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3. A�ne Algebraic Groups

We apply the preceding considerations to the categories K-cAlg and K-cCoalg.
Consider K-cAlg, the category of commutative K-algebras. Let A;B 2 K-cAlg.

Then A 
 B is again a commutative K-algebra with componentwise multiplication.
In fact this holds also for non-commutative K-algebras (A.5.3), but in K-cAlg we
have

Proposition 2.3.1. The tensor product in K-cAlg is the (categorical) coproduct.

Proof. Let f 2 K-cAlg(A;Z); g 2 K-cAlg(B;Z). The map [f; g] : A
B �! Z
de�ned by [f; g](a
 b) := f(a)g(b) is the unique algebra homomorphism such that
[f; g](a
 1) = f(a) and [f; g](1
 b) = g(b) or such that the diagram

A A
B-�A B��B

f
@
@
@@R

g
�

�
��	

Z
?

[f;g]

commutes, where �A(a) = a
 1 and �B(b) = 1 
 b are algebra homomorphisms.

So the category K-cAlg has �nite coproducts and also an initial object K.
A more general property of the tensor product of arbitrary algebras was already

considered in 1.2.13.
Observe that the following diagram commutes

A A
A-�1 A��2

1A
@
@
@@R

1A
�
�
��	

A
?

r

where r is the multiplication of the algebra and by the diagram the codiagonal of
the coproduct.

De�nition 2.3.2. An a�ne algebraic group is a group in the category of com-
mutative geometric spaces.

By the duality between the categories of commutative geometric spaces and com-
mutative algebras, an a�ne algebraic group is represented by a cogroup in the cate-
gory of K-cAlg of commutative algebras.

For an arbitrary a�ne algebraic group H we get by Corollary 2.2.7

� = �1 � �2 2 K-cAlg(H;H 
H);

" = e 2 K-cAlg(H;K); and S = (id)�1 2 K-cAlg(H;H):

These maps and Corollary 2.2.7 lead to

Proposition 2.3.3. Let H 2 K-cAlg. H is a representing object for a functor
K-cAlg �!Gr if and only if H is a Hopf algebra.
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Proof. Both statements are equivalent to the existence of morphisms in K-cAlg

� : H �! H 
H " : H �! K S : H �! H

such that the following diagrams commute

H H 
H-�

?
�(coassociativity)

?
�
1

H 
H H 
H 
H-1
�

H H 
H-�

H 
H K 
H �= H �= H 
 K-"
1

(counit)

?
�

?
1
"1

PPPPPPPPPPq

(coinverse)

H K-
�

H-
�

?
�

H 
H H 
H-S
id

id
S

6
r

This Proposition says two things. First of all each commutative Hopf algebra H
de�nes a functor K-cAlg(H; -) : K-cAlg �! Set that factors through the category
of groups or simply a functor K-cAlg(H; -) : K-cAlg �! Gr. Secondly each repre-
sentable functor K-cAlg(H; -) : K-cAlg �! Set that factors through the category of
groups is represented by a commutative Hopf algebra.

Corollary 2.3.4. An algebra H 2 K-cAlg represents an a�ne algebraic group if
and only if H is a commutative Hopf algebra.

The category of commutative Hopf algebras is dual to the category of a�ne alge-
braic groups.

In the following lemmas we consider functors represented by commutative alge-
bras. They de�ne functors on the category K-cAlg as well as more generally on
K-Alg. We �rst study the functors and the representing algebras. Then we use them
to construct commutative Hopf algebras.

Lemma 2.3.5. The functor G a : K-Alg �! Ab de�ned by G a(A) := A+, the
underlying additive group of the algebra A, is a representable functor represented by
the algebra K[x] the polynomial ring in one variable x.

Proof. G a is an underlying functor that forgets the multiplicative structure of
the algebra and only preserves the additive group of the algebra. We have to determine
natural isomorphisms (natural in A) G a(A) �= K-Alg(K[x]; A). Each element a 2 A+

is mapped to the homomorphism of algebras a� : K[x] 3 p(x) 7! p(a) 2 A. This is a
homomorphism of algebras since a�(p(x) + q(x)) = p(a) + q(a) = a�(p(x)) + a�(q(x))
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and a�(p(x)q(x)) = p(a)q(a) = a�(p(x))a�(q(x)). Another reason to see this is that
K[x] is the free (commutative) K-algebra over fxg i.e. since each map fxg �! A
can be uniquely extended to a homomorphism of algebras K[x] �! A. The map
A 3 a 7! a� 2 K-Alg(K[x]; A) is bijective with the inverse map K-Alg(K[x]; A) 3
f 7! f(x) 2 A. Finally this map is natural in A since

B K-Alg(K[x]; B)-
-�

A K-Alg(K[x]; A)--�

?

g

?

K-Alg(K[x];g)

commutes for all g 2 K-Alg(A;B).

Remark 2.3.6. Since A+ has the structure of an additive group the sets of ho-
momorphisms of algebras K-Alg(K[x]; A) are also additive groups.

Lemma 2.3.7. The functor Gm = U : K-Alg �! Gr de�ned by Gm (A) := U(A),
the underlying multiplicative group of units of the algebra A, is a representable functor
represented by the algebra K[x; x�1] = K[x; y]=(xy�1) the ring of Laurent polynomials
in one variable x.

Proof. We have to determine natural isomorphisms (natural in A) Gm(A) �=
K-Alg(K[x; x�1]; A). Each element a 2 Gm(A) is mapped to the homomorphism of
algebras a� := (K[x; x�1] 3 x 7! a 2 A). This de�nes a unique homomorphism of
algebras since each homomorphism of algebras f from K[x; x�1] = K[x; y]=(xy � 1)
to A is completely determined by the images of x and of y but in addition the images
have to satisfy f(x)f(y) = 1, i.e. f(x) must be invertible and f(y) must be the inverse
to f(x). This mapping is bijective. Furthermore it is natural in A since

B K-Alg(K[x; x�1]; B)-
-�

A K-Alg(K[x; x�1]; A)--�

?

g

?

K-Alg(K[x;x�1];g)

for all g 2 K-Alg(A;B) commute.

Remark 2.3.8. Since U(A) has the structure of a (multiplicative) group the sets
K-Alg(K[x; x�1]; A) are also groups.

Lemma 2.3.9. The functor M n : K-Alg �! K-Alg with M n(A) the algebra of
n� n-matrices with entries in A is representable by the algebra Khx11; x12; : : : ; xnni,
the non commutative polynomialring in the variables xij.

Proof. The polynomial ring Khxij i is free over the set fxijg in the category of
(non commutative) algebras, i.e. for each algebra and for each map f : fxijg �! A
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there exists a unique homomorphism of algebras g : Khx11; x12; : : : ; xnni �! A such
that the diagram

fxijg Khxij i-�

f

@
@
@
@@R

A
?

g

commutes. So each matrix in Mn(A) de�nes a unique a homomorphism of algebras
Khx11; x12; : : : ; xnni �! A and conversely.

Example 2.3.10. 1. The a�ne algebraic group called additive group

G a : K-cAlg �! Ab

with G a(A) := A+ from Lemma 2.3.5 is represented by the Hopf algebra K[x]. We
determine comultiplication, counit, and antipode.

By Corollary 2.2.7 the comultiplication is � = �1 � �2 2 K-cAlg(K[x];K [x] 

K[x]) �= G a(K[x] 
 K[x]). Hence

�(x) = �1(x) + �2(x) = x
 1 + 1
 x:

The counit is " = eK = 0 2 K-cAlg(K[x];K ) �= G a(K) hence

"(x) = 0:

The antipode is S = id�1
K[x] 2 K-cAlg(K[x];K [x])

�= G a(K[x]) hence

S(x) = �x:

2. The a�ne algebraic group called multiplicative group

Gm : K-cAlg �! Ab

with Gm(A) := A� = U(A) from Lemma 2.3.7 is represented by the Hopf algebra
K[x; x�1] = K[x; y]=(xy � 1). We determine comultiplication, counit, and antipode.

By Corollary 2.2.7 the comultiplication is

� = �1 � �2 2 K-cAlg(K[x; x
�1];K[x; x�1]
 K[x; x�1]) �= Gm(K[x; x

�1]
 K[x; x�1]):

Hence
�(x) = �1(x) � �2(x) = x
 x:

The counit is " = eK = 1 2 K-cAlg(K[x; x�1];K) �= Gm(K) hence

"(x) = 1:

The antipode is S = id�1
K[x;x�1] 2 K-cAlg(K[x; x�1];K[x; x�1]) �= G a(K[x; x�1])

hence
S(x) = x�1:

3. The a�ne algebraic group called additive matrix group

M
+
n : K-cAlg �! Ab;
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with M +
n (A) the additive group of n�n-matrices with coe�cients in A is represented

by the commutative algebra M+
n = K[xij j1 � i; j � n] (Lemma 2.3.9). This algebra

must be a Hopf algebra.
The comultiplication is � = �1 � �2 2 K-cAlg(M+

n ;M
+
n 
M+

n )
�= M +

n (M
+
n 
M+

n ).
Hence

�(xij) = �1(xij) + �2(xij) = xij 
 1 + 1 
 xij:

The counit is " = eK = (0) 2 K-cAlg(M+
n ;K)

�= M +
n (K) hence

"(xij) = 0:

The antipode is S = id�1
M

+
n

2 K-cAlg(M+
n ;M

+
n )

�= M +
n (M

+
n ) hence

S(xij) = �xij:

4. The matrix algebra M n(A) also has a noncommutative multiplication, the ma-
trix multiplication, de�ning a monoid structure M �

n (A). Thus K[xij ] carries another
coalgebra structure which de�nes a bialgebra M�

n = K[xij ]. Obviously there is no
antipode.

The comultiplication is � = �1 � �2 2 K-cAlg(M�
n ;M

�
n 
M�

n )
�= M �

n (M
�
n 
M�

n ).
Hence �((xij)) = �1((xij)) � �2((xij)) = (xij)
 (xij) or

�(xik) =
X

j

xij 
 xjk:

The counit is " = eK = E 2 K-cAlg(M�
n ;K)

�= M
�
n (K) hence

"(xij) = �ij:

5. Let K be a �eld of characteristic p. The algebra H = K[x]=(xp) carries the
structure of a Hopf algebra with �(x) = x 
 1 + 1 
 x, "(x) = 0, and S(x) = �x.
To show that � is well de�ned we have to show �(x)p = 0. But this is obvious by
the rules for computing p-th powers in characteristic p. We have (x
 1 + 1 
 x)p =
xp 
 1 + 1
 xp = 0.

Thus the algebra H represents an a�ne algebraic group:

�p(A) := K-cAlg(H;A) �= fa 2 Ajap = 0g:

The group multiplication is the addition of p-nilpotent elements. So we have the
group of p-nilpotent elements.

6. The algebra H = K[x]=(xn � 1) is a Hopf algebra with the comultiplication
�(x) = x 
 x, the counit "(x) = 1, and the antipode S(x) = xn�1. These maps are
well de�ned since we have for example �(x)n = (x
 x)n = xn
 xn = 1
 1. Observe
that this Hopf algebra is isomorphic to the group algebra KCn of the cyclic group Cn

of order n.
Thus the algebra H represents an a�ne algebraic group:

�n(A) := K-cAlg(H;A) �= fa 2 Ajan = 1g;



3. AFFINE ALGEBRAIC GROUPS 49

that is the group of n-th roots of unity. The group multiplication is the ordinary
multiplication of roots of unity.

7. The linear groups or matrix groups GL(n)(A), SL(n)(A) and other such groups
are further examples of a�ne algebraic groups. We will discuss them in the section
on quantum groups.

Problem 2.3.1. 1. The construction of the general linear group

GL(n)(A) = f(aij) 2 M n(A)j(aij) invertibleg

de�nes an a�ne algebraic group. Describe the representing Hopf algebra.
2. The special linear group SL(n)(A) is an a�ne algebraic group. What is the

representing Hopf algebra?
3. The real unit circle S1(R) carry the structure of a group by the addition of

angles. Is it possible to make S1 with the a�ne algebra K[c; s]=(s2 + c2 � 1) into an
a�ne algebraic group? (Hint: How can you add two points (x1; y1) and (x2; y2) on
the unit circle, such that you get the addition of the associated angles?)


