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7. Duality of Hopf Algebras

In 2.4.8 we have seen that the dual Hopf algebra H� of a �nite dimensional Hopf
algebra H satis�es certain relations w.r.t. the evaluation map. The multiplication
of H� is derived from the comultiplication of H and the comultiplication of H� is
derived from the multiplication of H.

This kind of duality is restricted to the �nite-dimensional situation. Nevertheless
one wants to have a process that is close to the �nite-dimensional situation. This
short section is devoted to several approaches of duality for Hopf algebras.

First we use the relations of the �nite-dimensional situation to give a general
de�nition.

De�nition 2.7.1. Let H and L be Hopf algebras. Let

ev : L
H 3 a
 h 7! ha; hi 2 K

be a bilinear form satisfying

ha
 b;
X

h(1) 
 h(2)i = hab; hi; h1; hi = "(h)(1)

h
X

a(1) 
 a(2); h
 ji = ha; hji; ha; 1i = "(a)(2)

ha; S(h)i = hS(a); hi(3)

Such a map is called a weak duality of Hopf algebras. The bilinear form is called left
(right) nondegenerate if ha;Hi = 0 implies a = 0 (hL; hi = 0 implies h = 0). A
duality of Hopf algebras is a weak duality that is left and right nondegenerate.

Remark 2.7.2. If H is a �nite dimensional Hopf algebra then the usual evalua-
tion ev : H� 
H �! K de�nes a duality of Hopf algebras.

Remark 2.7.3. Assume that ev : L
H �! K de�nes a weak duality. By A.4.15
we have isomorphisms Hom(L 
 H;K) �=
Hom(L;Hom(H;K)) and Hom(L 
 H;K) �= Hom(H;Hom(L;K)). Denote the ho-
momorphisms associated with ev : L 
 K �! K by ' : L �! Hom(H;K) resp.
 : H �! Hom(L;K). They satisfy '(a)(h) = ev(a
 h) =  (h)(a).

ev : L 
 K �! K is left nondegenerate i� ' : L �! Hom(H;K) is injective.
ev : L 
K �! K is right nondegenerate i�  : H �! Hom(L;K) is injective.

Lemma 2.7.4. 1. The bilinear form ev : L
H �! K satis�es (1) if and only if
' : L �! Hom(H;K) is a homomorphism of algebras.

2. The bilinear form ev : L 
 H �! K satis�es (2) if and only if  : H �!
Hom(L;K) is a homomorphism of algebras.

Proof. ev : L
H �! K satis�es the right equation of (1) i� '(ab)(h) = hab; hi =
ha
 b;

P
h(1)
h(2)i =

P
ha; h(1)ihb; h(2)i =

P
'(a)(h(1))'(b)(h(2)) = ('(a) �'(b))(h)

by the de�nition of the algebra structure on Hom(H;K).
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ev : L
H �! K satis�es the left equation of (1) i� '(1)(h) = h1; hi = "(h).
The second part of the Lemma follows by symmetry.

Example 2.7.5. There is a weak duality between the quantum groups SLq(2)
and Uq(sl(2)). (Kassel: Chapter VII.4).

Proposition 2.7.6. Let ev : L
H �! K be a weak duality of Hopf algebras. Let
I := Ker(' : L �! Hom(H;K)) and J := Ker( : H �! Hom(L;K)). Let L := L=I
and H := H=J . Then L and H are Hopf algebras and the induced bilinear form
ev : L 
H �! K is a duality.

Proof. First observe that I and J are two sided ideals hence L and H are
algebras. Then ev : L 
 H �! K can be factored through ev : L 
H �! K and the
equations (1) and (2) are still satis�ed for the residue classes.

The ideals I and J are biideals. In fact, let x 2 I then h�(x); a
 bi = hx; abi = 0
hence �(x) 2 Ker(' 
 ' : L 
 L �! Hom(H 
 H;K) = I 
 L + L 
 I (the last
equality is an easy exercise in linear algebra) and "(x) = hx; 1i = 0. Hence as in the
proof of Theorem 2.6.3 we get that L = L=I and H = H=J are bialgebras. Since
hS(x); ai = hx; S(a)i = 0 we have an induced homomorphism S : L �! L. The
identities satis�ed in L hold also for the residue classes in L so that L and similarly
H become Hopf algebras. Finally we have by de�nition of I that hx; ai = hx; ai = 0
for all a 2 H i� a 2 I or a = 0. Thus the bilinear form ev : L 
 H �! K de�nes a
duality.

Problem 2.7.1. (in Linear Algebra)

1. For U � V de�ne U? := ff 2 V �jf(U) = 0g. For Z � V � de�ne Z? := fv 2
V jZ(v) = 0g. Show that the following hold:
(a) U � V =) U = U??;
(b) Z � V � and dimZ <1 =) Z = Z??;
(c) fU � V jdimV=U < 1g �= fZ � V �jdimZ < 1g under the maps

U 7! U? and Z 7! Z?.
2. Let V =

L
1

i=1 Kxi be an in�nite-dimensional vector space. Find an element
g 2 (V 
 V )� that is not in V � 
 V � (� (V 
 V )�).

De�nition 2.7.7. Let A be an algebra. We de�ne Ao := ff 2 A�j9 ideal AIA �
A : dim(A=I) <1 and f(I) = 0g.

Lemma 2.7.8. Let A be an algebra and f 2 A�. The following are equivalent:

1. f 2 Ao;
2. there exists IA � A such that dimA=I <1 and f(I) = 0;
3. A � f � AHomK(:AA; :K) is �nite dimensional;
4. A � f �A is �nite dimensional;
5. r�(f) 2 A� 
A�.

Proof. 1. =) 2. and 4. =) 3. are trivial.



7. DUALITY OF HOPF ALGEBRAS 67

2. =) 3. Let IA � A with f(I) = 0 and dimA=I <1. Write A� 
A �! K as
hg; ai. Then haf; ii = hf; iai = 0 hence Af � I? and dimAf <1.

3. =) 2. Let dimAf <1. Then IA := (Af)? is an ideal of �nite codimension
in A and f(I) = 0 holds.

2. =) 1. Let IA � A with dimA=IA < 1 and f(I) = 0 be given. Then
right multiplication induces ' : A �! HomK(A=I:;A=I:) and dimEndK(A=I) < 1.
Thus J = Ker(') � A is a two sided ideal of �nite codimension and J � I (since
'(j)(�1) = 0 = �1 � j = �j implies j 2 I). Furthermore we have f(J) � f(I) = 0.

1. =) 4. hafb; ii = hf; biai = 0 implies A � f �A � AI
?

A hence dimAfA <1.
3. =) 5. We observe that r�(f) = fr 2 (A 
 A)�. We want to show that

r�(f) 2 A� 
A�. Let g1; : : : ; gn be a basis of Af . Then there exist h1; : : : ; hn 2 A�

such that bf =
P
hi(b)gi. Let a; b 2 A. Then hr�(f); a 
 bi = hf; abi = hbf; ai =P

hi(b)gi(a) = h
P
gi 
 hi; a
 bi so that r�(f) =

P
gi 
 hi 2 A� 
A�.

5. =) 3. Let r�(f) =
P
gi 
 hi 2 A� 
A�. Then bf =

P
hi(b)gi for all b 2 A

as before. Thus Af is generated by the g1; : : : ; gn.

Proposition 2.7.9. Let (A;m; u) be an algebra. Then we have m�(Ao) � Ao
Ao.
Furthermore (Ao;�; ") is a coalgebra with � = m� and " = u�.

Proof. Let f 2 Ao and let g1; : : : ; gn be a basis for Af . Then we have m�(f) =P
gi
hi for suitable hi 2 A� as in the proof of the previous proposition. Since gi 2 Af

we get Agi � Af and dim(Agi) <1 and hence gi 2 Ao. Choose a1; : : : ; an 2 A such
that gi(aj) = �ij. Then (faj)(a) = f(aja) = hm�(f); aj 
 ai =

P
gi(aj)hi(a) = hj(a)

implies faj = hj 2 fA. Observe that dim(fA) < 1 hence dim(hjA) < 1, so that
hj 2 Ao. This proves m�(f) 2 Ao 
Ao.

One checks easily that counit law and coassociativity hold.

Theorem 2.7.10. (The Sweedler dual:) Let (B;m; u;�; ") be a bialgebra.
Then (Bo;��; "�;m�; u�) again is a bialgebra. If B = H is a Hopf algebra with
antipode S, then S� is an antipode for Bo = Ho.

Proof. We know that (B�;��; "�) is an algebra and that (Bo;m�; u�) is a coal-
gebra. We show now that Bo � B� is a subalgebra. Let f; g 2 Bo with dim(Bf) <
1 and dim(Bg) < 1. Let a 2 B. Then we have (a(fg))(b) = (fg)(ba) =P
f(b(1)a(1))g(b(2)a(2)) =

P
(a(1)f)(b(1))(a(2)g)(b(2)) =

P
((a(1)f)(a(2)g))(b) hence

a(fg) =
P
(a(1)f)(a(2)g) 2 (Bf)(Bg). Since dim(Bf)(Bg) < 1 we have

dim(B(fg)) < 1 so that fg 2 Bo. Furthermore we have " 2 Bo, since Ker(")
has codimension 1. Thus Bo � B� is a subalgebra. It is now easy to see that Bo is a
bialgebra.

Now let S be the antipode of H. We show S�(Ho) � Ho. Let a 2 H, f 2 Ho.
Then haS�(f); bi = hS�(f); bai = hf; S(ba)i = hf; S(a)S(b)i = hfS(a); S(b)i =
hS�(fS(a)); bi. This implies aS�(f) = S�(fS(a)) and HS�(f) = S�(fS(H)) �
S�(fH). Since f 2 Ho we get dim(fH) < 1 so that dim(S�(fH)) < 1 and
dim(HS�(f)) <1. This shows S�(f) 2 Ho. The rest of the proof is now trivial.
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De�nition 2.7.11. Let G = K-cAlg(H; -) be an a�ne group and R 2 K-cAlg.
We de�ne G
KR := Gj

R-cAlg to be the restriction to commutativeR-algebras. The

functor G 
K R is represented by H 
R 2 R-cAlg:

Gj
R-cAlg(A) = K-cAlg(H;A) �= R-cAlg(H 
R;A):

Theorem 2.7.12. (The Cartier dual:) Let H be a �nite dimensional commu-
tative cocommutative Hopf algebra. Let G = K-cAlg(H; -) be the associated a�ne
group and let D(G) := K-cAlg(H�; -) be the dual group. Then we have

D(G) = Gr(G;Gm)

where Gr(G;Gm)(R) = Gr(G 
K R;Gm 
K R) is the set of group (-functor) homo-
morphisms and Gm is the multiplicative group.

Proof. We have Gr(G;Gm)(R) = Gr(G
KR;GM
KR) �= R-Hopf-Alg(K[t; t�1]

R;H
R) �= R-Hopf-Alg(R[t; t�1];H
R) �= fx 2 U(H
R)j�(x) = x
x; "(x) = 1g,
since �(x) = x
 x and "(x) = 1 imply xS(x) = "(x) = 1.

Consider x 2 HomR((H 
 R)�; R) = HomR(H� 
 R;R). Then �(x) = x 
 x i�
x(v�w�) = hx; v�w�i = h�(x); v� 
 w�i = x(v�)x(w�) and "(x) = 1 i� hx; "i = 1.
Hence x 2 R-cAlg((H 
R)�; R) �= K-cAlg(H�; R) = D(G)(R).


