CHAPTER 2

Hopf Algebras, Algebraic, Formal, and Quantum Groups
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5. Quantum Groups

Definition 2.5.1. (Drinfel’d) A quantum group is a noncommutative noncocom-
mutative Hopf algebra.

Remark 2.5.2. We shall consider all Hopf algebras as quantum groups. Ob-
serve, however, that the commutative Hopf algebras may be considered as affine
algebraic groups and that the cocommutative Hopf algebras may be considered as
formal groups. Their property as a quantum space or as a quantum monoid will play
some role. But often the (possibly nonexisting) dual Hopf algebra will have the geo-
metrical meaning. The following examples SL,(2) and GL,(2) will have a geometrical
meaning.

Example 2.5.3. The smallest proper quantum group, i.e. the smallest noncom-
mutative noncocommutative Hopf algebra, is the 4-dimensional algebra

Hy = K<g7$>/(92 - 1,$2,$g + gl’)
which was first described by M. Sweedler. The coalgebra structure is given by

Alg) =g @y, Az)=2014+g0z,
(g) = 1, e(z) =0,
S(g) =97 "(=9), S(x) = —gu.

Since it 1s finite dimensional its linear dual H} is also a noncommutative noncocom-
mutative Hopf algebra. It is isomorphic as a Hopf algebra to Hy. In fact Hy is up to
isomorphism the only noncommutative noncocommutative Hopf algebra of dimension

4.
Example 2.5.4. The affine algebraic group SL(n) : K-cAlg — Gr defined by

SL(n)(A), the group of n x n-matrices with coefficients in the commutative algebra
A and with determinant 1, is represented by the algebra O(SL(n)) = SL(n) =
K[:z;”]/(det(x”) — 1) l.e.

SL(n)(A) = K-cAlg(K[z,;]/(det(z;;) — 1), A).
Since SL(n)(A) has a group structure by the multiplication of matrices, the represent-
ing commutative algebra has a Hopf algebra structure with the diagonal A = ¢ * 9

hence
Alzi) = Z Tij & Tk,
the counit e(x;;) = d;; and the antipode S(x;;) = adj(X);; where adj(X) is the adjoint
matrix of X = (x;;). We leave the verification of these facts to the reader.
We consider SL(n) C M,, = A™ as a subspace of the n>-dimensional affine space.

a b

Example 2.5.5. Let M,(2) = K< (c d>>/[ as in 1.3.6 with [ the ideal gen-

erated by
ab—q 'ba,ac — g 'ca,bd — g~ 'db, cd — ¢ 'de, (ad — g~ 'be) — (da — qcb), be — cb.
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We first define the quantum determinant det, = ad — ¢ 'bc = da — qcb in M,(2).
It is a central element. To show this, it suffices to show that det, commutes with the
generators a, b, ¢, d:

(ad — g 'bc)a = a(da — gbc), (ad — g~ be)b = blad — g~ 'be),
(ad — g 'bc)e = c(ad — ¢~ 'be), (da — qbe)d = d(ad — g~ be).

We can form the quantum determinant of an arbitrary quantum matrix in A by

dt Cl/ b/ L /d/_ _1b//_d//_ /b/_ dt
el A d =a q =aa —qc —99(eq)

if o : M,(2) — A is the algebra homomorphism associated with the quantum matrix

a b
(¢ o)
. . . a/ b/ " b//
Given two commuting quantum 2 X 2-matrices (c’ d’) , (c” d”) . The quantum

determinant preserves the product, since

det ( Cl/ b/ Cl” b// ) B det Cl/a” _I_ b/c// Cl/b// _I_ b/d//
q cl d/ c// d// - q C/Cl// _I_ d/c// clb// _I_ d/d//
- (C/l/fl”//z:/ blc,[;l) (IC//Z/);//—I_ dlc/lcllll) :dg_l(gf;?/” //—Ic_l//b/d//)(C/a” —I_ d/c”)
=aca’d"+0cc +d'da + c
_q—l(a/clb//a// _I_ b/cld//a// _I_ a/d/b//c// _I_ b/d/d”C”)
— b/clc//b// _I_ a/d/a//d// _ q—lb/cld//a// _ q—la/d/b//c//
(1) — b/clc//b// _I_ a/d/a//d// _ q—lb/cld//a// _ q—la/d/b//c//
_q—lb/cl(a//d// —d"a" — q—lb//c// + qc”b”)
— a/d/a//d// _ q—la/d/b//c// _ q—lb/cl(a//d// _ q—lb//c//)
— (a’d’ _ q_lblcl)(a”d” _ q—lb//c//)

7 b/ I b//
= det, (Z, d’) det, (Z,, d”) .

In particular we have A(det,) = det, @ det, and e(det,) = 1. The quantum determi-
nant is a group like element (see 2.1.6).
Now we define an algebra

SLy(2) := M,(2)/(det, — 1).
The algebra SL,(2) represents the functor

sL) = (4 ) e e (& 5) =1

There is a surjective homomorphism of algebras M,(2) — SL,(2) and SL,(2) is a
subfunctor of M,(2).

Let X,Y be commuting quantum matrices satisfying det,(X) = 1 = det (V).
Since det,(X)det,(Y) = det,(XY) for commuting quantum matrices we get
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det,(XY) = 1, hence SL,(2) is a quantum submonoid of M,(2) and SL,(2) is a

bialgebra with diagonal
a b a b a b
> a) - a)e ()

{0 -60)

To show that SL,(2) has an antipode we first define a homomorphism of algebras

T: M,(2) — M,(2)° by
a b\ d —qb
r(ea)= (e )

We check that T : K< (a b
c d

T(ab— g 'ba) = T(b)T(a)— ¢ 'T(a)T(b) = —gbd + ¢~ qdb = 0.

and

>> — M, (2)° vanishes on the ideal [I.

We leave the check of the other defining relations to the reader. Furthermore T
restricts to a homomorphism of algebras S : SL,(2) — SL,(2) since T(det,) =
T(ad — q~'bc) = T(d)T(a) — ¢ 'T(e)T(b) = ad — g (—q 'c)(—gb) = det, hence
T(det, —1) =det, —1 =0 in SL,(2).

One verifies easily that S satisfies ) S(x(1))z(2) = e(x) for all given generators
of SL,(2), hence S is a left antipode by 2.1.3. Symmetrically S is a right antipode.
Thus the bialgebra SL,(2) is a Hopf algebra or a quantum group.

Example 2.5.6. The affine algebraic group GL(n) : K-cAlg — Gr defined by
GL(n)(A), the group of invertible n x n-matrices with coefficients in the commutative
algebra A, is represented by the algebra O(GL(n)) = GL(n) = Klx,;,t]/(det(x;;)t—1)
ie.

GL(n)(A) = K-cAlg(K[z,;, t]/(det(x;;)t — 1), A)).
Since GL(n)(A) has a group structure by the multiplication of matrices, the represent-

ing commutative algebra has a Hopf algebra structure with the diagonal A = ¢ * 9
hence

Alag) = Z Ty & Tk,

the counit e(x;;) = d;; and the antipode S(x;;) =t - adj(X);; where adj(X) is the

adjoint matrix of X = (a;;). We leave the verification of these facts from linear
algebra to the reader. The diagonal applied to ¢ gives
Alt)=t®t.

Hence ¢(= det(X)™!) is a grouplike element in GL(n). This reflects the rule det(AB) =
det(A) det(B) hence det(AB)™" = det(A)~ " det(B)~.
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Example 2.5.7. Let M,(2) be as in the example 2.5.5. We define
GLy(2) == M,(2)[t]/J

with J generated by the elements ¢ - (ad — ¢g~'bc) — 1. The algebra G'L,(2) represents

the functor
7

GL,(2)(A) = {(Z, Z,) € M,(2)(A)|det, (Z, Z,) invertible in A}.

In fact there is a canonical homomorphism of algebras M,(2) — GL,(2). A ho-
momorphism of algebras ¢ : M,(2) — A has a unique continuation to G'L,(2) iff

det, (¢ (Z Z)) is invertible:

! / -1
with ¢ — det, Z, Z, . Thus GL,(2)(A) is a subset of M (2)(A). Observe that
M,(2) — GL,(2) is not surjective.
Since the quantum determinant preserves products and the product of invertible
elements is again invertible we get GL,(2) is a quantum submonoid of M,(2), hence

) a b a b a b
A:GL(2) — GL(2)2G L, (2) with A (c d) = (c d ® . d) and A(t) = t®t.

We construct the antipode for GL,(2). We define T': M,(2)[t] — M,(2)[t]°® by
a b d —qgb a b _
T (c d) =1 (—q_lc j ) and T(t) := det, (c d) = ad — g 'be.

As in 2.5.5 T defines a homomorphism of algebras. We obtain an induced homo-
morphism of algebras S : GL,(2) — GL,(2)% or a GL,(2)-point in G'L,(2) since
S(t(ad — g 'bc) — 1) = (S(d)S(a) — g7 1S (c)S(b))S(t) — S(1) = (t*ad — g 't*cb)(ad —
g tbe) — 1 =t*(ad — g~ 'bc)* — 1 = 0.

Since S satisfies D S(z(1))z(g) = () for all given generators, S is a left antipode
by 2.1.3. Symmetrically S is a right antipode. Thus the bialgebra GGL,(2) is a Hopf
algebra or a quantum group.

Example 2.5.8. Let sl(2) be the 3-dimensional vector space generated by the

matrices
01 0 0 1 0
w=(o) v=(0) 1= Y):

Then sl(2) is a subspace of the algebra M (2) of 2 x 2-matrices over K. We easily verify
(X,Y]= XY—YX = H,[H,X] = HX—XH = 2X, and [H,Y] = HY =Y H = —2Y
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so that s/(2) becomes a Lie subalgebra of M(2)L, which is the Lie algebra of matrices
of trace zero. The universal enveloping algebra U(sl(2)) is a Hopf algebra generated
as an algebra by the elements X, Y, H with the relations

[X,Y]=H, [H ,X]=2X, [HY]=-2Y.

As a consequence of the Poincaré-Birkhoff-Witt Theorem (that we don’t prove)
the Hopf algebra U(sl(2)) has the basis { XY’/ H*|i, 7,k € N}. Furthermore one can

prove that all finite dimensional U(sl(2))-modules are semisimple.

Example 2.5.9. We define the so-called g-deformed version U, (sl(2)) of U(sl(2))
for any g € K, g # 1, —1 and ¢ invertible. Let U,(sl(2)) be the algebra generated by
the elements I/, F, K, K’ with the relations

KK'=K'K =1,
KEK' = ¢*E, KFK'=q?F,

7
BF-FE=""1
qa—dq

Since K’ is the inverse of K in U,(sl(2)) we write K~' = K’. The representation
theory of this algebra is fundamentally different depending on whether ¢ is a root of
unity or not.

We show that U,(sl(2)) is a Hopf algebra or quantum group. We define

AE)=10 E4+E®K, AF)=K1'@QF+F®l,
AK)=K® K,
e(B)=¢(F)=0, e(K) =1,
S(E)y=—-EK™', S(F)=-KF, S(K)=K""

First we show that A can be expanded in a unique way to an algebra homomor-
phism A : U,(sl(2)) — U,(sl(2)) @ Uy(sl(2)). Write U,(sl(2)) as the residue class
algebra K(FE, F, K, K~')/I where [ is generated by

KK -1, K'K —1,
KEK-' —@E, KFK™'—q7?F,

- 1
ElF —FE — %
q9—4q
Since K~! must be mapped to the inverse of A(K) we must have A(K™') = K~!' @
K~'. Now A can be expanded in a unique way to the free algebra A : K(E, F, K, K~')
— U, (sl(2)) @ Uy(sl(2)). We have A(KK_I) = A(K)A(K_l) = 1 and similarly
A(K™'K) = 1. Furthermore we have A(KERK ™) = A(K)A(E)A(K™Y) = (K @ K)
(1IE+EQRK) K '@ K Y)Y =KK'@KEK '+ KEK '@ K*K'=¢(12E+
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EF @ K)=¢A(F) = A(¢*F) and similarly A(KFK™') = A(¢”?F). Finally we have
AEF-FE)y=(10E+EQK)K' @ F+F®1)
(K'@F+Fol)(10E+E0K)
=K'@QFF+FoFE+FK' @ KF+EF®K
—K'@QFE-KEQFK-FFE-FEQK
=K' @(FF—-FE)+(EF-FE)® K
K'eo(K-K)+(K-K)eK

= =
_A (K — K1’>
q9—q
hence A vanishes on [ and can be factorized through a unique algebra homomorphism
AU (sl(2)) — Uy(sl(2)) @ Uy(sl(2)).
In a similar way, actually much simpler, one gets an algebra homomorphism
e:U,(sl(2)) = K

To check that A is coassociative it suffices to check this for the generators of the
algebra. We have (A@ DNA(E) = (A D)1 @ E4+EQK)=1010FE+10FE®
K+FEFQKoK=(13A)(1@oF+F®K)=(12A)A(FE). Similarly we get
(A@1DA(F) = (1@ A)A(F). For K the claim is obvious. The counit axiom is easily
checked on the generators.

Now we show that S is an antipode for U,(s{(2)). First define S : K(E, F, K, K~')
— U,(sl(2))° by the definition of S on the generators. We have

S(KK~Y)y=1=S(K'K),
S(KEK ') = —-KEK 'K = —¢*EK~' = S(¢*F),
S(KFK™')= —-KKFK™'= —¢?KF = S(q7*F),
S(EF —FE)=KFEK'— EK'KF=KFK'KEK — EF
K'—K K— K™
RS el
q9—dq q9—4q
So S defines a homomorphism of algebras S : U,(sl(2)) — U,(sl(2)). Since S satisfies
Y. S(zqay)r@) = e(x) for all given generators, S is a left antipode by 2.1.3. Symmet-
rically S is a right antipode. Thus the bialgebra U,(sl(2)) is a Hopf algebra or a
quantum group.

This quantum group is of central interest in theoretical physics. Its representation
theory is well understood. If ¢ is not a root of unity then the finite dimensional
U,(sl(2))-modules are semisimple. Many more properties can be found in [Kassel:
Quantum Groups|.




