the morphisms
�; �; � or replace them by identities. In particular there is only one automorphism of
A1 
 : : :
An formed by coherence morphisms namely the identity.

Remark 3.2.3. For each monoidal category C we can construct the monoidal
category Csymm symmetric to C that coincides with C as a category and has tensor
product A�B := B 
A and the coherence morphisms

�(C;B;A)�1 : (A�B)� C �! A� (B � C);
�(A) : I �A �! A;
�(A) : A� I �! A:
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Then the coherence diagrams are commutative again, so that Csymm is a monoidal
category.

Example 3.2.4. 1. Let R be an arbitrary ring. The category RMR of R-R-
bimodules with the tensor product M 
R N is a monoidal category. In particular
the K-modules form a monoidal category. This is our most important example of a
monoidal category.

2. Let B be a bialgebra and B-Mod be the category of left B-modules. We de�ne
the structure of a B-module on the tensor product M 
N =M 
K N by

B 
M 
N
�
1M
1N�! B 
B 
M 
N

1B
�
1N�! B 
M 
B 
N
�M
�N�! M 
N

as in the previous section. So B-Mod is a monoidal category by 3.1.7
3. Let B be a bialgebra and B-Comod be the category of B-comodules. The

tensor product M 
N = M 
K N carries the structure of a B-comodule by

M 
N
�M
�N�! B 
M 
B 
N

1B
�
1N�! B 
B 
M 
N
r
1M
1N�! B 
M 
N:

as in the previous section. So B-Comod is a monoidal category by 3.1.8
4. Let G be a monoid. A K-module together with a family of submodules (Vgjg 2

G) is called G-graded if V = �g2GVg.
Let V and W be G-graded K-modules. A homomorphism of K-modules f : V

�!W is called G-graded if f(Vg) �Wg for all g 2 G.
TheG-graded K-modules and their homomorphisms form the category (K-Mod)G

of G-graded K-modules.
There is a monoidal structure on (K-Mod)G given by the ordinary tensor product

V 
W . The submodules on the tensor product V 
W are given by (V 
W )g :=P
h2G

Vh 
Wh�1g =
P

h;k2G;hk=g Vh 
Wk.
5. A chain complex of K-modules

M = (: : :
@3�!M2

@2�!M1
@1�!M0)

consists of a family of a family of K-modules Mi and a family of homomorphisms
@n : Mn �! Mn�1 with @n�1@n = 0. This chain complex is indexed by the monoid
N0. One may also consider more general chain complexes indexed by an arbitrary
cyclic monoid. Chain complexes indexed by N0 � N0 are called double complexes.
So much more general chain complexes may be considered. We restrict ourselves to
chain complexes over N0.

Let M and N be chain complexes. A homomorphism of chain complexes f : M
�! N consists of a family of homomorphisms of K-modules fn : Mn �! Nn such that
fn@n+1 = @n+1fn+1 for all n 2 N0.

The chain complexes with these homomorphisms form the category of chain com-
plexes K-Comp.

If M and N are chain complexes then we form a new chain complex M 
 N
with (M 
 N)n :=

Ln

i=0Mi 
 Nn�i and @ : (M 
 N)n �! (M 
 N)n�1 given by
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@(mi 
 nn�i) := (�1)i@M (mi) 
 nn�i + mi 
 @(nn�i). This is often called the total
complex associated with the double complex of the tensor product ofM and N . Then
it is easily checked that K-Comp is a monoidal category with this tensor product.

Problem 3.2.1. 1. Prove that the category (K-Mod)G of G-graded K-modules
is equivalent to the category KG-Comod of KG-comodules by the following construc-
tion. If V is a G-graded K-module the V becomes a KG-comodule by the map � : V
�! KG
V , �(v) := g
v for all v 2 Vg and all g 2 G. Conversely if V; � : V �! KG
V
is a KG-comodule then V together with the submodules Vg := fv 2 V j�(v) = g 
 vg
is a G-graded K-module.

Since KG is a bialgebra the category of KG-comodules is a monoidal category.
Show that the equivalence de�ned above between (K-Mod)G and KG-Comod pre-
serves the tensor products, hence that it is a monoidal equivalence.

2. Let B = Khx; yi=I where I is generated by x2; xy+ yx. Then B is a bialgebra
with the diagonal �(y) = y
y, �(x) = x
1+y
x. The counit is "(y) = 1; "(x) = 0.
We introduced (the coopposite bialgebra of) this bialgebra in A.7 2.

Show that the category K-Comp of chain complexes is equivalent to the category
B-Comod of B-comodules by the following construction. If M is a chain complex
then de�ne a B-comodule on M = �i2NMi with the structure map � : M �! B 
M ,
�(m) := yi
m+ xyi�1
 @i(m) for all m 2Mi and for all i 2 N resp. �(m) := 1
m
for m 2 M0. Conversely if M; � : M �! B 
M is a B-comodule then we de�ne
K-modules Mi := fm 2M j9m0 2M [�(m) = yi
m+xyi�1
m0]g and K-linear maps
@i : Mi �! Mi�1 by @i(m) := m0 for �(m) = yi 
m + xyi�1 
 m0. Check that this
de�nes an equivalence of categories.

(Hint: Let m 2M 2 B-Comod. Since yi; xyi form a basis of B we have �(m) =P
i y

i 
mi +
P

i xy
i 
m0

i. We apply to this the equation (1 
 �)� = (� 
 1)� and
compare coe�cients to get

�(mi) = yi 
mi + xyi�1 
m0
i�1; �(m0

i) = yi 
m0
i

for all i 2 N0 (with m0
�1 = 0). Consequently for each mi 2 Mi there is exactly one

@(mi) = m0
i�1 2M such that

�(mi) = yi 
mi + xyi�1 
 @(mi):

Since �(m0
i�1) = yi�1 
 m0

i�1 for all i 2 N we see that @(mi) 2 Mi�1. So we have
de�ned @ : Mi �!Mi�1. Furthermore we see from this equation that @2(mi) = 0 for
all i 2 N. Hence we have obtained a chain complex from (M; �).

If we apply (� 
 1)�(m) = m then we get m =
P

mi with mi 2 Mi hence
M =

L
i2NMi. This together with the inverse construction leads to the required

equivalence.)
3. A cochain complex has the form

M = (M0
@0�!M1

@1�!M2
@2�! : : : )
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with @i+1@i = 0. Show that the category K-Cocomp of cochain complexes is equiv-
alent to Comod-B where B is chosen as in example 5.

Lemma 3.2.5. Let C be a monoidal category. Then the following diagrams com-

mute

(I 
A)
B I 
 (A
B)-�

A
B

�(A)
1B
@
@
@@R

�(A
B)
�

�
��	

(A
B)
 I A
 (B 
 I)-�

A
B

�(A
B)
@
@
@@R

1A
�(B)
�

�
��	

and we have �(I) = �(I).

Proof. First we observe that the identity functor IdC and the functor I 
 - are
isomorphic by the natural isomorphism �. Thus we have I 
 f = I 
 g =) f = g.
In the following diagram

((I 
 I)
A)
B (I 
 (I 
A))
B-�
1
I 
 ((I 
A)
B)-�

(�
1)
1

Q
Q
Q
QQs

(1
�)
1

�
�

�
��+

1
(�
1)

�
�

�
��+

(I 
A)
B I 
 (A
B)-�

?

�

?

1
�

?
�

?
1

I 
 (A
B) I 
 (A
B)-1

(I 
 I)
 (A
B) I 
 (I 
 (A
B))-�

�
(1
1)

�
�
�
��3

1
�

Q
Q
Q
QQs

all subdiagrams commute except for the right hand trapezoid. Since all morphisms are
isomorphisms the right hand trapezoid must commute also. Hence the �rst diagram
of the Lemma commutes.

In a similar way one shows the commutativity of the second diagram.
Furthermore the following diagram commutes

I 
 (I 
 I) (I 
 I)
 I� � I 
 (I 
 I)-�

I 
 I

1
�
@
@
@@R

�
�

�
��	

I 
 I

�
1
@
@
@@R

1
�
�

�
��	

I

�
@
@
@@R

�
�

�
��	

Here the left hand triangle commutes by the previous property. The commuta-
tivity of the right hand diagram is given by the axiom. The lower square commutes
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since � is a natural transformation. In particular �(1 
 �) = �(1 
 �). Since � is an
isomorphism and I 
 - �= IdC we get � = �.

Problem 3.2.2. For morphisms f : I �! M and g : I �! N in a monoidal
category we de�ne (f 
 1 : N �! M 
 N) := (f 
 1I )�(I)�1 and (1 
 g : M
�!M 
N) := (1
 g)�(I)�1. Show that the diagram

N M 
N-
f
1

I M-f

?

g

?

1
g

commutes.

De�nition 3.2.6. Let (C;
) and (D;
) be monoidal categories. A functor

F : C �! D

together with a natural transformation

�(M;N) : F(M)
F(N) �! F(M 
N)

and a morphism

�0 : ID �! F(IC)

is called weakly monoidal if the following diagrams commute

(F(M)
F(N))
F(P ) F(M 
N) 
F(P )-�
1 F((M 
N)
 P )-�

?
�

?
F(�)

F(M)
 (F(N)
F(P )) F(M) 
F(N 
 P )-1
� F(M 
 (N 
 P ))-�

I 
F(M) F(I)
F(M)-�0
1 F(I 
M)-�

F(M)

�

HHHHHHHj
F(�)

��������

F(M)
 I F(M)
F(I)-1
�0 F(M 
 I)-�

F(M):

�

HHHHHHHj
F(�)

��������

If, in addition, the morphisms � and �0 are isomorphisms then the functor is called
a monoidal functor. The functor is called a strict monoidal functor if � and �0 are the
identity morphisms.
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A natural transformation � : F �! F 0 between weakly monoidal functors is called
a monoidal natural transformation if the diagrams

F 0(M) 
F 0(N) F 0(M 
N)-
�0

F(M)
F(N) F(M 
N)-�

?

�
�

?

�

F(I)

I

�0

�
�
���

F 0(I)

�0
0

@
@
@@R ?

�

commute.

We can generalize the notions of an algebra or of a coalgebra in the context of a
monoidal category. We de�ne

De�nition 3.2.7. Let C be a monoidal category. An algebra or a monoid in
C consists of an object A together with a multiplication r : A 
 A �! A that is
associative

A
A A-
r

A
A
A A
A-id
r

?

r
1

?

r

or more precisely

(A
A)
A A
 (A
A)-� A
A-id
r

A
A A-r
?

r
id

?
r

and has a unit � : I �! A such that the following diagram commutes

I 
A �= A �= A
 I A
A-id
�

?

�
id

?

r

A
A A:-
r

id

HHHHHHHHHj
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Let A and B be algebras in C. A morphism of algebras f : A �! B is a morphism
in C such that

A B-
f

A
A B 
B-f
f

?

rA

?

rB and

I

�A

�
�
�
���

�B

A
A
A
AAU

A B-f

commute.

Remark 3.2.8. It is obvious that the composition of two morphisms of algebras
is again a morphism of algebras. The identity also is a morphism of algebras. Thus
we obtain the category Alg(C) of algebras in C.

De�nition 3.2.9. Let C be a monoidal category. A coalgebra or a comonoid in
C consists of an object C together with a comultiplication � : A �! A 
 A that is
coassociative

C 
 C C 
 C 
 C-
id
�

C C 
C-�

?

�

?

�
id

or more precisely

(C 
C)
 C C 
 (C 
 C)-�C 
 C -�
id

C C 
 C-�

?
id
�

?
�

and has a counit " : C �! I such that the following diagram commutes

C C 
 C-�

?

�

?

id
�

C 
 C I 
 C �= C �= C 
 I:-
�
id

id

HHHHHHHHHj

Let C and D be coalgebras in C. A morphism of coalgebras f : C �! D is a
morphism in C such that

C 
C D 
D-
f
f

C D-f

?

�C

?

�D and

I

"C

A
A
A
AAU

"D

�
�
�
���

C D-f



2. MONOIDAL CATEGORIES 83

commute.

Remark 3.2.10. It is obvious that the composition of two morphisms of coalge-
bras is again a morphism of coalgebras. The identity also is a morphism of coalgebras.
Thus we obtain the category Coalg(C) of coalgebras in C.

Remark 3.2.11. Observe that the notions of bialgebra, Hopf algebra, and co-
module algebra cannot be generalized to an arbitrary monoidal category since we
need to have an algebra structure on the tensor product of two algebras and this
requires us to interchange the middle tensor factors. These interchanges or 
ips are
known under the name symmetry, quasisymmetry or braiding and will be discussed
later on.


