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4. Formal Groups

Consider now K-cCoalg the category of cocommutativeK-coalgebras. Let C;D 2
K-cCoalg. Then C 
D is again a cocommutative K-coalgebra by Problem A.11.4.
In fact this holds also for non-commutative K-algebras, but in K-cCoalg we have

Proposition 2.4.1. The tensor product in K-cCoalg is the (categorical) product.

Proof. Let f 2 K-cCoalg(Z;C); g 2 K-cCoalg(Z;D). The map (f; g) : Z �!
C 
 D de�ned by (f; g)(z) :=

P
f(z(1)) 
 g(z(2)) is the unique homomorphism of

coalgebras such that (1 
 "D)(f; g)(z) = f(z) and ("C 
 1)(f; g)(z) = g(z) or such
that the diagram
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commutes, where pC(c
 d) = (1
 ")(c
 d) = c"(d) and pD(c
 d) = ("
 1)(c
 d) =
"(c)d are homomorphisms of coalgebras.

So the category K-cCoalg has �nite products and also a �nal object K.

De�nition 2.4.2. A formal group is a group in the category of K-cCoalg of
cocommutative coalgebras.

A formal group G de�nes a contravariant representable functor from K-cCoalg
to Gr, the category of groups.

Proposition 2.4.3. Let H 2 K-cCoalg. H a represents a formal group if and
only if there are given morphisms in K-cCoalg

r : H 
H �! H; u : K �! H; S : H �! H

such that the following diagrams commute
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Proof. For an arbitrary formal group H we get r = p1 � p2 2 K-cCoalg(H 

H;H), u = e 2 K-cCoalg(K;H), and S = (id)�1 2 K-cCoalg(H;H). These maps,
the Yoneda Lemma and Remark 2.2.6 lead to the proof of the proposition.

Remark 2.4.4. In particular the representing object (H;r; u;�; "; S) of a formal
group G is a cocommutative Hopf algebra and every such Hopf algebra represents a
formal group. Hence the category of formal groups is equivalent to the category of
cocommutative Hopf algebras.

Corollary 2.4.5. A coalgebra H 2 K-cCoalg represents a formal group if and
only if H is a cocommutative Hopf algebra.

The category of cocommutative Hopf algebras is equivalent to the category of formal
groups.

Corollary 2.4.6. The following categories are equivalent:

1. The category of commutative, cocommutative Hopf algebras.
2. The category of commutative formal groups.
3. The dual of the category of commutative a�ne algebraic groups.

Example 2.4.7. 1. Group algebras KG are formal groups.
2. Universal enveloping algebras U(g) of Lie algebras g are formal groups.
3. The tensor algebra T (V ) and the symmetric algebra S(V ) are formal groups.
4. Let C be a cocommutative coalgebra and G be a group. Then the group
KG(C) = K-cCoalg(C;KG) is isomorphic to the set of families (h�gjg 2 G) of
decompositions of the unit of C� into a sum of orthogonal idempotents h�g 2 C�

that are locally �nite.
To see this embed K-cCoalg(C;KG) � Hom(C;KG) and embedthe set

Hom(C;KG) into the set (C�)G of G-families of elements in the algebra C� by
h 7! (h�g) with h(c) =

P
g2G h

�
g(c)g. The linear map h is a homomorphism of

coalgebras i� (h 
 h)� = �h and "h = " i�
P

h(c(1))
 h(c(2)) =
P

h(c)(1) 

h(c)(2) and "(h(c)) = "(c) for all c 2 C i�

P
h�g(c(1))g
h�l (c(2))l =

P
h�g(c)g
g

and
P

h�g(c) = "(c) i�
P

h�g(c(1))h
�
l (c(2)) = �glh

�
g(c) and

P
h�g = " i� h�g � h

�
l =

�glh
�
g and

P
h�g = 1C� . Furthermore the families must be locally �nite, i.e. for

each c 2 C only �nitely many of them give non-zero values.
5. Let C be a cocommutative coalgebra and K[x] be the Hopf algebra with �(x) =

x 
 1 + 1 
 x (the symmetric algebra of the one dimensional vector space
Kx). We embed as before K-cCoalg(C;K[x]) � Hom(C;K[x]) = (C�)fN0g,
the set of locally �nite N0-families in C� by h(c) =

P1
i=0 h

�
i (c)x

i. The map
h is a homomorphism of coalgebras i� �(h(c)) =

P
h�i (c)(x 
 1 + 1 
 x)i =P

h�i (c)
�
i

l

�
xl
xi�l = (h
h)�(c) =

P
h�i (c(1))h

�
j (c(2))x

i
xj and "(
P

h�i (c)x
i) =

"(c) i� h�i � h
�
j =

�
i+j
i

�
h�i+j and h�0 = " = 1C� .

Now let K be a �eld of characteristic zero. Let pi := h�i =i!. Then the con-
ditions simplify to pipj = pi+j and p0 = 1: Hence the series for h is completely
determined by the term p := p1 since pn = pn1 . Since the series must be locally
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�nite we get that for each c 2 C there must be an n 2 N0 such that pm(c) = 0
for all m � n. Hence the element p is topologically nilpotent and

K-cCoalg(C;K[x]) �= radt(C
�)

the radial of topologically nilpotent elements of C�.
It is easy to see that radt(C�) is a group under addition and that this group

structure coincides with the one on K-cCoalg(C;K[x]).

Remark 2.4.8. Let H be a �nite dimensional Hopf algebra. Then by A.6.6 and
A.6.8 we get that H� is an algebra and a coalgebra. The commutative diagrams
de�ning the bialgebra property and the antipode can be transferred easily, so H� is
again a Hopf algebra. Hence the functor -� : vec �! vec from �nite dimensional
vector spaces to itself induces a duality -� : K-hopfalg �! K-hopfalg from the
category of �nite dimensional Hopf algebras to itself.

An a�ne algebraic group is called �nite if the representing Hopf algebra is �nite
dimensional. A formal group is called �nite if the representing Hopf algebra is �nite
dimensional.

Thus the category of �nite a�ne algebraic groups is equivalent to the category of
�nite formal groups.

The category of �nite commutative a�ne algebraic groups is self dual. The cat-
egory of �nite commutative a�ne algebraic groups is equivalent (and dual) to the
category of �nite commutative formal groups.


