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2. Quantum Spaces and Noncommutative Geometry

Now we come to noncommutative geometric spaces and their function algebras.
Many of the basic principles of commutative algebraic geometry as introduced in 1.1
carry over to noncommutative geometry. Our main aim, however, is to study the
symmetries (automorphisms) of noncommutative spaces which lead to the notion of
a quantum group.

Since the construction of noncommutative geometric spaces has deep applications
in theoretical physics we will also call these spaces quantum spaces.

De�nition 1.2.1. Let A be a (not necessarily commutative) K-algebra. Then
the functor X := K-Alg(A; -) : K-Alg �! Set represented by A is called (a�ne)
noncommutative (geometric) space or quantum space. The elements of K-Alg(A;B)
are called B-points of X . A morphism of noncommutative spaces f : X �! Y is a
natural transformation.

This de�nition implies immediately

Corollary 1.2.2. The noncommutative spaces form a category QS that is dual
to the category of K-algebras.

Remark 1.2.3. Thus one often calls the dual category K-Algop category of non-
commutative spaces.

If A is a �nitely generated algebra then it may be considered as a residue class
algebra A �= Khx1 ; : : : ; xni=I of a polynomial algebra in noncommuting variables (cf.
A.6). If I = (p1(x1; : : : ; xn); : : : ; pm(x1; : : : ; xn)) is the two-sided ideal generated
by the polynomials p1; : : : ; pm then the sets K-Alg(A;B) can be considered as sets
of zeros of these polynomials in Bn. In fact, we have K-Alg(Khx1; : : : ; xni; B) �=
Map(fx1; : : : ; xng; B) = Bn. Thus K-Alg(A;B) can be considered as the set of those
homomorphisms of algebras from Khx1; : : : ; xni to B that vanish on the ideal I or as
the set of zeros of these polynomials in Bn.

Similar to Theorem 1.1.13 one shows also in the noncommutative case that mor-
phisms between noncommutative spaces are described by polynomials.

The Theorem 1.1.11 on the operation of the a�ne algebra A = O(X ) on X as
function algebra can be carried over to the noncommutative case as well: the natural
transformation  (B) : A�X (B) �! B (natural in B) is given by  (B)(a; p) := p(a)
and comes from the isomorphism A �= Nat(X ; A ).

Now we come to a claim on the function algebra A that we did not prove in the
commutative case, but that holds in the commutative as well as in the noncommuta-
tive situation.
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Lemma 1.2.4. Let D be a set and � : D � X (-) �! A (-) be a natural transfor-
mation. Then there exists a unique map f : D �! A such that the diagram

A�X (B) B-
 (B)

D �X (B)

?
f�1 �(B)

PPPPPPq

commutes.

Proof. Let � : D�X �! A be given. We �rst de�ne a map f 0 : D �! Nat(X ; A )
by f 0(d)(B)(p) := �(B)(d; p).

We claim that f 0(d) : X �! A is a natural transformation. Observe that the
diagram

D �X (B0) A (B0) = B0-
�(B0)

D �X (B) A (B) = B-�(B)

?

D �X (g)

?

g

commutes for any g : B �! B0, since � is a natural transformation. Thus the diagram

X (B0) A (B0) = B0-
f 0(d)(B0)

X (B) A (B) = B-f 0(d)(B)

?

X (g)

?

g

commutes since

(g � f 0(d)(B))(p) = (g � �(B))(d; p)
= �(B0) � (1�X (g))(d; p)
= �(B0)(d;X (g)(p))
= f 0(d)(B0)(X (g)(p)):

Hence f 0(d) 2 Nat(X; A ) and f 0 : D �! Nat(X ; A ).

Now we de�ne f : D �! A as D
f 0

�! Nat(X ; A ) �= A. By using the isomorphism
from 1.1.11 we get f(d) = f 0(d)(A)(1). (Actually we get f(d) = f 0(d)(A)(1)(x) but
we identify A (B) and B by A (B) 3 p 7! p(x) 2 B.)
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Then we get

 (B)(f � 1)(d; p) =  (B)(f(d); p)
=  (B)(f 0(d)(A)(1)(x); p) (by de�nition of f)
= p � f 0(d)(A)(1) (since we may omit x)
= p � �(A)(d; 1) (by de�nition of f 0)
= �(B)(D �X (p))(d; 1) (since � is a natural transformation)
= �(B)(d; p):

Hence the diagram in the Lemma commutes.
To show the uniqueness of f let g : D �! A be a homomorphism such that

 (B)(g � 1) = �(B). Then we have

f(d) = f 0(d)(A)(1) = �(A)(d; 1) =  (A)(g�1)(d; 1) =  (A)(f(d); 1) = 1�g(d) = g(d)

hence f = g.

Problem 1.2.1. De�nition: Let D be an algebra. A natural transformation
� : D � X �! A is called an algebra action if �(B)(-; p) : D �! A (B) = B is an
algebra homomorphism for all B and all p 2 X (B).

Lemma: The natural transformation  : A�X �! A is an algebra action.
Theorem: Let D be an algebra and � : D �X (-) �! A (-) be an algebra action.

Then there exists a unique algebra homomorphism f : D �! A such that the diagram

A�X (B) B-
 (B)

�(B)

@
@
@
@@R

D �X (B)

?

f�1

commutes.

De�nition 1.2.5. The noncommutative space A 2j0
q with the function algebra

O(A 2j0
q ) := Khx; yi=(xy � q�1yx)

with q 2 K nf0g is called the (deformed) quantum plane. The noncommutative space

A
0j2
q with the function algebra

O(A 0j2
q ) := Kh�; �i=(�2 ; �2; �� + q��)

is called the dual (deformed) quantum plane. We have

A
2j0
q (A) =

��
x
y

���x; y 2 A;xy = q�1yx

�

and

A
0j2
q (A) =

��
�; �

����; � 2 A; �2 = 0; �2 = 0; �� = �q��
	
:
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De�nition 1.2.6. Let X be a noncommutative space with function algebra A
and let Xc be the restriction of the functor X : K-Alg �! Set to the category of
commutative algebras: Xc : K-cAlg �! Set. Then we call Xc the commutative part
of the noncommutative space X .

Lemma 1.2.7. The commutative part Xc of a noncommutative space X is an
a�ne variety.

Proof. The underlying functor A : K-cAlg �! K-Alg has a left adjoint functor
K-Alg 3 A 7! A=[A;A] 2 K-cAlg where [A;A] denotes the two-sided ideal of A
generated by the elements ab � ba. In fact for each homomorphism of algebras f :
A �! B with a commutative algebra B there is a factorization through A=[A;A] since
f vanishes on the elements ab� ba.

Hence if A = O(X ) is the function algebra of X then A=[A;A] is the representing
algebra for Xc.

Remark 1.2.8. For any commutative algebra (of coe�cients) B the spaces X
and Xc have the same B-points: X (B) = Xc(B). The two spaces di�er only for
noncommutative algebras of coe�cients. In particular for commutative �elds B as

algebras of coe�cients the quantum plane A
2j0
q has only B-points on the two axes

since the function algebra Khx; yi=(xy � q�1yx; xy� yx) �= K[x; y]=(xy) de�nes only
B-points (b1; b2) where at least one of the coe�cients is zero.

Problem 1.2.2. Let S3 be the symmetric group and A := K[S3] be the group
algebra on S3. Describe the points of X (B) = K-Alg(A;B) as a subspace of A 2(B).
What is Xc(B) and what is the a�ne algebra of Xc?

To understand how Hopf algebras �t into the context of noncommutative spaces
we have to better understand the tensor product in K-Alg.

De�nition 1.2.9. Let A = O(X ) and A0 = O(Y) be the function algebras of
the noncommutative spaces X resp. Y. Two B-points p : A �! B in X (B) and
p0 : A0 �! B in Y(B) are called commuting points if we have for all a 2 A and all
a0 2 A0

p(a)p0(a0) = p0(a0)p(a);

i.e. if the images of the two homomorphisms p and p0 commute.

Remark 1.2.10. To show that the points p and p0 commute, it is su�cient to
check that the images of the algebra generators p(x1); : : : ; p(xm) commute with the
images of the algebra generators p0(y1); : : : ; p0(yn) under the multiplication. This
means that we have

bib
0
j = b0jbi

for the B-points (b1; : : : ; bm) 2 X (B) and (b01; : : : ; b
0
n) 2 Y(B).
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De�nition 1.2.11. The functor

(X ? Y)(B) := f(p; p0) 2 X (B)� Y(B)jp; p0 commuteg

is called the orthogonal product of the noncommutative spaces X and Y.

Remark 1.2.12. Together with X and Y the orthogonal product X ? Y is again
a functor, since homomorphisms f : B �! B0 are compatible with the multiplication
and thus preserve commuting points. Hence X ? Y is a subfunctor of X � Y.

Lemma 1.2.13. If X and Y are noncommutative spaces, then X ? Y is a non-
commutative space with function algebra O(X ? Y) = O(X )
O(Y).

If X and Y have �nitely generated function algebras then the function algebra of
X ? Y is also �nitely generated.

Proof. Let A := O(X ) and A0 := O(Y). Let (p; p0) 2 (X ? Y)(B) be a pair of
commuting points. Then there is a unique homomorphism of algebras h : A
A0 �! B
such that the following diagram commutes

A A
A0-�

p
@
@
@
@@R
B:
?

h

A0��
0

p0
�
�
�
��	

De�ne h(a 
 a0) := p(a)p0(a0) and check the necessary properties. Observe that for
an arbitrary homomorphism of algebras h : A 
 A0 �! B the images of elements of
the form a
 1 and 1
 a0 commute since these elements already commute in A
A0.
Thus we have

(X ? Y)(B) �= K-Alg(A
A0; B):

If the algebra A is generated by the elements a1; : : : ; am and the algebra A0 is
generated by the elements a01; : : : ; a

0
n then the algebra A 
 A0 is generated by the

elements ai 
 1 and 1 
 a0j.

Proposition 1.2.14. The orthogonal product of noncommutative spaces is asso-
ciative, i.e. for noncommutative spaces X , Y, and Z we have

(X ? Y) ? Z �= X ? (Y ? Z):

Proof. Let B be a coe�cient algebra and let px 2 X (B), py 2 Y(B), and
pz 2 Z(B) be points such that ((px; py); pz) is a pair of commuting points in ((X ?
Y) ? Z)(B). In particular (px; py) is also a pair of commuting points. Thus we have
for all a 2 A := O(X ), a0 2 A0 := O(Y), and a00 2 A00 := O(Z)

px(a)py(a
0)pz(a

00) = (px; py)(a
 a0)pz(a
00) = pz(a

00)(px; py)(a
 a0) = pz(a
00)px(a)py(a

0)

and
px(a)py(a

0) = py(a
0)px(a):
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If we choose a = 1 then we get py(a0)pz(a00) = pz(a00)py(a0). For arbitrary a; a0; a00 we
then get

px(a)py(a
0)pz(a

00) = pz(a
00)px(a)py(a

0) = pz(a
00)py(a

0)px(a) = py(a
0)pz(a

00)px(a)

hence (py ; pz) and (px; (py; pz)) are also pairs of commuting points.

Problem 1.2.3. Show that the orthogonal product of quantum spaces X ? Y is
a tensor product for the category QS (in the sense of monoidal categories { if you
know already what that is).


