CHAPTER 3

Representation Theory, Reconstruction and
Tannaka Duality

Introduction

One of the most interesting properties of quantum groups is their representation
theory. It has deep applications in theoretical physics. The mathematical side has to
distinguish between the representation theory of quantum groups and the represen-
tation theory of Hopf algebras. In both cases the particular structure allows to form
tensor products of representations such that the category of representations becomes
a monoidal (or tensor) category.

The problem we want to study in this chapter is, how much structure of the
quantum group or Hopf algebra can be found in the category of representations. We
will show that a quantum monoid can be uniquely reconstructed (up to isomorphism)
from its representations. The additional structure given by the antipode is itimitely
connected with a certain duality of representations. We will also generalize this
process of reconstruction.

On the other hand we will show that the process of reconstruction can also be used
to obtain the Tambara construction of the universal quantum monoid of a noncom-
mutative geometrical space (from chapter 1.). Thus we will get another perspective
for this theorem.

At the end of the chapter you should

e understand representations of Hopf algebras and of quantum groups,

e know the definition and first fundamental properties of monoidal or tensor
categories,

o be familiar with the monoidal structure on the category of representations of
Hopf algebras and of quantum groups,

o understand why the category of representations contains the full information
about the quantum group resp. the Hopf algebra (Theorem of Tannaka-Krein),

e know the process of reconstruction and examples of bialgebras reconstructed
from certain diagrams of finite dimensional vector spaces,

o understand better the Tambara construction of a universal algebra for a finite
dimensional algebra.
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70 3. REPRESENTATION THEORY, RECONSTRUCTION AND TANNAKA DUALITY

1. Representations of Hopf Algebras

Let A be an algebra over a commutative ring K. Let A-Mod be the category of
A-modules. An A-module is also called a representation of A.

Observe that the action A M — M satisfying the module axioms and an algebra
homomorphism A — End(M) are equivalent descriptions of an A-module structure
on the K-module M.

The functor U : A-Mod — K-Mod with U(4M) = M and U(f) = f is called
the forgetful functor or the underlying functor.

If B is a bialgebra then a representation of B is also defined to be a B-module. It
will turn out that the property of being a bialgebra leads to the possibility of building
tensor products of representations in a canonical way.

Let ' be a coalgebra over a commutative ring K. Let C-Comod be the category
of C-comodules. A C-comodule is also called a corepresentation of C'.

The functor & : C-Comod — K-Mod with U(“ M) = M and U(f) = f is called
the forgetful functor or the underlying functor.

If B is a bialgebra then a corepresentation of B is also defined to be a B-comodule.
It will turn out that the property of being a bialgebra leads to the possibility of
building tensor products of corepresentations in a canonical way.

Usually representations of a ring are considered to be modules over the given
ring. The role of comodules certainly arises in the context of coalgebras. But it is
not quite clear what the good definition of a representation of a quantum group or
its representing Hopf algebra is.

For this purpose consider representations M of an ordinary group . Assume
for the simplicity of the argument that G is finite. Representations of (G are vector
spaces together with a group action G x M — M. Equivalently they are vector
spaces together with a group homomorphism ¢ — Aut(M) or modules over the
group algebra: K[G] ® M — M. In the situation of quantum groups we consider the
representing Hopf algebra H as algebra of functions on the quantum group G.

Then the algebra of functions on (7 is the Hopf algebra K, the dual of the group
algebra K[(7]. An easy exercise shows that the module structure K[G] @ M — M
translates to the structure of a comodule M — K& ® M and conversely. (Observe that
(i is finite.) So we should define representations of a quantum group as comodules
over the representing Hopf algebra.

Definition 3.1.1. Let G be a quantum group with representing Hopf algebra H.
A representation of (G is a comodule over the representing Hopf algebra H.

From this definition we obtain immediately that we may form tensor products of
representations of quantum groups since the representing algebra is a bialgebra.

We come now to the canonical construction of tensor products of (co-)represen-
tations.
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Lemma 3.1.2. Let B be a bialgebra. Let M, N € B-Mod be two B-modules.
Then M @ N is a B-module by the action b(m@n) = Eb(l)m®b(2)n. Iff:-M— M
and g : N — N’ are homomorphisms of B-modules in B-Mod then f @ g: M @ N
— M' @ N’ is @ homomorphism of B-modules.

PROOF. We have homomorphisms of K-algebras o : B — End(M) and §: B —
End(N) defining the B-module structure on M and N. Thus we get a homomorphism
of algebras can(a @ 8)A: B — B@ B — End(M) @ End(N) — End(M @ N). Thus
M@ N is a B-module. The structure is b(m®@n) = can(a@5)(> b(l))®b(2))(m®n) =
can(y a(bw)) @ B(bz))(m @ n) =37 albuy)(m) @ B(bwz))(n) = 3 baym @ ben.

Furthermore we have 1(m @n) = 1m @ Im = m @ n.

If f,g are homomorphisms of B-modules, then we have (f ® ¢)(b(m @ n)) =
(f @) baym @ban) = 3 flbaym) @ g(bayn) = 2. by f(m) @ byg(n) = b(f(m) @
g(n)) =b(f @g)(m @n). Thus f @ g is a homomorphism of B-modules. O

Corollary 3.1.3. Let B be a bialgebra. Then @ : B-Mod x B-Mod — B-Mod
with @(M,N) =M @ N and @(f,q9) = f @ g is a functor.

Proor. The following are obvious from the ordinary properties of the tensor

product over K. 1y @1y = Lyay and (f0g)(f/0g) = ff/0gg for M.N, f. f'.g,9 €
B-Mod. O

Lemma 3.1.4. Let B be a bialgebra. Let M, N € B-Comod be two B-comodules.
Then M@N is a B-comodule by the coaction dypgn(m@n) = > MmNy @man@ny.

Iff: M — M and g : N — N' are homomorphisms of B-comodules in
B-Comod then f@g: M @ N — M' @ N' is a homomorphism of B-comodules.

PROOF. The coaction on M @ N may also be described by (Vg @ 1y @ In)(1p @
@)y @dy): Mo N > BaM@BoN —-BoBoMaN — Bo M@ N.
Although a diagrammatic proof of the coassociativity of the coaction and the law of
the counit is quite involved it allows generalization so we give it here.

Consider the next diagram.

Square (1) commutes since M and N are comodules.

Squares (2) and (3) commute since 7: M @ N — N @ M for K-modules M and
N is a natural transformation.

Square (4) represents an interesting property of 7 namely

(leleor)(peup@l)=1@lon)(rale)(l1arel)=
(rolel)(lelen(lerel)=(rel1e 1)1 ® mBes)

that uses the fact that (1 @ ¢)(f @ 1) = (f @ 1)(1 @ g) holds and that gy B =
(ral)(1@r7)and Ty e = (1 @7)(T @ 1).
Square (5) and (6) commute by the properties of the tensor product.
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Square (7) commutes since B is a bialgebra.

M@ N 280
o (1)
B M@ 121es
B® N
e (3)
B® B® 181058
M & N
varer  (3)
BoMeN 2%

The law of the counit is

Mo N

@6
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B @ M® 197®1 B® B® veisl
Bo N M@ N BoMoN
AR1QA®1 (2) AQAR1I®1
B® B@ M@Votupes® B@ B @ B&
B B®N B MxN
1®TB®M,B®1®1(4) 1RTRIR1IQ1 AR1IR1
(7)
B® B® B® 1wieierel BRB® B®
M®B&N B MxN
VRI11E1®1 (6) Ve1le1e1e1
B@Bo _1eeel BB 1eveis
M@B&N B&o Mo N BeBoMeN
B M® 197®1 B® BR  veiel
Bo N Mo N BeMeN
eR1Re®1 eRe®1®1 11
M@ N 1 M@ N L M@ N

where the last square commutes since ¢ is a homomorphism of algebras.
Now let f and g be homomorphisms of B-comodules. Then the diagram

MeN
f®g

M @ N’

@6

@6

B M® 197®1
BN
\ 1®f®10®y
Bo M@ 197®1
B N

commutes. Thus f ® ¢ is a homomorphism of B-comodules.

Corollary 3.1.5. Let B be a bialgebra.

B® B® Vo1l
M@N

\1®1®f®g
B® B® velel
M @ N’

BeoM@N

1®f®g

B M @ N’

O

Then @ : B-Comod x B-Comod —

B-Comod with @(M,N) =M @ N and @(f,q9) = f @ g is a functor.

Proposition 3.1.6. Let B be a bialgebra. Then the tensor product @ : B-Mod x
B-Mod — B-Mod satisfies the following properties:

1. The associativity isomorphism «

: (Ml X Mg) X M3 — M1 X (M2 X Mg) with

a((m@n)®@p) =ma (n® p) is a natural transformation from the functor
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@ o (@ x 1d) to the functor @ o (Id X®) in the variables My, My, and M5 in
B-Mod.

2. The counit isomorphisms A : K@ M — M with A\(k @m) = km and p: M @ K
— M with p(m @ k) = km are natural transformations in the variable M in
B-Mod from the functor K ® - resp. - @ K to the identity functor 1d.

3. The following diagrams of natural transformations are commutative
Oz(Ml,MQ,Mg)@l a(M17M2®M37M4)
(My @ Mz) @ Ms) @ My — (My @ (M2 @ Ms)) @ My — My @ (M2 @ Ms) @ My)
Oz(M1®M2,M3,M4) 1®a(M27M37M4)

a(My, My, M3@My)

(My @ M) @ (M3 @ My) M, @ (M; @ (Ms @ My))

a(My,K,Ms)

(M; @ K) @ M, M; @ (Ko M,)
p(M1)@1 M(MZ))
My @ M,

ProoF. The homomorphisms «, A, and p are already defined in the category
K-Mod and satisfy the claimed properties. So we have to show, that these are
homomorphisms in B-Mod and that K is a B-module. K is a B-module by ¢ @ 1k :
B ®K — K. The easy verification uses the coassociativity and the counital property
of B. O

Similarly we get
Proposition 3.1.7. Let B be a bialgebra. Then the tensor product
® : B-Comod x B-Comod — B-Comod

satisfies the following properties:

1. The associativity isomorphism « : (My @ My) @ M3 — My @ (My @ Ms) with
a((m@n)®@p) =ma (n® p) is a natural transformation from the functor
@ o (@ x 1d) to the functor @ o (Id X®) in the variables My, My, and M5 in
B-Comod.

2. The counit isomorphisms A : K@ M — M with A\(k @m) = km and p: M @ K
— M with p(m @ k) = km are natural transformations in the variable M in
B-Comod from the functor K@ - resp. - @ K to the identity functor 1d.

3. The following diagrams of natural transformations are commutative

a(My, M, M3)®1 a(My,M>®@Ms ,My)
(M ® Ma) @ Mz) @ My — (M, @ (My @ M3)) @ My — M, @ ((My @ M3z) ® My)

a(Mi®@My,Ms,My) 1@a (M, Ms,My)

a(My, My, M3@My)

(My @ M) @ (M3 @ My) M, @ (M; @ (Ms @ My))
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a(My,K,Ms)

(M; @ K) @ M, M; @ (Ko M,)
p(M1N ‘M(Mﬁ
My @ M,

Remark 3.1.8. We now get some simple properties of the underlying functors
U : B-Mod — K-Mod resp. U : B-Comod — K-Mod that are easily verified.

UM @ N)=UM)QU(N),
Ef ®g) f®g,

K) =
Ula) = a, U(A) = A Ulp)=p

Problem 3.1.1. We have seen that in representation theory and in corepresenta-
tion theory of quantum groups such as KG, U(g), SL,(2), U,(sl(2)) the ordinary ten-
sor product (in K-Mod) of two (co-)reprensentations is in a canonical way again a (co-
Jreprensentation. For two KG-modules M and N the structure is g(m®@n) = gm®gn
for g € (. For U(g)-modules it is g(m@n) = gm@n+m@gn for g € g. For U,(sl(2))-
modules it is E(m@n)=m@ En+ Em@ Kn, Fim@n) = K'm ® Fn+ Fm @n,
K(m®&n)=Km® Kn.

Remark 3.1.9. Let A and B be algebras over a commutative ring K. Let f: A
— B be a homomorphism of algebras. Then we have a functor ¢; : B-Mod —
A-Mod with U;(gM) = 4 M and Us(g) = g where am = f(a)m for a« € A and
m € M. The functor U, is also called forgetful or underlying functor.

The action of A on a B-module M can also be seen as the homomorphism A — B
— End(M).

We denote the underlying functors previously discussed by

Uy : A-Mod — K-Mod resp. Up : B-Mod — K-Mod.

Proposition 3.1.10. Let f: B — C be a homomorphism of bialgebras. Then
Uy salisfies the following properties:

U (M @ N) = Ui (M) QU (N),
Ui(g @ h) =g @ h,

Ur(K) = K,

Ur(a) = a, Us(A) = A, Us(p) = p,
UsUs(M) = U (M),

UpUs(g) = Uc(g).

ProoF. This is clear since the underlying K-modules and the K-linear maps stay
unchanged. The only thing to check is that U; generates the correct B-module
structure on the tensor product. For Us(M @ N) = M @ N we have b(m @ n) =

fO)m@n) =37 f(b)aym @ f(b)yn =37 f(bay)m @ f(bay)n = 3 baym @ bgyn. O
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Remark 3.1.11. Let €' and D be coalgebras over a commutative ring K. Let f :
(' — D be a homomorphism of coalgebras. Then we have a functor ¢ : C-Comod
— D-Comod with U;(“M) = PM and U;(g) = g where ép = (f @ 1)é¢ : M
— C @M — D@ M. Again the functor Uy is called forgetful or underlying functor.
We denote the underlying functors previously discussed by

Ue : C-Comod — K-Mod resp. Up : D-Comod — K-Mod.

Proposition 3.1.12. Let f : B — C be a homomorphism of bialgebras. Then
U; : C-Comod — D-Comod satisfies the following properties:
Up(M @ N) = U (M) @ UN),
Ui(g @ h) =g @ h,
Ur(K) = K,
Ur(a) = a, Up(A) = A, Us(p) = p,
Uclly(M) = Up (M),
Ucls(g) = Us(g)-

PrOOF. We leave the proof to the reader. O

Proposition 3.1.13. Let H be a Hopf algebra. Let M and N be be H-modules.
Then Hom(M, N), the set K-linear maps from M to N, becomes an H-module by
(hf)(m) =3 hayf(S(h@m). This structure makes

Hom : H-Mod x H-Mod — H-Mod

a functor contravariant in the first variable and covariant in the second variable.

PROOF. The main part to be proved is that the action H @ Hom(M,N) —
Hom(M, N) satisfies the associativity law. Let f € Hom(M,N), h,k € H, and
m € M. Then ((hk)[f)(m) =3 (hk)q) f(S((hk)@) = 3 hayka)f(S (k) S(ha)m) =
5 by (S (g )m) = (b)),

We leave the proof of the other properties, in particular the functorial properties,
to the reader. 0

Corollary 3.1.14. Let M be an H-module. Then the dual K-module M* =
Hom(M, K) becomes an H-module by (hf)(m) = f(S(h)m).

PROOF. The space K is an H-module via ¢ : H — K. Hence we have (hf)(m)

Y hy f(S(h@ym) = > e(hw)) f(S(h@ym) = f(S(h)m).

Ol
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2. Monoidal Categories

For our further investigations we need a generalized version of the tensor product
that we are going to introduce in this section. This will give us the possibility to
study more general versions of the notion of algebras and representations.

Definition 3.2.1. A monoidal category (or tensor category) consists of
a category C,
a covariant functor @ : C x C — C, called the tensor product,
an object I € C, called the unit,
natural isomorphisms
a(A,B.C): (A B)oC — A (B® (),
MA) : T A— A,
p(A): AT — A,
called associativity, left unit and right unit, such that the following diagrams commute:

(AeB)oC)o D 22D (4o (Be ) oD 22 g (Ba ) o D)

a(A®B,C,D) 1®a(B,C,D)

(A® B)® (C @ D) =(4,5.08D) A®(B®(C o D))
(Aol)oB—"P _ Aq(1eB)
p(A)@1 M(B)
A® B

These diagrams are called coherence diagrams or constraints.
A monoidal category is called a strict monoidal category, if the morphisms a, A, p
are the identity morphisms.

Remark 3.2.2. We define A; @... @0 A, = (...(A1 @A) @...) D A,.

There is an important theorem of S. MacLane that says that all diagrams whose
morphisms are constructed by using copies of «, A, p, identities, inverses, tensor
products and compositions of such commute. We will not prove this theorem. It
implies that each monoidal category can be replaced by (is monoidally equivalent to)
a strict monoidal category. That means that we may omit in diagrams the morphisms
a, A, p or replace them by identities. In particular there is only one automorphism of
A ®@...® A, formed by coherence morphisms namely the identity.

Remark 3.2.3. For each monoidal category C we can construct the monoidal
category C*Y"" symmetric to C that coincides with C as a category and has tensor
product AK B := B ® A and the coherence morphisms

a(C,B,A)™ 1 (ARB)X(C — AX(BK (),
p(A): IR A — A,
AMA) AR T — A.
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Then the coherence diagrams are commutative again, so that C*¥™™ is a monoidal
category.

Example 3.2.4. 1. Let R be an arbitrary ring. The category pMp of R-R-
bimodules with the tensor product M @gr N is a monoidal category. In particular
the K-modules form a monoidal category. This is our most important example of a
monoidal category.

2. Let B be a bialgebra and B-Mod be the category of left B-modules. We define
the structure of a B-module on the tensor product M @ N = M @ N by

BoMaN 2" BopaoMaoN 28" BoMoBo N "% Mg N
as in the previous section. So B-Mod is a monoidal category by 3.1.7

3. Let B be a bialgebra and B-Comod be the category of B-comodules. The
tensor product M @ N = M @k N carries the structure of a B-comodule by

MaN ¥ BoMeBoN "8 BoBoMaN "™ Bo M N.
as in the previous section. So B-Comod is a monoidal category by 3.1.8

4. Let (G be a monoid. A K-module together with a family of submodules (V,|g €
() is called G-graded if V = G,e6V,.

Let V' and W be G-graded K-modules. A homomorphism of K-modules f : V
— W is called G-graded if f(V,) C W, for all g € G.

The G-graded K-modules and their homomorphisms form the category (K-Mod)“
of G-graded K-modules.

There is a monoidal structure on (K-Mod)“ given by the ordinary tensor product
V @ W. The submodules on the tensor product V @ W are given by (V @ W), :=
ZheG Vi @ Wh—lg = Eh,keG,hk:g Vi @ Wi.

5. A chain complexr of K-modules

M= (02 My 22 My 2 M)

consists of a family of a family of K-modules M; and a family of homomorphisms
0, : M, — M,_, with 9,_10, = 0. This chain complex is indexed by the monoid
Np. One may also consider more general chain complexes indexed by an arbitrary
cyclic monoid. Chain complexes indexed by Ny x Ny are called double complexes.
So much more general chain complexes may be considered. We restrict ourselves to
chain complexes over Ng.

Let M and N be chain complexes. A homomorphism of chain complexes f : M
— N consists of a family of homomorphisms of K-modules f, : M,, — N,, such that
fnan_H = 8n+1fn+1 for all n € No.

The chain complexes with these homomorphisms form the category of chain com-
plexes K-Comp.

If M and N are chain complexes then we form a new chain complex M @ N

with (M @ N), := @ M, @ N,y and 9 : (M @ N), — (M @ N),_; given by
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O(m; @ np_y) = (=1)'0a(m;) @ np_; + m; @ d(n,_;). This is often called the total
complex associated with the double complex of the tensor product of M and N. Then
it is easily checked that K-Comp is a monoidal category with this tensor product.

Problem 3.2.2. 1. Prove that the category (K-Mod)“ of G-graded K-modules
is equivalent to the category KG-Comod of KG-comodules by the following construc-
tion. If V is a G-graded K-module the V' becomes a KG-comodule by the map § : V
— KGaV, §(v) :=gowvforallv € V, and all g € G. Converselyif V.5 : V — KG@V
is a KG-comodule then V' together with the submodules V, := {v € V|§(v) = g ® v}
is a G-graded K-module.

Since KG' is a bialgebra the category of KG-comodules is a monoidal category.
Show that the equivalence defined above between (K-Mod)“ and KG-Comod pre-
serves the tensor products, hence that it is a monoidal equivalence.

2. Let B = K(xz,y)/I where I is generated by z* zy + yx. Then B is a bialgebra
with the diagonal A(y) = y®@y, A(z) = 2@14+y®@x. The counitis e(y) = 1,e(x) = 0.
We introduced (the coopposite bialgebra of) this bialgebra in A.7 2.

Show that the category K-Comp of chain complexes is equivalent to the category
B-Comod of B-comodules by the following construction. If M is a chain complex
then define a B-comodule on M = @;enM; with the structure map 6 : M — B@ M,
d(m) = vy om+ryl e 0;(m) for all m € M; and for all ¢ € N resp. §(m):=1@m
for m € My. Conversely if M, 6 : M — B ® M is a B-comodule then we define
K-modules M; := {m € M|3m’' € M[§(m) =y’ @m+ 2y~ @m']} and K-linear maps
Oi + M; — M;_y by 9;(m) := m’ for §(m) = y* @ m + xy'~t @ m’. Check that this
defines an equivalence of categories.

(Hint: Let m € M € B-Comod. Since y', zy’ form a basis of B we have §(m) =
Syt @m+ Y. ayt @ mh. We apply to this the equation (1 @ §)§ = (A @ 1)§ and

compare coefficients to get
d(mi) =y @mitay Tt @mi_y,  8(m) =y ©m]

for all © € Ny (with m”; = 0). Consequently for each m; € M, there is exactly one
d(m;) = m!_, € M such that

S(mi) = y' @ my + 2yt @ I(my).

Since §(m!_,) =yt @ m!_, for all i € N we see that d(m;) € M;_;. So we have
defined 9 : M; — M,_,. Furthermore we see from this equation that 9*(m;) = 0 for
all i € N. Hence we have obtained a chain complex from (M, ).

If we apply (e @ 1)6(m) = m then we get m = > m,; with m; € M, hence
M = @,y M;. This together with the inverse construction leads to the required
equivalence.)

3. A cochain complex has the form

M = (Mg 25 My 2 My 225 )
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with 0;410; = 0. Show that the category K-Cocomp of cochain complexes is equiv-
alent to Comod-B where B is chosen as in example 5.

Lemma 3.2.5. Let C be a monoidal category. Then the following diagrams com-
mute

[@A QB —2+~1® A@B A@B QI+ A® B@[
®1x /A@B A®B\ /@p
A® B A® B

and we have M(I) = p(I).

PROOF. First we observe that the identity functor Ide and the functor I ® - are
isomorphic by the natural isomorphism A. Thus we have I @ f=1®Rg¢—= f =g.
In the following diagram

(IooA)e B

Io(IoA))eB——ITa(I®A) % B)

®1
Wnem ‘MA)@ 1®<AV
(I®A) @ B @ [®(A® B)
| I
I ®(A® B) L I ®(A® B)
Ml@l) 1@A
(Ieol)®(A® B) d I®(I®(A®B))

all subdiagrams commute except for the right hand trapezoid. Since all morphisms are
isomorphisms the right hand trapezoid must commute also. Hence the first diagram
of the Lemma commutes.
In a similar way one shows the commutativity of the second diagram.
Furthermore the following diagram commutes

loIo)~2—{Uo)ol —~1a(IaI)

Nt N
N

Here the left hand triangle commutes by the previous property. The commuta-
tivity of the right hand diagram is given by the axiom. The lower square commutes

~
~
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since p is a natural transformation. In particular p(1 @ p) = p(1 @ A). Since p is an
isomorphism and I ® - = Id¢e we get p = A. 0

Problem 3.2.3. For morphisms f : [ — M and g : I — N in a monoidal
category we define (f @1 : N — M@ N) = (f@l)p(l)™ and (1@¢g : M
— M@ N):=(1®g)\I)~'. Show that the diagram

I /

M

g 1®g

e T MoN

commutes.
Definition 3.2.6. Let (C,®) and (D, ®) be monoidal categories. A functor
F:C—1D
together with a natural transformation
§(M,N): F(M) @ F(N) — F(M @ N)
and a morphism
Eo: Ip — F(le)
is called weakly monoidal if the following diagrams commute
(F(M) @ F(N)) @ F(P) <2 F(M @ N) @ F(P) —* (M ® N)@ P)
. \ JM
F(M) @ (F(N)@ F(P)) 225 F(M) @ F(N @ P) —— F(M @ (N @ P))

[ @ F(M) 22 M)—~ F(Io M)
F(M) @ 125 —~FMaI

\/

If, in addition, the morphisms ¢ and fg are 1som0rphlsms then the functor is called
a monoidal functor. The functor is called a strict monoidal functor if & and & are the
identity morphisms.
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A natural transformation ¢ : F — F’ between weakly monoidal functors is called
a monoidal natural transformation if the diagrams

F(I)
F(M)@ F(N) =+ F(M @ N) 3//
¢®(¢ ¢ I ¢
FI(M) © FI(N) = F(M @ N) %
F'(I)
commute.

We can generalize the notions of an algebra or of a coalgebra in the context of a
monoidal category. We define

Definition 3.2.7. Let C be a monoidal category. An algebra or a monoid in
C consists of an object A together with a multiplication V : A ® A — A that is
associative

A0A0A—99Y L 404
Vel v
Ao A = A

or more precisely

(AQA) @A+ A0 (A0 A) 1 A0 A

V&id v

A2 A v A

and has a unit n : I — A such that the following diagram commutes

JTOA® A~ AT —2" L 40 A
n®id id v
A A A
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Let A and B be algebras in C. A morphism of algebras f : A — B is a morphism
in C such that

AoALY. BoB

1
Va Vp and W/ \73
A—L . p

A B

commute.

Remark 3.2.8. It is obvious that the composition of two morphisms of algebras
is again a morphism of algebras. The identity also is a morphism of algebras. Thus
we obtain the category Alg(C) of algebras in C.

Definition 3.2.9. Let C be a monoidal category. A coalgebra or a comonoid in
C consists of an object C' together with a comultiplication A : A — A @ A that is
coassociative

C 2 CecC
A A®id
CoC—= CRCaC
or more precisely
C 2 CeoC
A id®A

CoC22. Cet)oC —-~Ca(Ce0)

and has a counit ¢ : ' — [ such that the following diagram commutes

C = CoC
A id id ®e
C@CW[@C’;C%C(@[

Let ' and D be coalgebras in C. A morphism of coalgebras f : C — D is a
morphism in C such that

C—"—D> c—L—p
Ac Ap and e €D
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commute.

Remark 3.2.10. It is obvious that the composition of two morphisms of coalge-
bras is again a morphism of coalgebras. The identity also is a morphism of coalgebras.
Thus we obtain the category Coalg(C) of coalgebras in C.

Remark 3.2.11. Observe that the notions of bialgebra, Hopf algebra, and co-
module algebra cannot be generalized to an arbitrary monoidal category since we
need to have an algebra structure on the tensor product of two algebras and this
requires us to interchange the middle tensor factors. These interchanges or flips are
known under the name symmetry, quasisymmetry or braiding and will be discussed
later on.
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3. Dual Objects

At the end of the first section in Corollary 3.1.15 we saw that the dual of an H-
module can be constructed. We did not show the corresponding result for comodules.
In fact such a construction for comodules needs some finiteness conditions. With this
restriction the notion of a dual object can be introduced in an arbitrary monoidal
category.

Definition 3.3.1. Let (C,®) be a monoidal category M € C be an object. An
object M* € C together with a morphism ev : M* @ M — [ is called a left dual for
M if there exists a morphism db : [ — M @ M* in C such that

db ®1 1Qev

(M— MoM @M —M)=1y
(M 2L Mo M @ M* 22 M) = 1y,

A monoidal category is called left rigid if each object M € C has a left dual.

Symmetrically we define: an object *M € C together with a morphismev : M@*M
— [ is called a right dual for M if there exists a morphism db : [ — *M @ M in C
such that

(MR MoMaoM™ M) =1y
MBS Mo Mo M ES M) = 1y,

A monoidal category is called right rigid if each object M € C has a left dual.

The morphisms ev and db are called the evaluation respectively the dual basis.

Remark 3.3.2. If (M*,ev) is a left dual for M then obviously (M,ev) is a right
dual for M* and conversely. One uses the same morphism db : [ — M @ M™.

Lemma 3.3.3. Let (M*,ev) be a left dual for M. Then there is a natural iso-
morphism
More(-® M, -) = More(-, - @ M™),
i. e. the functor - @ M : C — C is left adjoint to the functor - M* : C — C.

ProoOF. We give the unit and the counit of the pair of adjoint functors. We define
P(A)=14,0db: A—>AMaM and V(B) :=1lp@ev: B M* @ M — B.

These are obviously natural transformations. We have commutative diagrams

Fo(A)= y UF(A)=
(AoM— 0 Ao MOM oM —— 2 A M) = Lo
and
« ®G(B)= « « gu(B)= «
(BaM 1501+ @db BeM e@MeM 15@ev @17+ B® M) = 1pom-
thus the Lemma has been proved by Corollary A.9.11. O

The converse holds as well. If - @ M is left adjoint to - @ M™ then the unit &
gives a morphism db := ®(/) : I — M @ M* and the counit ¥ gives a morphism
ev:=U(l): M* @ M — [ satisfying the required properties. Thus we have
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Corollary 3.3.4. If-@ M :C — C s left adjoint to -@ M* : C — C then M~ is
a left dual for M.

Corollary 3.3.5. (M*,ev) is a left dual for M if and only if there is a natural
isomorphism

More(M™ @ -, -) = More(-, M @ -),
i. e. the functor M* @ -:C — C s left adjoint to the functor M @ -:C — C. The

natural isomorphism if given by
(f  MON—=P)— (ly@ fildb@ly): N = MM @N — M@ P)
and
(g: N—=>MP)— ((evalp)(ly»®@g)  M"@N —- M" @M ® P — P).
ProOOF. We have a natural isomorphism
More(M* @ -,-) & More(-, M @ -),

iff (M,ev) is a right dual for M* (as a symmetric statement to Lemma 3.3.3) iff
(M~*,ev) is a left dual for M. O

Corollary 3.3.6. If M has a left dual then this is unique up to isomorphism.

PROOF. Let (M*,ev) and (M*,ev') be left duals for M. Then the functors - @ M*
and - @ M" are isomorphic by Lemma A.9.7. In particular we have M* = [ @ M* =
I © M = M' 1If we consider the construction of the isomorphism then we get
in particular that (evl®1)(1 @ db) : M — M'© M@ M* — M~* is the given

isomorphism. O

Problem 3.3.4. Let (M*,ev) be a left dual for M. Then there is a unique mor-
phism db : [ — M ©@ M™ satisfying the conditions of Definition 3.3.1.

Definition 3.3.7. Let (M*, evys) and (N*,evy) be left duals for M resp. N. For
each morphism f: M — N we define the transposed morphism

(f* i N* — M7) o= (N 220 N= o Mo M 25 N o v e M ST ),

With this definition we get that the left dual is a contravariant functor, since we
have

Lemma 3.3.8. Let (M*,evy), (N*,evn), and (P*,evp) be left duals for M, N
and P respectively.

1. We have (1p)* = 1.

2. Iff: M — N and g: N — P are given then (gf)* = f*¢* holds.

PrROOF. 1. (1) = (ev@1)(1 @1 @ 1)(1 @ db) = L.
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2. The following diagram commutes

dby ®1
_—

M NoN“oM
f 1018 f
NM,N@@N*@NM,N

901Q1 g

P@N*@Nﬂp

Hence we have gf = (1 @ evy)(g ® 1 @ f)(dby @1). Thus the following diagram

commutes

P 1®db 19gQ1

P o N® N~ P @ P @ N*
1®db 1®db
1®db ev®l
PraoMoM 2P pro No N oMo M*

\\\\\\l@g@l
10gf®1 10g®18 fO1 PQPRIN*"QM»M* N*
4/1@@1
ProPoM 228 propoN 9N @M

ev®1 1®db
ev®1 ev®1

M* 1Gev N*@N@ M <22 N g Mo M

O

Problem 3.3.5. 1. In the category of N-graded vector spaces determine all ob-
jects M that have a left dual.

2. In the category of chain complexes K-Comp determine all objects M that
have a left dual.

3. In the category of cochain complexes K-Cocomp determine all objects M that
have a left dual.

4. Let (M*,ev) be a left dual for M. Show that db : I — M @ M* is uniquely
determined by M, M*, and ev. (Uniqueness of the dual basis.)

5. Let (M*,ev) be a left dual for M. Show that ev: M* @ M — [ is uniquely
determined by M, M*, and db.
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Corollary 3.3.9. Let M, N have the left duals (M*,evyr) and (N*,evy) and let
f: M — N be a morphism in C. Then the following diagram commutes

dbs

I

M & M~
dby fe1

N®N*@:N®M*.

ProoF. The following diagram commutes

MEE NN~ M

f l l 1910f

N2 NN o N

\ ll@ev
N
This implies (f & 1M*) dby = ((1]\7 & eVN)(lN @ 1y ® f)(de ®1M) X 1M*) dbpy =
(Iv@evy @1l )(In@1In+ @ f@ Lame ) (dby @1ar @ 1age ) dbar = (In@evy @1+ )(In @
Iye @ f @ L )(In @ 1yx @ dbar)dby = (Ixy @ (evy @1a)(Ine @ f @ Lage)(Ine @
dba)) dby = (1 @ f*) dby. O

Corollary 3.3.10. Let M, N have the left duals (M*,evpr) and (N*,evy) and let
f: M — N be a morphism in C. Then the following diagram commutes

N oMI% oM

1®f eviyg

N*@ N —g— 1.

PROOF. This statement follows immediately from the symmetry of the definition
of a left dual. O

Example 3.3.11. Let M € pMp be an R-R-bimodule. Then Hompg(M., R.)
is an R-R-bimodule by (rfs)(x) = rf(sx). Furthermore we have the morphism
ev: Homp(M., R.) @p M — R defined by ev(f @rm) = f(m).

(Dual Basis Lemma:) A module M € Mg is called finitely generated and projective
if there are elements my,... ,m, € M und m*,... ,m" € Homg(M., R.) such that

Vm e M : Zmzml(m) =m.
=1
Actually this is a consequence of the dual basis lemma. But this definition is
equivalent to the usual definition.
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Let M € pMp. M as a right R-module is finitely generated and projective iff M
has a left dual. The left dual is isomorphic to Homg(M., R.).

If Mg is finitely generated projective then we use db: R — M @r Homp(M., R.)
with db(1) = Y0, m; @g m'. In fact we have (1 @g ev)(db@gl)(m) = (1 @g
ev) (Yo m; @r m' @pm) = >.mmm‘(m) = m. We have furthermore (ev@rl)(1 @r
ab)(F(m) = (ev Srl) (St F Onm; Gpm)(m) = X f(mim'(m) = F(3 mom(m))
= f(m) for all m € M hence (ev@gl)(1 @rdb)(f) = f.

Conversely if M has a left dual M* then ev : M* @r M — R defines a homo-
morphism ¢ : M* — Hompg(M., R.) in g Mg by ¢«(m*)(m) = ev(m* @rm). We define
S mi@mti=db(1) € M@ M*, thenm = (1@ev)(db@1)(m) = (1 @ev)(> m; @
m' @ m) = > mu(m')(m) so that my,...,m, € M and «(m'),... (m") €
Homp(M., R.) form a dual basis for M, i. e. M is finitely generated and projec-
tive as an R-module. Thus M* and Hompg(M., R.) are isomorphic by the map ¢.

Analogously Hompg(.M,.R) is a right dual for M iff M is finitely generated and

projective as a left R-module.

Problem 3.3.6. Find an example of an object M in a monoidal category C that
has a left dual but no right dual.

Definition 3.3.12. Given objects M, N in C. An object [M, N] is called a
left inner Hom of M and N if there is a natural isomorphism Morc(- @ M, N) =
More(-, [M, N]), i. e. if it represents the functor More(- @ M, N).

If there is an isomorphism Mor¢(P @ M, N) = Mor¢(P,[M, N]) natural in the
three variable M, N, P then the category C is called monoidal and left closed.

If there is an isomorphism Mor¢(M @ P, N) = Morc(P,[M, N]) natural in the
three variable M, N, P then the category C is called monoidal and right closed.

If M has a left dual M* in C then there are inner Homs [M, -] defined by
[M,N]:= N ® M~. In particular left rigid monoidal categories are left closed.

Example 3.3.13. 1. The category of finite dimensional vector spaces is a
monoidal category where each object has a (left and right) dual. Hence it is
(left and right) closed and rigid.

2. Let Ban be the category of (complex) Banach spaces where the morphisms
satisfy || f(m) ||<]| m || i. e. the maps are bounded by 1 or contracting. Ban is
a monoidal category by the complete tensor product M@N. In Ban exists an
inner Hom functor [M, N] that consists of the set of bounded linear maps from
M to N made into a Banach space by an appropriate topology. Thus Ban is
a monoidal closed category.

3. Let H be a Hopf algebra. The category H-Mod of left H-modules is a monoidal
category (see Example 3.2.4 2.). Then Homg(M, N) is an object in H-Mod
by the multiplication

(Rf)(m) := > hay f(mS(h)
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as in Proposition 3.1.14.
Homg (M, N) is an inner Hom functor in the monoidal category H-Mod.
The isomorphism ¢ : Homg (P, Homg (M, N)) = Homg(P @ M, N) can be re-

stricted to an isomorphism

because cb(f)(h(p ©m)) = ¢
(1)

2y (f()(hym) = 3 ha(
(p@m)) and Conversely (h(f(p)) m (
(p @ S(hizy)m)) = 22 (f)(hayp @ hz)S(hz)m) = ¢
Thus H- Mod is left closed.

It M € H-Mod is a finite dimensional vector space then the dual vector
space M* := Homg(M,K) again is an H-module by (hf)(m) := f(S(h)m).
Furthermore M* is a left dual for M with the morphisms

db:KBlHZmiQ@miEM@M*

and

ev: M"@M>3 feom— f(m)eK
where m; and m' are a dual basis of the vector space M. Clearly we have
(1@ev)(db®@1) = 1 and (ev @1)(1®db) = 1+ since M is a finite dimensional

vector space. We have to show that db and ev are H-module homomorphisms.

We have

(hdb( ))(m) = (R3S m; @ m))(m) = (3 haym; @ hgym')(m) =
> (hymi)((haym®)(m)) = Z(h m;)(m (S(h(z)) m)) =

> hay (2)) m = e(h)m (h)(zmz@@m)(m) e(h)db(1)(m) =
db(e ( )L)(m) = db( 1)(m )

hence hdb(1) = h1). Furthermore we have

hev(f @m) = hf(m) =3 ha)f(S(ha)h@m) =3 (ha[)(hem) =
> ev(h(l)f ® h(g)m) =ev(h(f @m)).

4. Let H be a Hopf algebra. Then the category of left H-comodules (see Example
3.2.4 3.) is a monoidal category. Let M € H-Comod be a finite dimensional
vector space. Let m; be a basis for M and let the comultiplication of the
comodule be §(m;) = > h;; @m;j. Then we have A(hip) = > hyj @ hjr. M* =
Homy (M, K) becomes a left H-comodule §(m?) := > S(h;;) @m*. One verifies
that M™ is a left dual for M.

7 \

Lemma 3.3.14. Let M € C be an object with left dual (M*,ev). Then
1. M @ M* is an algebra with multiplication

Vi=lyQevRlys - MM QMo M — Mo M*
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and unit
u:=db: I — M @ M~;
2. M* @ M s a coalgebra with comultiplication
A=l @dbh@lyy - MM —-> M QMM @M

and counit

ci=ev: M" @M — 1.

PROOF. 1. The associativity is given by (V@ 1)V = (1yy @ ev@ly+ @ 1y @
Iap ) (I @ ev@lpyx) = Iy @ev@ev@lyx = (I @ Ly @ Iy @ ev@lys)(ly @
ev@lpyx) = (1@ V)V. The axiom for the left unit is V(u®@1) = (1yy @ev @1p+)(db @

2. 1s dual to the statement for algebras. 0

Lemma 3.3.15. 1. Let A be an algebra in C and left M € C be a left rigid object
with left dual (M*,ev). There is a bijection between the set of morphisms f: A@ M

— M making M a left A-module and the set of algebra morphisms ]}v: A— Mo M.
2. Let C be a coalgebra in C and left M € C be a left rigid object with left dual (M*,ev).
There is a bijection between the set of morphisms f: M — M @ C making M a right
C'-comodule and the set of coalgebra morphisms f: M* @ M — C'.

PROOF. 1. By Lemma 3.3.14 the object M @ M* is an algebra. Given f: A@ M
— M such that M becomes an A-module. By Lemma 3.3.3 we associate [ :=
(fol)l®db): A — A M@ M* — M @ M*. The compatibility of f with the

multiplication is given by the commutative diagram
A®A = A
\gi1®db 1®V
l 1@f®1 f®1
fof A@ Mo M — M & M~ 7

®M®M*®M®M*—>A®M®M 1

Ml@l 1R1Rev®1

MM @M@ M

19f

fe1m1

1Qev @1 M ® M~
The unit axiom is given by
[ —P— Mo M
u l u@l J 191
A1®db A@M@M*f(X)IM@M*
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Conversely let g : A — M ® M* be an algebra homomorphism and consider g :=
(l@ev)(gal): AM — M@ M@ M — M. Then M becomes a left A-module

since

A@A@M Vol Ao M

1®g®1 2g®1 g®1/
1®ev ®1R1
A@M@M* M— MM OMOIM QM —MM QM
gR1IR1IR1
107 J1®1®1®ev g
1R01Rev M ® M* ® M 1Qev
AR M M
and
M
A@M M@M*(@MWM
commute.

2. (M*,ev) is a left dual for M in the category C if and only if (M*,db) is the
right dual for M in the dual category C°?. So if we dualize the result of part 1. we
have to change sides, hence 2. O
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4. Finite reconstruction

The endomorphism ring of a vector space enjoys the following universal property.
It is a vector space itself and allows a homomorphism p : End(V) @V — V. It is
universal with respect to this property, i. e. if Z is a vector spaceand f: Z@V — V
is a homomorphism, then there is a unique homomorphism ¢ : 7 — End(V) such
that
ZoV

g®1 f

End(V)© V —V

commutes.

The algebra structure of End(V') comes for free from this universal property.

If we replace the vector space V by a diagram of vector spaces w : D — Vec we
get a similar universal object End(w). Again the universal property induces a unique
algebra structure on End(w).

Problem 3.4.7. 1. Let V be a vector space. Show that there is a universal vector
space F and homomorphism p: F @V — V (such that for each vector space Z and
each homomorphism f: Z @V — V there is a unique homomorphism ¢ : 7 — FE
such that

ZoV

g®1 f

E®V—>p V

commutes). We call £ and p: F @V — V a vector space acting universally on V.
2. Let Fand p: F®V — V be a vector space acting universally on V. Show
that £ uniquely has the structure of an algebra such that V' becomes a left F-module.
3. Let w : D — Vec be a diagram of vector spaces. Show that there is a
universal vector space £ and natural transformation p : £ @ w — w (such that for
each vector space Z and each natural transformation f: Z ®w — w there is a unique
homomorphism ¢g : Z — FE such that

7 R w

g®1 f

E@w—p>w

commutes). We call £ and p: F @ w — w a vector space acting universally on w.
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4. Let F and p : F @ w — w be a vector space acting universally on w. Show
that F uniquely has the structure of an algebra such that w becomes a diagram of

left F-modules.

Similar considerations can be carried out for coactions V — VR C orw — w®@(C
and a coalgebra structure on C'. There is one restriction, however. We can only use
finite dimensional vector spaces V or diagrams of finite dimensional vector spaces.
This will be done further down.

As we have seen, 777

We want to find a universal natural transformation ¢ : w — w ® coend(w). For
this purpose we consider the isomorphisms

More (w(X),w(X) @ M) = Morc(w(X)* @ w(X), M)
that are given by f — (ev@l)(1 @ f) and as inverse ¢ — (1 @ g)(db®1). We

first develop techniques to describe the properties of a natural transformation ¢ : w
— w @ M as properties of the associated family ¢(X) : w(X)* ® w(X) — M. We
will see that ¢ : w* ® w — M will be a cone. Then we will show that ¢ is a universal
natural transformation if and only if its associated cone is universal. In the literature
this is called a coend.

Throughout this section assume the following. Let D be an arbitrary diagram
scheme. Let C be a cocomplete monoidal category such that the tensor product
preserves colimits in both arguments. Let Cy be the full subcategory of those objects
in C that have a left dual. Let w: D — C be a diagram in C such that w(X) € Cy for
all X € D, i.e. wis given by a functor wy : D — Cy. We call such a diagram a finite
diagram in C. Finally for an object M € C let w @ M : D — C be the functor with
(wea M)(X)=wlX)a M.

Remark 3.4.1. Consider the following category D. For each morphism f : X
— Y there is an object f € D. The object corresponding to the identity 1x : X
— X is denoted by X € D. For each 1 morphism f : X — Y in D there are two
morphisms f; : f — X and fa: f — Y in D. Furthermore there are the identities
Ly fv—> ]}vin D.

Since there are no morphisms with X as domain other than (1x); : X — X and
1y : ]}v—> ]}vwe only have to define the following compositions (1x); o f; := f;. Then
D becomes a category and we have 1 = (1x); = (1x)2.

We define a diagram w* @ w : D — C as follows. If f+ X — Y is given then

(W @W)(f) == w(Y) @w(X)

and
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The colimit of w* @ w consists of an object coend(w) € C together with a family of

morphisms ¢(X, X) : w(X)* @ w(X) — coend(w) such that the diagrams
w(X)* @ w(X)

e )

(W @w)(f) =w(Y) @w(X) coend(w)

16w () ﬂ{m

wV)* @w(Y)

3

commute for all f : X — Y in D. Indeed, such a family «(X) := «(X, X) can be

uniquely extended to a natural transformation by defining «(f) := (X, X)(w(f)* @
w(X)) = (Y, Y)w(Y) @w(f)). In addition the pair (coend(w),¢) is universal with
respect to this property.

In the literature such a universal object is called a coend of the bifunctor w* @ w :

D x D —C.

Corollary 3.4.2. The following is a coequalizer

[T «z) ow@u) — [ «X)@wX)—— coend(w)

FEMorD 1 XeObD

ProoF. This is just a reformulation of Remark A.10.11, since the colimit may
also be built from the commutative squares given above.
Observe that for the construction of the colimit not all objects of the diagram

have to be used but only those of the form w(X)* @ w(X). O

Theorem 3.4.3. (Tannaka-Krein)

Letw : D — Cy CC be a finite diagram. Then there exists an object coend(w) € C
and a natural transformation § : w — w @ coend(w) such that for each object M € C
and each natural transformation ¢ : w — w @ M there exists a unique morphism
@ : coend(w) — M such that the diagram

who® coend(w)
@ 1@

w M

commutes.

PROOF. Let coend(w) € C together with morphisms «(f) : w(Y)* @ w(X) —
coend(w) be the colimit of the diagram w* ® w : D — C. So we get commutative
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diagrams
* @ w(X)
W>
A5 coend(w)

w(X)
W(M
w(Y) @ w(X)
(Y)" @ w(Y)
for each f: X — Y in C.

For X € C we define a morphism §(X) : w(X) — w(X) @ coend(w) by (1 @
(X, X))(db@l) : w(X) = w(X)Qw(X)* @w(X) — w(X)®coend(w). Then we get
as in Corollary 3.3.5  «(X,X) = (1®ev)(1 ®d(X)).

We show that 4 is a natural transformation. For each f: X — Y the square

I dbx w(X) @ w(X)*

dby w(f)®1

w(Y) @ w(Y) w(Y) @ w(X)™.

law(f)*
commutes by Corollary 3.3.9. Thus the following diagram commutes

W(X) B (X) © WX )" @ w(X)

wl w(f)R11
1Qw(f)*®1

W) | wY)QwY)wlX)—wV)2wX) @w(X) |wnHe

w(X) @ coend(w)

11Qw(f) 104X, X)

W(V)— (V) @w(Y) @w(¥) 20 () @ coend(w).

Now let M € C be an object and ¢ : w — w ® M a natural transformation.

Observe that

w(Y)* & w(X) w(f)*®1

w(X)* @ w(X)

1Qw(f) ev

WYy @w(Y) I

ev
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commutes by Corollary 3.3.10. Thus also the diagram

W(X) @ w(X) 102X (X)) Qw(X)o M
w(f)*e1 w(f)*e1el ev®l
(V) @w(X) —2 vy ewX)e M M
1@w( f) 10w(f)®1 ev@l
WY @ w(Y) LoelY) (V) @w(Y)oM

commutes. We define ¢ : coend(w) — M from the colimit property as universal

factorization
/ X )\\\‘ww

w(Y) coend(w
IN Yﬂ/(/(mzw
Hence the diagram
w(X) s ) @ coend(w)
dM % x4
wX)Qw
o(X) 191@6(X) \ 193
w(X) @ w(X)*
db®M Ne\v@n
W(X) o M )& M

commutes. The exterior portion of this diagram yields

w()()ﬂ.

w(X) @ coend(w)
@(X) J1®¢
w(X) @ M.

It remains to show that ¢ : coend(w) — M is uniquely determined. Let &g :
coend(w) — M be another morphism with ¢(X) = (1 ® @)d(X) for all X € D.
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Then the following diagram commutes
w(X)* @ w(X)

\@5(3{) M

(X)) @ w(X) @ coend(w)

(X, X)

coend(w)

1®e(X)

1®1®¢o

WX @w(X) oM —2 M,
hence we have @p = . O

Corollary 3.4.4. The functor Nat(w,w @ M) is a representable functor in M
represented by coend(w).

PROOF. The universal problem implies the isomorphism
Nat(w,w @ M) = Mor¢(coend(w), M)

and the universal natural transformation ¢ : w — w ® coend(w) is mapped to the
identity under this isomorphism. O

It is also possible to construct an isomorphism
Nat(w,w’ @ M) = Mor¢(cohom(w',w), M)

for different functors w,w’ : D — C and thus define cohomomorphism objects. Observe
that only w’ has to take values in Cy since then we can build objects w'(X)* @ w(X).
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5. The coalgebra coend

Proposition 3.5.1. Let C be a monoidal category and w : D — C be a diagram
in C. Assume that there is a universal object coend(w) and natural transformation
d:w — w @ coend(w).

Then there is exactly one coalgebra structure on coend(w) such that the diagrams

w J w @ coend(w)

) 1A

w @ coend(w) —w ® coend(w) @ coend(w)

@1
and S
w—w @ coend(w)
idey 1®e
w® I
commute.

PROOF. Because of the universal property of coend(w) there are structure mor-
phisms A : coend(w) — coend(w) @ coend(w) and € : coend(w) — I. This implies
the coalgebra property similar to the proof of Corollary 3.3.8. O

Observe that by this construction all objects and all morphisms of the diagram
w: D — Cy C C are comodules or morphisms of comodules over the coalgebra
coend(w). In fact €' := coend(w) is the universal coalgebra over which the given
diagram becomes a diagram of comodules.

Corollary 3.5.2. Let (D,w) be a diagram C with objects in Cy. Then all objects
of the diagram are comodules over the coalgebra C' := coend(w) and all morphisms
are morphisms of comodules. If D is another coalgebra and all objects of the diagram
are D-comodules by p(X) : w(X) — w(X) @ D and all morphisms of the diagram
are morphisms of D-comodules then there exists a unique morphism of coalgebras
@ : coend(w) — D such that the diagram

who® coend(w)
@ 1@

w® D

commutes.

PROOF. The morphisms ¢(X) : w(X) — w(X)® D define a natural transforma-
tion since all morphisms of the diagram are morphisms of comodules. So the existence
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and the uniqueness of a morphism ¢ : coend(w) — D is clear. The only thing to show
is that this is a morphism of coalgebras. This follows from the universal property of
C = coend(w) and the diagram

w w®C
\ \WM
w0224 .00 C
1
1@
1@
19303
w——T——w®D
N 1®N
w®@D w®@ D@D

where the right side of the cube commutes by the universal property. Similarly we
get that @ preserves the counit since the following diagram commutes

w—>w®0

| S

w—>w®D w®K
\\ 1
w® K
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6. The bialgebra coend

Let w : D — C and &' : D' — C be diagrams in C. We call the diagram
(Dyw) @ (D',w') := (D x D'\yw @ w) with (w® W )(X,Y) := w(X) @ (V) the
tensor product of these two diagrams. The new diagram consists of all possible tensor
products of all objects and all morphisms of the original diagrams.

From now on we assume that the category C is the category of vector spaces and
we use the symmetry 7: V@ W — W ® V in Vec.

Proposition 3.6.1. Let (D,w) and (D',w') be finite diagrams in Vec. Then
coend(w @ w') = coend(w) @ coend(w").

PROOF. First observe the following. If two diagrams w : D — Vec and w' : D’
— Vec are given then @D @D/(w Qu') = @Dxp/(w Qw') = @D(w) ®@D/(w’)
since the tensor product preserves colimits and colimits commute with colimits. For
this consider the diagram

w(X) @ W'(Y)

w(X) @ lim,, (')

lig, (0) & /(Y) lig () © lingy () limgy (w0 0w,
The maps in the diagram are the injections for the corresponding colimits. In particu-
lar we have coend(w@w') = @Dxp/((w(@w’)*@(w@w’)) o @Dxp/(w*(@w@w’*@w’) =
@D(w* RQw)® @D/(w’* @ w') = coend(w) @ coend(w’).
The (universal) morphism
(X)L (YN(18701) : w(X) 9 (¥) w(X)@w!(Y) — li(w 9w) 9lim(w"* 0w
can be identified with the universal morphism
(X Y) (XY ©(Y) 8 w(X) 0 w(Y) — ling((w ® W) & (@8 W),
Hence the induced morphisms
(17 1) (@) wX)2(Y) = wX)2W(Y)® coend(w) @ coend(w')
and
§:w(X)@wW'(Y) = wX)@w(Y)® coend(w @ w')
can be identified. O

Corollary 3.6.2. For all finite diagrams (D,w) and (D',w") in D there is a uni-
versal natural transformation § : w @ W' — w @ W' @ coend(w) @ coend(w') so that for
each object M and each natural transformation p : w @ W — w AW @ M there exists
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a unique morphism @ : coend(w) ® coend(w’) — M such that
WRW HwRdw e coend(w) ® coend(w')

¥ 1R10¢

wRwWw oM

commutes.

Definition 3.6.3. Let (D,w) be a diagram in C = Vec. Then w is called recon-
structive

e if there is an object coend(w) in C and a universal natural transformation § : w
— w @ coend(w)
e and if (107@1)(0@F):w@w — w@w® coend(w) @ coend(w) is a univesarl

natural transformation of bifunctors.

Definition 3.6.4. Let (D,w) be a diagram in Vec. Let D be a monoidal category
and w be a monoidal functor. Then (D,w) is called a monoidal diagram.

Let (D,w) be a monoidal diagram Vec. Let A € Vec be an algebra. A natural
transformation ¢ : w — w @ B is called monoidal monoidal if the diagrams

w(X) @ w(Y) A @e ) w(X)0w(Y)2 Bo B
P pRmM
WX DY) AXEY) W(XOY)2 B
and
K = Ko K
w(I) ad w()© B
commute.

We denote the set of monoidal natural transformations by Nat®(w,w @ B).
Problem 3.6.8. Show that Nat®(w,w @ B) is a functor in B.

Theorem 3.6.5. Let (D,w) be a reconstructive, monoidal diagram in Vec. Then
coend(w) is a bialgebra and § : w — w @ coend(w) is a monoidal natural transforma-
tion.

If B is a bialgebra and 0 : w — w @ B is a monoidal natural transformation,
then there is a unique homomorphism of bialgebras f : coend(w) — B such that the
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diagram
who® coend(w)
o 1®f
w® B
commutes.

PROOF. The multiplication of coend(w) arises from the following diagram
w(X) @w(Y) LN w(X) @w(Y) @ coend(w) @ coend(w)

wXaY) § WX @Y) @ coend(w)= w(X) ®@w(Y)® coend(w)
For the construction of the unit we consider the diagram Dy = ({[},{id}) together
with wo : Dy — Vec, wo(l) = K, the monoidal unit object in the monoidal category
of diagrams in Vec. Then (K — K @ K) = (wy — wo @ coend(wy)) is the universal
map. The following diagram then induced the unit for coend(w)

K = KoK

w(l) —— w(l) @ coend(w) = K @ coend(w)
By using the universal property one checks the laws for bialgebras.

The above diagrams show in particular that the natural transformation ¢ : w
— w @ coend(w) is monoidal. O
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7. The quantum monoid of a quantum space

Problem 3.7.9. If A is a finite dimensional algebra and 6 : A — M(A) @ A
the universal cooperation of the Tambara bialgebra on A from the left then 74 : A
— A ® M(A) (with the same multiplication on M(A)) is a universal cooperation
of M(A) on A from the right. The comultiplication defined by this cooperation is
TA: M(A) — M(A)® M(A). Thus we have to distinguish between the left and the
right Tambara bialgebra on A and we have M, (A) = M;(A)*?.

Now consider the special monoidal diagram scheme D := D[X;m,u]. To make
things simpler we assume that Vec is strict monoidal. The category D[X;m, u] has
the objects X @ ... @ X = X®* for all n € N (and [ := X®°) and the morphisms
m: X ®X — X, u: I — X and all morphisms formally constructed from m,u,id
by taking tensor products and composition of morphisms.

Let A be an algebra with multiplication m4 : A ® A — A and unit us : K — A.
Then wy : D — C defined by w(X) = A, w(X®) = A®" w(m) = ma and w(u) = uy
is a strict monoidal functor. If A is finite dimensional then the diagram is finite. We
get

Theorem 3.7.1. Let A be a finite dimensional algebra. Then the algebra M(A)
coacting universally from the right on A (the right Tambara bialgebra) M(A) and
coend(wy4) are isomorphic as bialgebras.

PROOF. We have studied the Tambara bialgebra for left coaction f: A — M(A)®
A but here we need the analogue for universal right coaction f: A — A®@ M(A) (see
Problem 3.9).

Let B be an algebra and f: A — A ® B be a homomorphism of algebras. For

w = wy we define

1Qm%

P(XOM) w(XO) = A% L q0m g pon 205 48 o g = (X" @ B,

where m% : B®" — B is the n-fold multiplication on B. The map ¢ is a natural
transformation since the diagrams

K—Y . Ko B
U 1®u
A A® B
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and Yox

A A elXeX) A9 A®B

fOF~— _—T®m

ARAQB®B
m mem mE1
AR B

,V \®1

A w(X) A® B

commute. Furthermore the following commute

®r ®s
AT A 9 AP @ B B
\ /
A% @ A% @ B®" @ BY*

A(X)r ® A(X)s

AB(+s) @) BE(r+s)
/ \

@(X®(T+S))

A®(r+s)

A®Ur+s) o B

so that ¢ 1 w4 — w4 @ B is a monoidal natural transformation.

Conversely let ¢ : wq — wq @ B be a natural transformation. Let f:= (X)) : A
— A @ B. Then the following commute
fer

AR A ARAR BB
= 1&m
AoA—X0 4o AeB
m mE1
f
A A® B
and N
K = KgK
K K B
U u®1
f
A AR B.

Hence f: A — A® B is a homomorphism of algebras.
Thus we have defined an isomorphism

KAlg(A,A® B) = Nat®(wA,wA @ B)
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that is natural in B. If A is finite dimensional then the left hand side is represented
by the Tambara bialgebra M, (A) and the right hand side by the bialgebra coend(wy).
Thus both bialgebras must be isomorphic. O

~

Corollary 3.7.2. There is a unique isomorphism of bialgebras M,.(A)
coend(wy4) such that the diagram

A ® coend(wy)

commutes
PROOF. This is a direct consequence of the universal property. O

Thus the Tambara bialgebra that represents the universal quantum monoid acting
on a finite quantum space may be reconstructed by the Tannaka-Krein reconstruction
from representation theory. Similar reconstructions can be given for more complicated
quantum spaces such as so called quadratic quantum spaces.
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8. Reconstruction and C-categories

Now we show that an arbitrary coalgebra €' can be reconstructed by the methods
introduced above from its (co-)representations or more precisely from the underlying
functor w : Comod-C' — Vec. In this case one can not use the usual construction
of coend(w) that is restricted to finite dimensional comodules.

The following Theorem is an example that shows that the restriction to finite
dimensional comodules in general is too strong for Tannaka reconstruction. There
may be universal coendomorphism bialgebras for more general diagrams. On the
other hand the following Theorem also holds if one only considers finite dimensional
corepresentations of C'. However the proof then becomes somewhat more complicated.

Definition 3.8.1. Let C be a monoidal category. A category D together with a
bifunctor ® : C x D — D and natural isomorphisms 8 : (A@ B)@ M — A@ (B M),
n:I @M — M is called a C-category if the following diagrams commute

a(A,B,C)@1

(AeB)aC)o M (Ao (Bo0) oM X2 A ¢ (B o M)

B(A®B,C,M) 1®4(B,C,M)

B(A,B,CQM)

(A B)®(C o M) A (Be(CoM))

(AolyoM—"HM L Ag(1e M)
p(A)®1 ‘A(M)
Ao M

A C-category is called strict if the morphisms 3, n are the identities.
Let (D,®) and (D', ®@) be C-categories. A functor F : D — D' together with a
natural transformation ((A, M): AQ F(M) — F(A®@ M) is called a weak C-functor

if the following diagrams commute

(A@ B) @ F(M) ¢ F((A@ B)® M)
8 F(B)

AR (B F(M)) — ~ A F(BoM) ——— F(A® (Ba M))

[ @ F(M)—— F(I 2 M)

L

F(M)

If, in addition, ( is an isomorphism then we call F a C-functor. The functor is
called a strict C-functor if ( is the identity morphism.
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A natural transformation ¢ : F — F’ between (weak) C-functors is called a
C-transformation if

AR F(M) ——~F(A® M)
1a®e(M) w(ARM)

A®.7:’(M) T»}"’(AQQ M)
commutes.

Example 3.8.2. Let (' be a coalgebra and C := Vec. Then the category Comod-C'
of right C-comodules is a C-category since N € Comod-C and V € C = Vec implies
that V @ N is a comodules with the comodule structure of N.

The underlying functor w : Comod-C' — Vec is a strict C-functor since we have
VowN)=wV®@N). Similarly w ® M : Comod-C — Vec is a C-functor since
Va(wN)eM)=wVaN)o M.

Lemma 3.8.3. Let C be a coalgebra. Let w : Comod-C — Vec be the un-
derlying functor. Let ¢ : w — w ® M be a natural transformation. Then ¢ is a
C-transformation with C = Vec.

PRrROOF. It suffices to show 1y @ p(N) = p(V @ N) for an arbitrary comodule V.
We show that the diagram

o(VRN)

VN VeoNoM

VoN

v aa (M) VaoaNeoM

commutes. Let (v;) be a basis of V. For an arbitrary vector space W let p;, : V@ W
— W be the projections defined by pi(t) = pi(3_; v; @ w;) = w; where Y v; @ wj is
the unique representation of an arbitrary tensor in V @ W. So we get

t = ZUZ' ®pi(t)

K3

forallt € Ve W. Now we consider V@ N as a comodule by the comodule structure of
N. Then the p; : V® N — N are homomorphisms of comodules. Hence all diagrams
of the form

vanN—YN vonNeM
Pi piQ@M
N N@M,
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commute. Expressed in formulas this means ¢(N)p;(t) = pip(V @ N)(t) for all
t eV @ N. Hence we have

Iy @ @(N))(1) = (Iv @ p(N)) (X v @ pi(t)) = 2o vi @ o(N)pi(?)

=2 vi @pip(V @ N)(t) = o(V @ N)(1)

So we have ly @ ¢(N) = ¢(V @ N) as claimed. O

We prove the following Theorem only for the category C = Vec of vector spaces.
The Theorem holds in general and says that in an arbitrary symmetric monoidal
category C the coalgebra C represents the functor C- Nat(w,w @ M) = Morc(C, M)
of natural C-transformations.

Theorem 3.8.4. (Reconstruction of coalgebras) Let C' be a coalgebra. Let w :
Comod-C — Vec be the underlying functor. Then C = coend(w).

PRrOOF. Let M in Vec and let ¢ : w — w @ M be a natural transformation. We
define the homomorphism ¢ : C' — M by ¢ = (e @ 1)p(C) using the fact that C' is a
comodule.

Let N be a C'-comodule. Then N is a subcomodule of N@ C by §: N — N@ C

since the diagram

N : N®C
5 10A
N@C—gr=Nolal
commutes. Thus the following diagram commutes
N : NoC
@e(N) P(NRC)=1x®¢(C)
NoM——~NaCoM 107
10e@1
N@M

In particular we have shown that the diagram

§
w——w®@C
@ 1@

wQM

commutes.
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To show the uniqueness of ¢ let ¢ : €' — M be another homomorphism with
(1 ®g)d = ¢. For ¢ € C we have g(c) = gle @ 1)A(e) = (e @ 1)(1 @ g)A(e) =
(e ® Lp(C)(e) = 3(0).

The coalgebra structure from Corollary 3.5.1 is the original coalgebra structure
of C'. This can be seen as follows. The comultiplication § : w — w @ C' is a natural
transformation hence (6 @ 1¢)d : w — w® C @ C is also a natural transformation.
As in Corollary 3.5.1 this induced a unique homomorphism A : €' — ' @ C so that
the diagram

w w @ coend(w)
§ 1A

w ® coend(w) Sar @ coend(w) @ coend(w)
commutes. In a similar way the natural isomorphism w = w @ K induces a unique
homomorphism € : ' — K so that the diagram

who® coend(w)
idey 1®e

w® I

commutes. Because of the uniqueness these must be the structure homomorphisms

of C. O

We need a more general version of this Theorem in the next chapter. So let C' be
a coalgebra. Let w : Comod-C' — Vec be the underlying functor and 6 : w — w®@ C
the universal natural transformation for C' = coend(w).

We use the permutation map 7 on the tensor product that gives the natural
isomorphism

TN ONQL@...ON, QT EN QN @...0QN, @T1 @T5...0 T,

which is uniquely determined by the coherence theorems and is constructed by suitable
applications of the flip 7 : N@T =T ® N.

Let w"” : Comod-C' x Comod-C X ... x Comod-C — Vec be the functor
W' N1, Nayoo o yN,) = w(N1) @w(N2) @ ... @ w(N,). For notational convenience we
abbreviate {N}" := N; @ Ny ® ... @ N, similarly {C}" = C @ C ® ...® C and
{f}1"=H0fa...0fi.. Soweget T: {N@T}"={N}"a{T}".
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Lemma 3.8.5. Let ¢ :w" — w" @ M be a natural transformation. Then p is a
C-transformation in the sense that the diagrams

@(Vi®N1,... . Va@Nn)

(Vo Ny VoNyroM
T TRM
{V}I"@{N}" ) {(VI"o{N}" o M

commute for all vector spaces V; and C-comodules N;.

PROOF. Choose bases {v;; } of the vector spaces V; with corresponding projections
pij » Vi @ N; — N;. Then we have 7(t; @ ... @t,) = > 015, @ ... @ Ui, @ 1y (t1) @

e @ Py (tn) SO T =D 01, @ oL @ v, @ {p}".
The p;j, : Vi@ N; — N; are homomorphisms of C'-comodules. Hence the diagrams

{r}" {p}reM
vy - Ve M
@( 1, 3 n)

commute for all choices of {p}" = p1;, @ ... D pui,-
So we get for all t; € V; @ N;

V"2 (N, . N1 @ ... 3 L,) =

= ({VI"@e(Ni,. o, No)) (2o vy @ oo @ Vi, @ priy () @ v @ i, (1))
= 01, Do @V, @O(Np,y oo N {p} (1 @ ... 0 1)

=> 015, @ ... Q U, @{p}" @ M)p(Vi @ Ni,y oo \ VAN @ ... O ty)
=(T@M)p(Vi @ Ni,... .V, @ Np)(th @ ... 3 ty).

Theorem 3.8.6. With the notation given above we have
coend(W" ) Z2CRC®...0C
with the universal natural transformation
SNy, Noyooo yNL) i= T(8(N) @ (N2) @ ... @ 3(N,,)) :
WN) Q@w(N2) @...0w(N,) > wV)@CRwN)@C®...0w(N,)®C
Zw(N)Qw(N)@...0wN,)@CeCa...0C.
PRrROOF. We proceed as in the proof of the previous Theorem.
Let M in Vec and let ¢ : w" — w” @ M be a natural transformation. We define

the homomorphism ¢ : C" = w(C)Qw(C)®...w(C)=CC®...0C — M by
e =("® 1lm)p(C,...,C) using the fact that C' is a comodule.
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As in the preceding proof we get that § : N; — N; ® C' are homomorphisms of
C-comodules. Thus the following diagram commutes

§9...98 , Ni®...9 N,®
N ®... N, NRCOCR...ON,C Co.. .o
@(N1®...9Ny) @(N1@0,... ,Np@O) Ni1®...0Nn®¢(C,... ,C)

§9..060M oM Ni®...Q0 N,®
N®...9N, @M M@C®.. aN@COM=BY 5 Sl

{1@e} el 18{}"e1

N@...oN, @M

Hence we get the commutative diagram

@ 1@

wt R M
To show the uniqueness of ¢ let g : C" — M be another homomorphism with
(1on @ g)80 = . We have g = g(e" @ 1on)TA" = g(" @ 1gn)6™(C, ... ,C) =
(" @ 1a)(1en @ ¢)S(C, ..., C) = (" @ 1an)p(C,... ,C) = &. O

Now we prove the finite dimensional case of reconstruction of coalgebras.

Proposition 3.8.7. (Reconstruction) Let C' be a coalgebra. Let Comody-C' be
the category of finite dimensional C-comodules and w : Comody-C' — Vec be the
underlying functor. Then we have C' = coend(w).

PRrROOF. Let M be in Vec and let ¢ : w — w ® M be a natural transformation.
We define the homomorphism ¢ : ¢ — M as follows. Let ¢ € C'. Let N be a
finite dimensional C-subcomodule of C' containing ¢. Then we define g(c) := (¢|y @
D)p(N)(e). If N is another finite dimensional subcomodule of C' with ¢ € N’ and
with NV C N’ then the following commutes

NM,N@M
~ o

\ J CoM-—M
g

N N M
Thus the definition of @(¢) is independent of the choice of N. Furthermore ¢ : N
— M is obviously a linear map. For any two elements ¢, € C there is a finite
dimensional subcomodule N C €' with ¢, ¢’ € N e. g. the sum of the finite dimensional
subcomodules containing ¢ and ¢ separately. Thus ¢ can be extended to all of C.
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The rest of the proof is essentially the same as the proof of the first reconstruction
theorem. 0

The representations allow to reconstruct further structure of the coalgebra. We
prove a reconstruction theorem about bialgebras. Recall that the category of B-
comodules over a bialgebra B is a monoidal category, furthermore that the underlying
functor w : Comod-B — Vec is a monoidal functor. From this information we can
reconstruct the full bialgebra structure of B. We have

Theorem 3.8.8. Let B be a coalgebra. Let Comod-B be a monoidal category
such that the underlying functor w : Comod-B — Vec is a monotdal functor. Then
there is a unique bialgebra structure on B that induces the given monoidal structure
on the corepresentations.

PRrROOF. First we prove the uniqueness of the multiplication V : B®@ B — B
and of the unit n : K — B. The natural transformation 6 : w — w @ B becomes a
monoidal natural transformation with V: B@ B — B and n : K — B We show that
V and n are uniquely determined by w and 4.

Let V': B@ B — B and ' : B — K be morphisms that make § a monoidal
natural transformation. The diagrams

W(X) @ w(Y) Pe) W(X)0w(Y)® B® B
p pQV'
(X ®Y) Hxen) W(X@Y)oB
and
K = K® K
1oy
w(K) O L u(K) e B

commute. In particular the following diagrams commute

§(B)®6(B)

w(B) ® w(B) wB)@w(B)® B® B

p oV’

5(B®B)

w(B® B) w(B® B)® B
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and
K - KoK
1@y
w(K) W LK oB
Hence we get Eb (1) @ beaye( E V’(b(2)®c 2)) and 1®1 =1@n'(1).
This implies bc = E ( 1)elea ) )2y = E (b n)eleay) V(b 2) = V' (b® )
and 1 =9'(1).

Now we show the existence of a bialgebra structure. Let B be a coalgebra only and
let w : Comod-B — Vec be a monoidal functor with ¢ : w(M)@w(N) — w(M @ N)
and & : K — w(K). First we observe that the new tensor product between the
comodules M and N coincides with the tensor product of the underlying vector
spaces (up to an isomorphism ). Because of the coherence theorems for monoidal
categories (that also hold in our situation) we may identify along the maps £ and &.

We define = (K Y Ko B2 B)and V= (Bo B 22 o e B 2r
KoKo B =B).

Since the structural morphism for the comodule § : M — M ® B is a homomor-
phism of of B comodules where the comodule structure on M @ B is only given by
the diagonal of B that is the C-structure on w : Comod-B — Vec we get that also
S(M)2d(N): M@ N — M@ N ® B is a comodule homomorphism. Hence the first

square in the following diagram commutes

MoN PN o BaNeB—2% o NwBoB
§(M@N) §(M@BON®B) 19105(B@B)
Mo N @B XM o BoNoBo B Y Mo NeBoBo B

The second square commutes by a similar reasoning since the comodule structure on
M @ B resp. N ® B is given by the diagonal on B hence M @ N can be factored out

of the natural (C-)transformation. Now we attach
lyOIn@ el MANOBBOB —-M®N®B

to the commutative rectangle and obtain §(M@N) = (1@ 1y V)17 1)(§(M)®
d(N). Thus the comodule structure on M @ N is induced by the multiplication
V:B® B — B defined above.
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So the following diagrams commute

BoB—=""+BoBoBoB—-""~BoBoB®B
1p®R1p 19V
Bo B HBEP) BoBo B
w@w) 5(B®BV
v BoBo B2, o BoBoRB vel
%@1 E®E®N
B 2 B® B
B® B Y B
WB) M
1 B B®B €
B® B o K
K ! B
\K)\ ]
(1) Ko B A
n 1A
KoB— koBoB B® B
£ n®1 %/
B el B© B
and
K L K
5(K) 1®¢
" K@ B ‘

Hence n and V are coalgebra homomorphisms.
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To show the associativity of V we identify along the maps o : (M @ N) @ P =
M®(N® P) and furthermore simplify the relevant diagram by fixing that o represents
a suitable permutation of the tensor factors. Then the following commute

BoBg B LCBBESE) b poBoBoBoB 2%, Bo BB

1 10(vel) | [ 10(1eV) vel | |18V

o(3(BEB)ES(B)) et
BoB@B BoB@wB®B®BoB—""—~B®B
7(3(B)23(BEB))

1 10V v

§(B@B@B)

BoBoB BoB@B®B e B
The upper row is the identity hence we get the associative law.

For the proof that n has the properties of a unit we must explicitly consider the
coherence morphisms A and p By reasons of symmetry we will only show one half
of of the unit axiom. This axiom follows from the commutativity of the following

diagram

Bl e B BoBoK G BoB—S . p
pt §(B)®1 \ 11®5(K) 1®1®n 187
BoK-20. popoke B2 BoKe Bo B 2L o BoB2Y pap
= J 101V

BOK QGEL) BoKo B 10V v

P pR1

B o) BoB—2 .p




