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2. Monoids and Groups in a Category

Before we use Hopf algebras to describe quantum groups and some of the better
known groups, such as affine algebraic groups and formal groups, we introduce the
concept of a general group (and of a monoid) in an arbitrary category. Usually this
concept is defined with respect to a categorical product in the given category. But
in some categories there are in general no products. Still, one can define the concept
of a group in a very simple fashion. We will start with that definition and then show
that it coincides with the usual notion of a group in a category in case that category
has finite products.

Definition 2.2.1. Let C be an arbitrary category. Let G € C be an object. We
use the notation G(X) := Mor¢(X,G) for all X € C, G(f) := More(f, ") for all
morphisms f: X — Y in C, and f(X) := Mor¢(X, f) for all morphisms f: G — G".

(i together with a natural transformation m : G(-) x G(-) — G(-) is called a
group (monoid) in the category C, if the sets G(X) together with the multiplication
m(X): G(X) x G(X) — G(X) are groups (monoids) for all X € C.

Let (G,m) and (G’,m’) be groups in C. A morphism f : G — G’ in C is called a

homomorphism of groups in C, if the diagrams

G(X) % G(X) XL q(x)

FX)xf(X) f(X)

GI(X) % Gr(x) 2,
commute for all X € C.
Let (G,m) and (G’,m') be monoids in C. A morphism f : G — G’ in C is called

a homomorphism of monotids in C, if the diagrams

G(X) % G(X) XL q(x)

J(X)x7(X) £(X)
GI(X) % Gr(x) 2
{*}\

G(x) & g x)

G'(X)

and

commute for all X € C.

Problem 2.2.1. 1) If a set Z together with a multiplication m : 7 x 7 — Z is a
monoid, then the unit element e € Z is uniquely determined. If it is a group then also
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the inverse ¢ : 7 — Z is uniquely determined. Unit element and inverses of groups
are preserved by maps that are compatible with the multiplication.

2) Find an example of monoids Y and 7 and a map f : Y — 7 with f(y1y2) =
F(y1)f(y2) for all y1,y2 € Y, but fey) # ez.

3) If (G,m) is a group in C and ix : G(X) — G(X) is the inverse, then ¢ is a
natural transformation. The Yoneda Lemma provides a morphism S : G — G such

that ix = More(X,5) = S(X) for all X € C.

Proposition 2.2.2. Let C be a category with finite (categorical) products. An
object G in C carries the structure m : G(-) x G(-) — G(-) of a group in C if and
only if there are morphisms m : G x G — G, u: F — G, and S : G — G such that
the diagrams

GxGxGElGxG ExG2G2Gx ESGxG

1xm m ux1 1 m
GxG—= G G x G T G
G EF—d
A m

GxG—25 L ax@

Sx1

commute where A is the morphism defined in A.2. The multiplications are related by
mx = Mor¢(X,m) =m(X).

An analogous statement holds for monoids.

PROOF. The Yoneda Lemma defines a bijection between the set of morphisms
f X — Y and the set of natural transformations f(-) : X(-) — Y(-) by f(Z) =
Morc(Z, f). In particular we have mx = More(X,m) = m(X). The diagram

m_X1

G(-) X G(-) x G(-) == G(-) T G(-)

1Xm_ m

G(-) < G() G(-)

commutes if and only if More (-, m(m x 1)) = Mor¢(-,m)(More(-,m) x 1) = m-(m- x
1) = m-(1 x m-) = Mor¢(-,m)(1 x Mor¢(-,m)) = More(-,m(1 x m)) if and only if



42 2. HOPF ALGEBRAS, ALGEBRAIC, FORMAL, AND QUANTUM GROUPS
m(m x 1) = m(1 x m) if and only if the diagram

GrxGxG2laxa

GxG—"—G

commutes. In a similar way one shows the equivalence of the other diagram(s). O

Problem 2.2.2. Let C be a category with finite products. Show that a morphism
f: G — G in C is a homomorphism of groups if and only if

GxG——G
fx§ f

G % G

commutes.

Definition 2.2.3. A cogroup (comonoid) GG in C is a group (monoid) in C, i.e.
an object G € ObC = Ob C together with a natural transformation m(X) : G(X) x
G(X) — G(X) where G(X) = Morcer (X, G) = More (G, X), such that (G(X), m(X))
is a group (monoid) for each X € C.

Remark 2.2.4. Let C be a category with finite (categorical) coproducts. An
object (¢ in C carries the structure m : G(-) x G(-) — G(-) of a cogroup in C if and

only if there are morphisms A : G — GG, e : G — I, and S : G — G such that
the diagrams

G—2—GIaG G = GG
A 1A A 1 111e
cunclouncnoa GUGHE ITIG2G=GIl

G I ——~(
A v
110s

GG ——g—GIG
commute where V is dual to the morphism A defined in A.2. The multiplications are
related by Ax = Mor¢(A, X) = A(X).
Let C be a category with finite coproducts and let G and G’ be cogroups in C.
Then a homomorphism of groups f : G’ — G is a morphism f : G — G’ in C such
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that the diagram
G—=2—+GxG

! <y

e C e
commutes. An analogous result holds for comonoids.
Remark 2.2.5. Obviously similar observations and statements can be made for
other algebraic structures in a category C. So one can introduce vector spaces and
covector spaces, monoids and comonoids, rings and corings in a category C. The

structures can be described by morphisms in C if C is a category with finite (co-)
products.

Problem 2.2.3. Determine the structure of a covector space on a vector space
V from the fact that Hom(V, W) is a vector space for all vector spaces W.

Proposition 2.2.6. Let G € C be a group with multiplication a x b, unit e, and
inverse a™' in G(X). Then the morphisms m : G x G — G, u: E — G, and
S G — G are given by

m = py * pa, u=eg, S =idz"

PRroOOF. By the Yoneda Lemma A.9.1 these morphisms can be constructed from
the natural transformation as follows. Under Mor¢(G'x G, G x G) = G x G(G' x G) =
GG x G)x G(GxG) == G(G x G) = More(G x G, G) the identity idgya = (p1, p2)
is mapped to m = p; * ps. Under More(F,E) = E(E) — G(F) = Morc(F,G)
the identity of E is mapped to the neutral element u = eg. Under More(G, ) =
G(G) — G(G) = More(G, G) the identity is mapped to its *-inverse S = idg'. O

Corollary 2.2.7. Let G € C be a cogroup with multiplication a x b, unit e, and
inverse a~' in G(X). Then the morphisms A : G — GG, ¢ : G — I, and
S G — G are given by

-1
A =1 %19, e =eg, S =idg .



