CHAPTER 2

Hopf Algebras, Algebraic, Formal, and Quantum Groups
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7. DUALITY OF HOPF ALGEBRAS 65

7. Duality of Hopf Algebras

In 2.4.8 we have seen that the dual Hopf algebra H* of a finite dimensional Hopf
algebra H satisfies certain relations w.r.t. the evaluation map. The multiplication
of H* is derived from the comultiplication of H and the comultiplication of H* is
derived from the multiplication of H.

This kind of duality is restricted to the finite-dimensional situation. Nevertheless
one wants to have a process that is close to the finite-dimensional situation. This
short section is devoted to several approaches of duality for Hopf algebras.

First we use the relations of the finite-dimensional situation to give a general
definition.

Definition 2.7.1. Let H and L be Hopf algebras. Let
ev:LOH>a®hw— (a,h)eK

be a bilinear form satisfying

(1) (@b, Y hay @ he) = (ab,h), (1,h) = e(h)

(2) <Z a@) @ ag),h @ j) =(a,hj), (a,1) =¢(a)
(3) (a,5(h)) = (S(a),h)

Such a map is called a weak duality of Hopf algebras. The bilinear form is called left
(right) nondegenerate if (a, H) = 0 implies « = 0 ((L,h) = 0 implies h = 0). A
duality of Hopf algebras is a weak duality that is left and right nondegenerate.

Remark 2.7.2. If H is a finite dimensional Hopf algebra then the usual evalua-
tion ev: H* @ H — K defines a duality of Hopf algebras.

Remark 2.7.3. Assume that ev: L @ H — K defines a weak duality. By A.4. 15
we have isomorphisms Hom(L ® H,K) o~
Hom(L,Hom(H,K)) and Hom(L @ H,K) = Hom(H, Hom(L, K)) Denote the ho—
momorphisms associated with ev : L @ K — K by ¢ : . — Hom(H,K) resp.
Y H — Hom(L,K). They satisfy p(a)(h) =ev(a @ h) = (h)(a).

v: L ®K — Kis left nondegenerate iff ¢ : L — Hom(H,K) is injective.
ev: L ® K — K is right nondegenerate iff ¢» : H — Hom(L, K) is injective.

Lemma 2.7.4. 1. The bilinear formev : L @ H — K satisfies (1) if and only if
¢ : L — Hom(H,K) is a homomorphism of algebras.

2. The bilinear form ev : L @ H — K satisfies (2) if and only if v : H —
Hom(L,K) is a homomorphism of algebras.

PROOF. ev: L@ H — K satisfies the right equation of (1) iff p(ab)(h) = (ab, h) =
(a@b, > by @ b)) =2 (a; ha))(b, hiz)) = 20 p(a) (b)) (b)(h(z)) = (p(a) x @(b))(h

by the definition of the algebra structure on Hom(H, K).
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ev: L @ H — K satisfies the left equation of (1) iff o(1)(h) = (1,h) = e(h).
The second part of the Lemma follows by symmetry. O

Example 2.7.5. There is a weak duality between the quantum groups SL,(2)
and U,(sl(2)). (Kassel: Chapter VII.4).

Proposition 2.7.6. Letev: L@ H — K be a weak duality of Hopf algebras. Let
[ := Ker(p : L — Hom(H,K)) and J := Ker(y) : H — Hom(L,K)). Let L := L/I

and H := H/J. Then L and H are Hopf algebras and the induced bilinear form
ev: LoH —-Kisa duality.

PROOF. First observe that I and J are two sided ideals hence L and H are
algebras. Then ev : L ® H — K can be factored through &v : L ® H — K and the
equations (1) and (2) are still satisfied for the residue classes.

The ideals I and J are biideals. In fact, let @ € [ then (A(x),a®b) = (x,ab) =0
hence A(z) € Ker(¢p @ p : L ®@ L — Hom(H @ HK) = I @ L + L ® I (the last
equality is an easy exercise in linear algebra) and e(x) = (x,1) = 0. Hence as in the
proof of Theorem 2.6.3 we get that [ = L/I and H = H/J are bialgebras. Since
(S(z),a) = (x,S(a)) = 0 we have an induced homomorphism S : L — L. The
identities satisfied in L hold also for the residue classes in L so that L and similarly
H become Hopf algebras. Finally we have by definition of I that (7,a@) = (x,a) = 0
foralla € Hiff a € [ or @ = 0. Thus the bilinear form &v : L @ H — K defines a
duality. O

Problem 2.7.1. (in Linear Algebra)
1. For U C V define Ut := {f € V*|f(U) = 0}. For Z C V* define Z+ := {v €
V|Z(v) = 0}. Show that the following hold:
(a) UCV = U =U*t
(b) Z CV*and dimZ < 0o = 7 = Z++;
() {U C V|[dmV/U < oo} = {7 C V*|dimZ < oo} under the maps
U~ Utand Z — Z+.
2. Let V = ;2 Kz; be an infinite-dimensional vector space. Find an element

g€ (VoV) thatisnot in V- V* (C(Va V).

Definition 2.7.7. Let A be an algebra. We define A° := {f € A*|3 ideal 414 C
A:dim(A/I) < oo and f(I)=0}.

Lemma 2.7.8. Let A be an algebra and f € A*. The following are equivalent:
. [ e A%

. there exists 14 C A such that dim A/ < oo and f(I) = 0;

. A-f C 4sHomg(.A4, .K) is finite dimensional;

. A f- A s finite dimensional;

. VH(f) e A* @ A

Proor. 1. = 2. and 4. = 3. are trivial.
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2. = 3. Let Iy € Awith f(/) =0 and dim A/I < co. Write A*® A — K as
(g,a). Then (af,i) = (f,ia) = 0 hence Af C I+ and dim Af < oo.

3. = 2. Let dim Af < co. Then I, := (Af)* is an ideal of finite codimension
in A and f(I) =0 holds.

2. = 1. Let Iy C A with dimA/I4 < oo and f(I) = 0 be given. Then
right multiplication induces ¢ : A — Homg(A/I.,A/I.) and dimEndg(A/I) < oc.
Thus J = Ker(¢) € A is a two sided ideal of finite codimension and J C [ (since
©(7)(1) =0=1-3j = implies j € I). Furthermore we have f(J) C f(I) =

1. = 4. {afb,i) = (f,bia) = 0 implies A- f - A C , I3 hence dim AfA < <.

3. = 5. We observe that V*(f) = fV € (A® A)*. We want to show that
V*(f) € A*®@ A*. Let g1,...,gn be a basis of Af. Then there exist hq,... , h, € A*
such that bf = > hi(b)g;. Let a,b € A. Then (V*(f),a @ b) = (f,ab) = (bf,a) =
Y hi(b)gi(a) = (>0 g @ hiya @b) so that V*(f) => g @ h; € A*® A%

5. = 3. Let V*(f)=> g @ h; € A* @ A*. Then bf = > h;(b)g; for all b € A
as before. Thus Af is generated by the gq,... , g,. O

Proposition 2.7.9. Let (A,m,u) be an algebra. Then we have m*(A°) C A°QA°.
Furthermore (A°, A, ) is a coalgebra with A = m* and ¢ = u*.

PROOF. Let f € A% and let g1,...,¢, be a basis for Af. Then we have m*(f) =
>~ g:@h; for suitable h; € A* as in the proof of the previous proposition. Since g; € Af
we get Ag; C Af and dim(Ag;) < oo and hence ¢g; € A°. Choose ay,... ,a, € A such
that gi(a;) = dij. Then (fa;)(a) = f(a;a) = (m*(f),a; @ a) = 3 gi(a;)hi(a) = hj(a)
implies fa; = h; € fA. Observe that dim(fA) < oo hence dim(h;A) < oo, so that
h; € A°. This proves m*(f) € A°® A°.

One checks easily that counit law and coassociativity hold. O

Theorem 2.7.10. (The Sweedler dual:) Let (B,m,u,A,c) be a bialgebra.
Then (B°, A* e*,m*, u*) again is a bialgebra. If B = H is a Hopf algebra with
antipode S, then S* is an antipode for B® = H°.

PROOF. We know that (B*, A*,¢*) is an algebra and that (B?, m*, u*) is a coal-
gebra. We show now that B® C B* is a subalgebra. Let f,¢g € B° with dim(Bf) <
oo and dim(Bg) < oo. Let a € B. Then we have (a(fg))(b) = (fg)(ba) =
> fF(bwya)g(bya) = >o(ap)f)(bu))(a@g)(be) = > ((au)f)la@g))(b) hence
a(fg) = Y (ag)f)lawyg) € (Bf)(Bg). Since dim(Bf)(Bg) < oo we have
dim(B(fg)) < oo so that fg € B°. Furthermore we have ¢ € B since Ker(e)
has codimension 1. Thus B? C B* is a subalgebra. It is now easy to see that B® is a
bialgebra.

Now let S be the antlpode of H. We show S*(H°) C H°. Let a € H, f € H".
Then (a5*(f),) = (S(/),ba) = (f,S(ba)) = Lf>S@S(O)) = (£5(a), 5(0)) =
(S*(fS(a)),b). This implies aS*(f) = S*(fS(a)) and HS*(f) = S*(fS(H)) C
S*(fH). Since f € H° we get dim(fH) < oo so that dim(S*(fH)) < oo and
dim(HS*(f)) < oco. This shows S*(f) € H°. The rest of the proof is now trivial. O
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Definition 2.7.11. Let ¢ = K-cAlg(H,-) be an affine group and R € K-cAlg.
We define G Rk R := G|R—CAlg to be the restriction to commutative R-algebras. The

functor G @k R is represented by H @ R € R-cAlg:
ClycalglA) = K-cAlg(H, A) = RcAlg(H © R, A).

Theorem 2.7.12. (The Cartier dual:) Let H be a finite dimensional commu-
tative cocommutative Hopf algebra. Let G = K-cAlg(H,-) be the associated affine
group and let D(G) := K-cAlg(H*,-) be the dual group. Then we have

D(G) = Gr(G,Gn)
where Gr(G,G,)(R) = Gr(G @r R, G, @x R) is the set of group (-functor) homo-

morphisms and G, is the multiplicative group.

PROOF. We have Gr(G, G, )(R) = Gr(GOkR, Gpy@xR) & R-Hopl-Alg(K[t, @
R,H® R) = R-Hopf-Alg(R[t,t"'], HOR) = {x € U H@R)|A(z) = 2@ux,e(z) = 1},
since A(z) =2 @z and e(x) = 1 imply 5(x) = e(x) = 1.

Consider @ € Homp((H @ R)*, R) = Homg(H* @ R, R). Then A(z) = @ x iff
z(vw*) = (x,v*w*) = (Az),v* @ w*) = z(v)e(w*) and e(x) = 1 iff (x,e) = 1.
Hence 2 € R-cAlg((H ® R)*, R) = K-cAlg(H*, R) = D(G)(R). O
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