
CHAPTER 3

Hopf Algebras, Algebraic, Formal, and Quantum Groups

Introduction

One of the most interesting properties of quantum groups is their representation
theory. It has deep applications in theoretical physics. The mathematical side has to
distinguish between the representation theory of quantum groups and the represen-
tation theory of Hopf algebras. In both cases the particular structure allows to form
tensor products of representations such that the category of representations becomes
a monoidal (or tensor) category.

The problem we want to study in this chapter is, how much structure of the
quantum group or Hopf algebra can be found in the category of representations. We
will show that a quantum monoid can be uniquely reconstructed (up to isomorphism)
from its representations. The additional structure given by the antipode is itimitely
connected with a certain duality of representations. We will also generalize this
process of reconstruction.

On the other hand we will show that the process of reconstruction can also be used
to obtain the Tambara construction of the universal quantum monoid of a noncom-
mutative geometrical space (from chapter 1.). Thus we will get another perspective
for this theorem.

At the end of the chapter you should

� understand representations of Hopf algebras and of quantum groups,
� know the de�nition and �rst fundamental properties of monoidal or tensor
categories,

� be familiar with the monoidal structure on the category of representations of
Hopf algebras and of quantum groups,

� understand why the category of representations contains the full information
about the quantum group resp. the Hopf algebra (Theorem of Tannaka-Krein),

� know the process of reconstruction and examples of bialgebras reconstructed
from certain diagrams of �nite dimensional vector spaces,

� understand better the Tambara construction of a universal algebra for a �nite
dimensional algebra.
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1. Representations of Hopf Algebras

Let A be an algebra over a commutative ring K. Let A-Mod be the category of
A-modules. An A-module is also called a representation of A.

Observe that the action A
M �!M satisfying the module axioms and an algebra
homomorphism A �! End(M) are equivalent descriptions of an A-module structure
on the K-module M .

The functor U : A-Mod �! K-Mod with U(AM) = M and U(f) = f is called
the forgetful functor or the underlying functor.

If B is a bialgebra then a representation of B is also de�ned to be a B-module. It
will turn out that the property of being a bialgebra leads to the possibility of building
tensor products of representations in a canonical way.

Let C be a coalgebra over a commutative ring K. Let C-Comod be the category
of C-comodules. A C-comodule is also called a corepresentation of C.

The functor U : C-Comod �! K-Mod with U(CM) =M and U(f) = f is called
the forgetful functor or the underlying functor.

If B is a bialgebra then a corepresentation of B is also de�ned to be a B-comodule.
It will turn out that the property of being a bialgebra leads to the possibility of
building tensor products of corepresentations in a canonical way.

Usually representations of a ring are considered to be modules over the given
ring. The role of comodules certainly arises in the context of coalgebras. But it is
not quite clear what the good de�nition of a representation of a quantum group or
its representing Hopf algebra is.

For this purpose consider representations M of an ordinary group G. Assume
for the simplicity of the argument that G is �nite. Representations of G are vector
spaces together with a group action G �M �! M . Equivalently they are vector
spaces together with a group homomorphism G �! Aut(M) or modules over the
group algebra: K[G]
M �!M . In the situation of quantum groups we consider the
representing Hopf algebra H as algebra of functions on the quantum group G.

Then the algebra of functions on G is the Hopf algebra KG , the dual of the group
algebra K[G]. An easy exercise shows that the module structure K[G] 
M �! M
translates to the structure of a comoduleM �! K

G
M and conversely. (Observe that
G is �nite.) So we should de�ne representations of a quantum group as comodules
over the representing Hopf algebra.

De�nition 3.1.1. Let G be a quantum group with representing Hopf algebra H.
A representation of G is a comodule over the representing Hopf algebra H.

From this de�nition we obtain immediately that we may form tensor products of
representations of quantum groups since the representing algebra is a bialgebra.

We come now to the canonical construction of tensor products of (co-)represen-
tations.
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Lemma 3.1.2. Let B be a bialgebra. Let M;N 2 B-Mod be two B-modules.

Then M
N is a B-module by the action b(m
n) =
P

b(1)m
b(2)n. If f :M �!M 0

and g : N �! N 0 are homomorphisms of B-modules in B-Mod then f 
 g : M 
 N
�!M 0 
N 0 is a homomorphism of B-modules.

Proof. We have homomorphisms of K-algebras � : B �! End(M) and � : B �!

End(N) de�ning the B-module structure onM and N . Thus we get a homomorphism
of algebras can(�
�)� : B �! B
B �! End(M)
End(N) �! End(M 
N). Thus
M
N is a B-module. The structure is b(m
n) = can(�
�)(

P
b(1))
b(2))(m
n) =

can(
P

�(b(1))
 �(b(2)))(m
 n) =
P

�(b(1))(m)
 �(b(2))(n) =
P

b(1)m
 b(2)n.
Furthermore we have 1(m 
 n) = 1m
 1m = m
 n.
If f; g are homomorphisms of B-modules, then we have (f 
 g)(b(m 
 n)) =

(f 
 g)(
P

b(1)m
 b(2)n) =
P

f(b(1)m)
 g(b(2)n) =
P

b(1)f(m)
 b(2)g(n) = b(f(m)

g(n)) = b(f 
 g)(m
 n). Thus f 
 g is a homomorphism of B-modules.

Corollary 3.1.3. Let B be a bialgebra. Then 
 : B-Mod�B-Mod �! B-Mod

with 
(M;N) =M 
N and 
(f; g) = f 
 g is a functor.

Proof. The following are obvious from the ordinary properties of the tensor
product over K. 1M
1N = 1M
N and (f
g)(f 0
g0) = ff 0
gg0 forM;N; f; f 0; g; g0 2

B-Mod.

Lemma 3.1.4. Let B be a bialgebra. LetM;N 2 B-Comod be two B-comodules.

ThenM
N is a B-comodule by the coaction �M
N(m
n) =
P

m(1)n(1)
m(M)
n(N).

If f : M �! M 0 and g : N �! N 0 are homomorphisms of B-comodules in

B-Comod then f 
 g :M 
N �!M 0 
N 0 is a homomorphism of B-comodules.

Proof. The coaction on M 
N may also be described by (rB
 1M 
 1N )(1B 

� 
 1N )(�M 
 �N ) :M 
N �! B 
M 
B 
N �! B 
B 
M 
N �! B 
M 
N:
Although a diagrammatic proof of the coassociativity of the coaction and the law of
the counit is quite involved it allows generalization so we give it here.

Consider the next diagram.
Square (1) commutes since M and N are comodules.
Squares (2) and (3) commute since � :M 
N �! N 
M for K-modules M and

N is a natural transformation.
Square (4) represents an interesting property of � namely

(1
 1 
 � )(�B
M;B 
 1) = (1
 1
 � )(� 
 1 
 1)(1
 � 
 1) =
(� 
 1
 1)(1 
 1 
 � )(1
 � 
 1) = (� 
 1
 1)(1 
 �M;B
B)

that uses the fact that (1 
 g)(f 
 1) = (f 
 1)(1 
 g) holds and that �B
M;B =
(� 
 1)(1
 � ) and �M;B
B = (1 
 � )(� 
 1).

Square (5) and (6) commute by the properties of the tensor product.
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Square (7) commutes since B is a bialgebra.
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The law of the counit is
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where the last square commutes since " is a homomorphism of algebras.
Now let f and g be homomorphisms of B-comodules. Then the diagram

B 
M

B 
N

M 
N -�
� B 
B

M 
N

-1
�
1
B 
M 
N-r
1
1

?

f
g

?

1
f
1
g

?

1
1
f
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?

1
f
g
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M 0
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N 0M 0 
N 0 -�
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B


M 0 
N 0
-1
�
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B 
M 0 
N 0-r
1
1

commutes. Thus f 
 g is a homomorphism of B-comodules.

Corollary 3.1.5. Let B be a bialgebra. Then 
 : B-Comod � B-Comod �!
B-Comod with 
(M;N) =M 
N and 
(f; g) = f 
 g is a functor.

Proposition 3.1.6. Let B be a bialgebra. Then the tensor product 
 : B-Mod�
B-Mod �! B-Mod satis�es the following properties:

1. The associativity isomorphism � : (M1 
M2) 
M3 �! M1 
 (M2 
M3) with

�((m 
 n) 
 p) = m 
 (n 
 p) is a natural transformation from the functor
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 � (
 � Id) to the functor 
 � (Id�
) in the variables M1, M2, and M3 in

B-Mod.
2. The counit isomorphisms � : K
M �!M with �(�
m) = �m and � :M 
K

�! M with �(m 
 �) = �m are natural transformations in the variable M in

B-Mod from the functor K 
 - resp. - 
 K to the identity functor Id.
3. The following diagrams of natural transformations are commutative

((M1 
M2)
M3)
M4 (M1 
 (M2 
M3))
M4
-

�(M1;M2;M3)
1

M1 
 ((M2 
M3)
M4)-
�(M1;M2
M3 ;M4)

?

�(M1
M2;M3;M4)

?

1
�(M2;M3;M4)

(M1 
M2)
 (M3 
M4) M1 
 (M2 
 (M3 
M4))-
�(M1;M2;M3
M4)

(M1 
 K) 
M2 M1 
 (K 
M2)-
�(M1;K;M2)

M1 
M2

�(M1)
1

Q
Q
Q
QQs

1
�(M2)

�
�
�
��+

Proof. The homomorphisms �, �, and � are already de�ned in the category
K-Mod and satisfy the claimed properties. So we have to show, that these are
homomorphisms in B-Mod and that K is a B-module. K is a B-module by "
 1K :
B
K �! K. The easy veri�cation uses the coassociativity and the counital property
of B.

Similarly we get

Proposition 3.1.7. Let B be a bialgebra. Then the tensor product


 : B-Comod�B-Comod �! B-Comod

satis�es the following properties:

1. The associativity isomorphism � : (M1 
M2) 
M3 �! M1 
 (M2 
M3) with

�((m 
 n) 
 p) = m 
 (n 
 p) is a natural transformation from the functor


 � (
 � Id) to the functor 
 � (Id�
) in the variables M1, M2, and M3 in

B-Comod.
2. The counit isomorphisms � : K
M �!M with �(�
m) = �m and � :M 
K

�! M with �(m 
 �) = �m are natural transformations in the variable M in

B-Comod from the functor K 
 - resp. - 
 K to the identity functor Id.
3. The following diagrams of natural transformations are commutative

((M1 
M2)
M3)
M4 (M1 
 (M2 
M3))
M4
-

�(M1;M2;M3)
1

M1 
 ((M2 
M3)
M4)-
�(M1;M2
M3 ;M4)

?

�(M1
M2;M3;M4)

?

1
�(M2;M3;M4)

(M1 
M2)
 (M3 
M4) M1 
 (M2 
 (M3 
M4))-
�(M1;M2;M3
M4)
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(M1 
 K) 
M2 M1 
 (K 
M2)-
�(M1;K;M2)

M1 
M2

�(M1)
1

Q
Q
Q
QQs

1
�(M2)

�
�
�
��+

Remark 3.1.8. We now get some simple properties of the underlying functors
U : B-Mod �! K-Mod resp. U : B-Comod �! K-Mod that are easily veri�ed.

U(M 
N) = U(M)
 U(N);
U(f 
 g) = f 
 g;
U(K) = K;
U(�) = �; U(�) = �; U(�) = �:

Problem 3.1.1. We have seen that in representation theory and in corepresenta-
tion theory of quantum groups such as KG, U(g), SLq(2), Uq(sl(2)) the ordinary ten-
sor product (in K-Mod) of two (co-)reprensentations is in a canonical way again a (co-
)reprensentation. For two KG-modules M and N the structure is g(m
n) = gm
gn
for g 2 G. For U(g)-modules it is g(m
n) = gm
n+m
gn for g 2 g. For Uq(sl(2))-
modules it is E(m
 n) = m
En+Em
Kn, F (m
 n) = K�1m
 Fn+Fm
 n,
K(m
 n) = Km
Kn.

Remark 3.1.9. Let A and B be algebras over a commutative ring K. Let f : A
�! B be a homomorphism of algebras. Then we have a functor Uf : B-Mod �!

A-Mod with Uf (BM) = AM and Uf(g) = g where am := f(a)m for a 2 A and
m 2M . The functor Uf is also called forgetful or underlying functor.

The action of A on a B-moduleM can also be seen as the homomorphismA �! B
�! End(M).

We denote the underlying functors previously discussed by

UA : A-Mod �! K-Mod resp. UB : B-Mod �! K-Mod:

Proposition 3.1.10. Let f : B �! C be a homomorphism of bialgebras. Then

Uf satis�es the following properties:

Uf (M 
N) = Uf (M)
 Uf (N);
Uf (g 
 h) = g 
 h;

Uf (K) = K;
Uf (�) = �; Uf (�) = �; Uf (�) = �;
UBUf (M) = UC(M);
UBUf (g) = UC(g):

Proof. This is clear since the underlying K-modules and the K-linear maps stay
unchanged. The only thing to check is that Uf generates the correct B-module
structure on the tensor product. For Uf (M 
 N) = M 
 N we have b(m 
 n) =
f(b)(m
 n) =

P
f(b)(1)m
 f(b)(2)n =

P
f(b(1))m
 f(b(2))n =

P
b(1)m
 b(2)n.
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Remark 3.1.11. Let C and D be coalgebras over a commutative ring K. Let f :
C �! D be a homomorphism of coalgebras. Then we have a functor Uf : C-Comod

�! D-Comod with Uf (
CM) = DM and Uf (g) = g where �D = (f 
 1)�C : M

�! C 
M �! D 
M . Again the functor Uf is called forgetful or underlying functor.
We denote the underlying functors previously discussed by

UC : C-Comod �! K-Mod resp. UD : D-Comod �! K-Mod:

Proposition 3.1.12. Let f : B �! C be a homomorphism of bialgebras. Then

Uf : C-Comod �! D-Comod satis�es the following properties:

Uf (M 
N) = Uf (M)
 Uf (N);
Uf (g 
 h) = g 
 h;
Uf (K) = K;
Uf (�) = �; Uf (�) = �; Uf (�) = �;
UCUf(M) = UB(M);
UCUf(g) = UB(g):

Proof. We leave the proof to the reader.

Proposition 3.1.13. Let H be a Hopf algebra. Let M and N be be H-modules.

Then Hom(M;N), the set K-linear maps from M to N , becomes an H-module by

(hf)(m) =
P

h(1)f(S(h(2)m). This structure makes

Hom : H-Mod�H-Mod �! H-Mod

a functor contravariant in the �rst variable and covariant in the second variable.

Proof. The main part to be proved is that the action H 
 Hom(M;N) �!
Hom(M;N) satis�es the associativity law. Let f 2 Hom(M;N), h; k 2 H, and
m 2M . Then ((hk)f)(m) =

P
(hk)(1)f(S((hk)(2)) =

P
h(1)k(1)f(S(k(2))S(h(2))m) =P

h(1)(kf)(S(h(2))m) = (h(kf))(m).
We leave the proof of the other properties, in particular the functorial properties,

to the reader.

Corollary 3.1.14. Let M be an H-module. Then the dual K-module M� =
Hom(M;K) becomes an H-module by (hf)(m) = f(S(h)m).

Proof. The space K is an H-module via " : H �! K. Hence we have (hf)(m) =P
h(1)f(S(h(2)m) =

P
"(h(1))f(S(h(2)m) = f(S(h)m).


