
CHAPTER 1

Commutative and Noncommutative Algebraic Geometry

Introduction

Throughout we will �x a base �eld K. The reader may consider it as real numbers
or complex numbers or any other of his most favorite �elds.

A fundamental and powerful tool for geometry is to associate with each space
X the algebra of functions O(X) from X to the base �eld (of coe�cients). The
dream of geometry is that this construction is bijective, i.e. that two di�erent spaces
are mapped to two di�erent function algebras and that each algebra is the function
algebra of some space.

Actually the spaces and the algebras will form a category. There are admissible
maps. For algebras it is quite clear what these maps will be. For spaces this is
less obvious, partly due to the fact that we did not say clearly what spaces exactly
are. Then the dream of geometry would be that these two categories, the category of
(certain) spaces and the category of (certain) algebras, are dual to each other.

Algebraic geometry, noncommutative geometry, and theoretical physics have as a
basis this fundamental idea, the duality of two categories, the category of spaces (state
spaces in physics) and the category of function algebras (algebras of observables) in
physics. We will present this duality in the 1. chapter. Certainly the type of spaces
as well as the type of algebras will have to be speci�ed.

Theoretical physics uses the categories of locally compact Hausdor� spaces and
of commutative C�-algebras. A famous theorem of Gelfand-Naimark says that these
categories are duals of each other.

(A�ne) algebraic geometry uses a duality between the categories of a�ne algebraic
schemes and of (reduced) �nitely generated commutative algebras.

To get the whole framework of algebraic geometry one needs to go to more gen-
eral spaces by patching a�ne spaces together. On the algebra side this amounts to
considering sheaves of commutative algebras. We shall not pursue this more general
approach to algebraic geometry, since generalizations to noncommutative geometry
are still in the state of development and incomplete.

Noncommutative geometry uses either (imaginary) noncommutative spaces and
not necessarily commutative algebras or (imaginary) noncommutative spaces and not
necessarily commutative C�-algebras.

We will take an approach to the duality between geometry and algebra that heavily
uses functorial tools, especially representable functors. The a�ne (algebraic) spaces
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2 1. COMMUTATIVE AND NONCOMMUTATIVE ALGEBRAIC GEOMETRY

we use will be given in the form of sets of common zeros of certain polynomials, where
the zeros can be taken in arbitrary (commutative) K-algebras B. So an a�ne space
will consist of many di�erent sets of zeros, depending on the choice of the coe�cient
algebra B.

We �rst give a short introduction to commutative algebraic geometry in this setup
and develop a duality between the category of a�ne (algebraic) spaces and the cate-
gory of (�nitely generated) commutative algebras.

Then we will transfer it to the noncommutative situation. The functorial approach
to algebraic geometry is not too often used but it lends itself particularly well to the
study of the noncommutative situation. Even in that situation one obtains space-like
objects.

The chapter will close with a �rst step to construct automorphism \groups" of
noncommutative spaces. Since the construction of inverses presents special problems
we will only construct endomorphism \monoids" in this chapter and postpone the
study of invertible endomorphisms or automorphisms to the next chapter.

At the end of the chapter you should

� know how to construct an a�ne scheme from a commutative algebra,
� know how to construct the function algebra of an a�ne scheme,
� know what a noncommutative space is and know examples of such,
� understand and be able to construct endomorphism quantum monoids of cer-
tain noncommutative spaces,

� understand, why endomorphism quantum monoids are not made out of endo-
morphisms of a noncommutative space.
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1. The Principles of Commutative Algebraic Geometry

We will begin with simplest form of (commutative) geometric spaces and see a
duality between these very simple \spaces" and certain commutative algebras. This
example will show how the concept of a function algebra can be used to ful�ll the
dream of geometry in this situation. It will also show the functorial methods that
will be applied throughout this text. It is a particularly simple example of a duality
as mentioned in the introduction. This example will not be used later on, so we will
only sketch the proofs for some of the statements.

Example 1.1.1. Consider a set of points without any additional geometric struc-
ture. So the geometric space is just a set. We introduce the notion of its algebra of
functions.

Let X be a set. Then KX := Map(X;K) is a K-algebra with componentwise
addition and multiplication: (f + g)(x) := f(x) + g(x) and (fg)(x) := f(x)g(x). We
study this fact in more detail.

The set KX considered as a vector space with the addition (f+g)(x) := f(x)+g(x)
and the scalar multiplication (�f)(x) := �f(x) de�nes a representable contravariant
functor

K
- : Set �! Vec:

This functor is a representable functor represented by K. In fact Kh : KY �! K
X is

a linear map for every map h : X �! Y since Kh(�f + �g)(x) = (�f + �g)(h(x)) =
�f(h(x))+�g(h(x)) = (�fh+�gh)(x) = (�Kh (f)+�Kh (g))(x) hence Kh(�f+�g) =
�Kh(f) + �Kh(g).

Consider the homomorphism � : KX 
KY �! KX�Y , de�ned by � (f 
 g)(x; y) :=
f(x)g(y). In order to obtain a unique homomorphism � de�ned on the tensor product
we have to show that � 0 : KX � K

Y �! K
X�Y is a bilinear map : � 0(f + f 0; g)(x; y) =

(f+f 0)(x)g(y) = (f(x)+f 0(x))g(y) = f(x)g(y)+f 0(x)g(y) = (� 0(f; g)+� 0(f 0; g))(x; y)
gives the additivity in the left hand argument. The additivity in the right hand
argument and the bilinearity is checked similarly. One can check that � is always
injective. If X or Y are �nite then � is bijective.

As a special example we obtain a multiplicationr : KX 
KX
�
�! KX�X

K
�

�! KX

where � : X �! X �X in Set is the diagonal map �(x) := (x; x). Furthermore we

get a unit � : Kf�g K
�

�! KX where � : X �! f�g is the unique map into the one element
set. One veri�es easily that (KX ; �;r) is a K-algebra. Two properties are essential
here, the associativity and the unit of K and the fact that (X;�; �) is a \comonoid"
in the category Set:

X �X X �X �X-
��1

X X �X-�

?

�

?

1��
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X X �X-�

?
� 1X

PPPPPPPPPPq ?
1��

X �X f�g �X �= X �= X � f�g:-
��1

Since K- is a functor these two diagrams carry over to the category Vec and produce
the required diagrams for a K-algebra.

For a map f : X �! Y we obtain a homomorphism of algebras Kf : KY �! KX

because the diagrams

KY 
 KY KY �Y-�

KX 
 KX KX�X
-�

KY
-K�

KX
-K

�?

Kf
Kf

?

K
f�f

?

K
f

and
Kf�g �= K

�

A
A
A
AAU

�

�
�
�
���

K
Y

K
X-K

f

commute.
Thus

K
- : Set �! K-cAlg

is a contravariant functor.
By the de�nition of the set-theoretic (cartesian) product we know that KX =Q

X K. This identity does not only hold on the set level, it holds also for the algebra
structures on KX resp.

Q
X K.

We now construct an inverse functor

Spec : K-cAlg �! Set:

For each point x 2 X there is a maximal ideal mx of
Q

X K de�ned by mx := ff 2
Map(X;K)jf (x) = 0g. If X is a �nite set then these are exactly all maximal ideals
of
Q

X
K. To show this we observe the following. The surjective homomorphism px :Q

X K �! K has kernel mx hence mx is a maximal ideal. If m �
Q

X K is a maximal
ideal and a = (�1; : : : ; �n) 2 m then for any �i 6= 0 we get (0; : : : ; 0; 1i; 0; : : : ; 0) =
(0; : : : ; 0; ��1i ; 0; : : : ; 0)(�1; : : : ; �n) 2 m hence the i-th factor 0 � : : :� K � : : :� 0
of
Q

X K is in m. So the elements a 2 m must have at least one common component
�j = 0 since m 6= K. But more than one such a component is impossible since we
would get zero divisors in the residue class algebra. Thus m = mx where x 2 X is
the j-th elements of the set.
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One can easily show more namely that the ideals mx are precisely all prime ideals
of Map(X;K).

With each commutative algebra A we can associate the set Spec(A) of all prime
ideals of A. That de�nes a functor Spec: K-Alg �! Set. Applied to algebras of the
form KX =

Q
X K with a �nite set X this functor recovers X as X �= Spec(KX ).

Thus the dream of geometry is satis�ed in this particular example.

The above example shows that we may hope to gain some information on the
space (set) X by knowing its algebra of functions KX and applying the functor Spec
to it. For �nite sets and certain algebras the functors K- and Spec actually de�ne a
category duality. We are going to expand this duality to larger categories.

We shall carry some geometric structure into the sets X and will study the con-
nection between these geometric spaces and their algebras of functions. For this
purpose we will describe sets of points by their coordinates. Examples are the circle
or the parabola. More generally the geometric spaces we are going to consider are
so called a�ne schemes described by polynomial equations. We will see that such
geometric spaces are completely described by their algebras of functions. Here the
Yoneda Lemma will play a central rôle.

We will, however, take a di�erent approach to functions algebras and geometric
spaces, than one does in algebraic geometry. We use the functorial approach, which
lends itself to an easier access to the principles of noncommutative geometry. We
will de�ne geometric spaces as certain functors from the category of commutative
algebras to the category of sets. These sets will have a strong geometrical meaning.
The functors will associate with each algebra A the set of points of a \geometric
variety", where the points have coordinates in the algebra A.

De�nition 1.1.2. The functor A = A 1 : K-cAlg �! Set (the underlying functor)
that associates with each commutativeK-algebra A its space (set) of points (elements)
A is called the a�ne line.

Lemma 1.1.3. The functor \a�ne line" is a representable functor.

Proof. By Lemma 2.3.5 the representing object is K[x]. Observe that it is unique
up to isomorphism.

De�nition 1.1.4. The functor A 2 : K-cAlg �! Set that associates with each
commutative algebra A the space (set) of points (elements) of the plane A2 is called
the a�ne plane.

Lemma 1.1.5. The functor \a�ne plane" is a representable functor.

Proof. Similar to Lemma 2.3.9 the representing object is K[x1; x2]. This algebra
is unique up to isomorphism.

Let p1(x1; : : : ; xn); : : : ; pm(x1; : : : ; xn) 2 K[x1; : : : ; xn] be a family of polynomials.
We want to consider the (geometric) variety of zeros of these polynomials. Observe
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that K may not contain su�ciently many zeros for these polynomials. Thus we are go-
ing to admit zeros in extension �elds of K or more generally in arbitrary commutative
K-algebras.

In the following rather simple buildup of commutative algebraic geometry, the
reader should carefully verify in which statements and proofs the commutativity is
really needed. Most of the following will be verbally generalized to not necessarily
commutative algebras.

De�nition 1.1.6. Given a set of polynomials fp1; : : : ; pmg � K[x1; : : : ; xn]. The
functor X that associates with each commutative algebra A the set X (A) of zeros of
the polynomials (pi) in An is called an a�ne algebraic variety or an a�ne scheme
(in A n ) with de�ning polynomials p1; : : : ; pm. The elements in X (A) are called the
A-points of X .

Theorem 1.1.7. The a�ne scheme X in A n with de�ning polynomials p1; : : : ; pm
is a representable functor with representing algebra

O(X ) := K[x1; : : : ; xn]=(p1; : : : ; pm);

called the a�ne algebra of the functor X .

Proof. First we show that the a�ne scheme X : K-cAlg �! Set with the
de�ning polynomials p1; : : : ; pm is a functor. Let f : A �! B be a homomorphism of
commutative algebras. The induced map fn : An �! Bn de�ned by application of f
on the components restricts to X (A) � An as X (f) : X (A) �! X (B). This map is
well-de�ned for let (a1; : : : ; an) 2 X (A) be a zero for all polynomials p1; : : : ; pm then
pi(f(a1); : : : ; f(an)) = f(pi(a1; : : : ; an)) = f(0) = 0 for all i hence fn(a1; : : : ; an) =
(f(a1); : : : ; f(an)) 2 Bn is a zero for all polynomials. Thus X (f) : X (A) �! X (B) is
well-de�ned. Functoriality of X is clear now.

Now we show that X is representable by O(X ) = K[x1; : : : ; xn]=(p1; : : : ; pm). Ob-
serve that (p1; : : : ; pm) denotes the (two-sided) ideal in K[x1; : : : ; xn] generated by the
polynomials p1; : : : ; pm. We know that each n-tupel (a1; : : : ; an) 2 An uniquely deter-
mines an algebra homomorphism f : K[x1; : : : ; xn] �! A by f(x1) = a1; : : : ; f(xn) =
an. (The polynomial ring K[x1; : : : ; xn] in K-cAlg is free over the set fx1; : : : ; xng,
or K[x1; : : : ; xn] together with the embedding � : fx1; : : : ; xng �! K[x1; : : : ; xn] is a
couniversal solution of the problem given by the underlying functor A : K-cAlg �!
Set and the set fx1; : : : ; xng 2 Set.) This homomorphism of algebras maps polyno-
mials p(x1; : : : ; xn) into f(p) = p(a1; : : : ; an). Hence (a1; : : : ; an) is a common zero
of the polynomials p1; : : : ; pm if and only if f(pi) = pi(a1; : : : ; an) = 0, i.e. p1; : : : ; pm
are in the kernel of f . This happens if and only if f vanishes on the ideal (p1; : : : ; pm)
or in other word can be factorized through the residue class map

� : K[x1; : : : ; xn] �! K[x1; : : : ; xn]=(p1; : : : ; pm)

This induces a bijection

MorK-cAlg(K[x1; : : : ; xn]=(p1; : : : ; pm); A) 3 f 7! (f(x1); : : : ; f(xn)) 2 X (A):
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Now it is easy to see that this bijection is a natural isomorphism (in A).

If no polynomials are given for the above construction, then the functor under this
construction is the a�ne space A n of dimension n. By giving polynomials the functor
X becomes a subfunctor of A n , because it de�nes subsets X (A) � A n(A) = An. Both
functors are representable functors. The embedding is induced by the homomorphism
of algebras � : K[x1; : : : ; xn] �! K[x1; : : : ; xn]=(p1; : : : ; pm).

Problem 1.1.1. 1. Determine the a�ne algebra of the functor \unit circle"
S1 in A 2 .

2. Determine the a�ne algebra of the functor \unit sphere" Sn�1 in A n .
3. Let X denote the plane curve y = x2. Then X is isomorphic to the a�ne line.
4. Let Y denote the plane curve xy = 1. Then Y is not isomorphic to the a�ne

line. (Hint: An isomorphism K[x; x�1] �! K[y] sends x to a polynomial p(y)
which must be invertible. Consider the highest coe�cient of p(y) and show
that p(y) 2 K. But that means that the map cannot be bijective.)

5. Let K = C be the �eld of complex numbers. Show that the unit functor
U : K-cAlg �! Set in Lemma 2.3.7 is naturally isomorphic to the unit circle
functor S1. (Hint: There is an algebra isomorphism between the representing
algebras K[e; e�1] and K[c; s]=(c2 + s2 � 1).)

6. � Let K be an algebraically closed �eld. Let p be an irreducible square polyno-
mial in K[x; y]. Let Z be the conic section de�ned by p with the a�ne algebra
K[x; y]=(p). Show that Z is naturally isomorphic either to X or to Y from
parts 3. resp. 4.

Remark 1.1.8. A�ne algebras of a�ne schemes are �nitely generated commu-
tative algebras and any such algebra is an a�ne algebra of some a�ne scheme, since
A �= K[x1; : : : ; xn]=(p1; : : : ; pm) (Hilbert basis theorem).

The polynomials p1; : : : ; pm are not uniquely determined by the a�ne algebra of
an a�ne scheme. Not even the ideal generated by the polynomials in the polynomial
ring K[x1; : : : ; xn] is uniquely determined. Also the number of variables x1; : : : ; xn is
not uniquely determined.

The K-points (�1; : : : ; �n) 2 X (K) of an a�ne scheme X (with coe�cients in the
base �eld K) are called rational points. They do not su�ce to completely describe
the a�ne scheme.

Let for example K = R the set of rational numbers. If X and Y are a�ne
schemes with a�ne algebras O(X ) := K[x; y]=(x2+y2+1) and O(Y) := K[x]=(x2+1)
then both schemes have no rational points. The scheme Y, however, has exactly
two complex points (with coe�cients in the �eld C of complex numbers) and the
scheme X has in�nitely many complex points, hence X (C ) 6�= Y(C ). This does not
result from the embeddings into di�erent spaces A 2 resp. A 1. In fact we also have
O(Y) = K[x]=(x2+1) �= K[x; y]=(x2+1; y), so Y can be considered as an a�ne scheme
in A 2 .
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Since each a�ne scheme X is isomorphic to the functor MorK-cAlg(O(X ); -) we
will henceforth identify these two functors, thus removing annoying isomorphisms.

De�nition 1.1.9. Let K -A� denote the category of all commutative �nitely
generated (or a�ne cf. 1.1.8) K-algebras. An a�ne algebraic variety is a representable
functor K -A� (A; -) : K -A� �! Set. The a�ne algebraic varieties together with the
natural transformations form the category of a�ne algebraic varieties Var(K) over
K. The functor that associates with each a�ne algebra A its a�ne algebraic variety
represented by A is denoted by Spec : K -A� �! Var(K), Spec(A) = K- -A�(A; -).

By the Yoneda Lemma the functor

Spec : K -A� �! Var(K)

is an antiequivalence (or duality) of categories with inverse functor

O : Var(K) �! K -A� :

An a�ne algebraic variety is completely described by its a�ne algebra O(X ). Thus
the dream of geometry is realized.

Arbitrary (not necessarily �nitely generated) commutative algebras also de�ne
representable functors (de�ned on the category of all commutative algebras). Thus we
also have \in�nite dimensional" varieties which we will call geometric spaces or a�ne
varieties. We denote their category by Geom(K) and get a commutative diagram

K-cAlg Geom(K)-
�=o

K -A� Var(K)-Spec

? ?

We call the representable functors X : K-cAlg �! Set geometric spaces or a�ne
varieties, and the representable functors X : K -A� �! Set a�ne schemes or a�ne
algebraic varieties. This is another realization of the dream of geometry.

The geometric spaces can be viewed as sets of zeros in arbitrary commutative
K-algebras B of arbitrarily many polynomials with arbitrarily many variables. The
function algebra of X will be called the a�ne algebra of X in both cases.

Example 1.1.10. A somewhat less trivial example is the state space of a circular
pendulum (of length 1). The location is in L = f(a; b) 2 A2ja2 + b2 = 1g, the
momentum is inM = fp 2 Ag which is a straight line. So the whole geometric space
for the pendulum is (L�M)(A) = f(a; b; p)ja; b; p 2 A; a2 + b2 = 1g. This geometric
space is represented by K[x; y; z]=(x2 + y2 � 1) since

(L�M)(A) = f(a; b; p)ja; b; p 2 A; a2+b2 = 1g �= K-cAlg(K[x; y; z]=(x2+y2�1); A):

The two antiequivalences of categories above give rise to the question for the func-
tion algebra. If a representable functor X = K-cAlg(A; -) is viewed as geometric sets
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of zeros of certain polynomials, i.e. as spaces with coordinates in arbitrary commuta-
tive algebras B, (plus functorial behavior), then it is not clear why the representing
algebra A should be anything like an algebra of functions on these geometric sets. It
is not even clear where these functions should assume their values. Only if we can
show that A can be viewed as a reasonable algebra of functions, we should talk about
a realization of the dream of geometry. But this will be done in the following theo-
rem. We will consider functions as maps (coordinate functions) from the geometric
set X (B) to the set of coordinates B, maps that are natural in B. Such coordinate
functions are just natural transformations from X to the underlying functor A .

Theorem 1.1.11. Let X be a geometric space with the a�ne algebra A = O(X ).
Then A �= Nat(X ; A ) as K-algebras, where A : K-cAlg �! Set is the underlying func-
tor or a�ne line. The isomorphism A �= Nat(X ; A ) induces a natural transformation
A�X (B) �! B (natural in B).

Proof. First we de�ne an isomorphism between the sets A and Nat(X ; A ).
Because of X = MorK-cAlg(A; -) =: K-cAlg(A; -) and A = MorK-cAlg(K[x]; -) =:
K-cAlg(K[x]; -) the Yoneda Lemma gives us

Nat(X ; A ) = Nat(K-cAlg(A; -);K-cAlg(K[x]; -)) �= K-cAlg(K[x]; A) = A (A) �= A

on the set level. Let � : A �! Nat(X ; A ) denote the given isomorphism. � is
de�ned by �(a)(B)(p)(x) := p(a). By the Yoneda Lemma its inverse is given by
��1(� := �((A)(1)(x).

Nat(X ; A ) carries an algebra structure given by the algebra structure of the coef-
�cients. For a coe�cient algebra B, a B-point p : A �! B in X (B) = K-Alg(A;B),
and �; � 2 Nat(X ; A ) we have �(B)(p) 2 A (B) = B. Hence (� + �)(B)(p) :=
(�(B) + �(B))(p) = �(B)(p) + �(B)(p) and (� � �)(B)(p) := (�(B) � �(B))(p) =
�(B)(p) � �(B)(p) make Nat(X ; A ) an algebra.

Let a be an arbitrary element in A. By the isomorphism given above this ele-
ment induces an algebra homomorphism ga : K[x] �! A mapping x onto a. This
algebra homomorphism induces the natural transformation �(a) : X �! A . On

the B-level it is just the composition with ga, i.e. �(a)(B)(p) = (K[x]
ga
�! A

p
�!

B). Since such a homomorphism is completely described by the image of x we
get �(a)(B)(p)(x) = p(a). To compare the algebra structures of A and Nat(X ; A )
let a; a0 2 A. We have �(a)(B)(p)(x) = p(a) and �(a0)(B)(p)(x) = p(a0), hence
�(a + a0)(B)(p)(x) = p(a + a0) = p(a) + p(a0) = �(a)(B)(p)(x) + �(a0)(B)(p)(x) =
(�(a)(B)(p)+�(a0)(B)(p))(x) = (�(a)(B)+�(a0)(B))(p)(x) = (�(a)+�(a0))(B)(p)(x).
Analogously we get �(aa0)(B)(p)(x) = p(aa0) = p(a)p(a0) = (�(a) � �(a0))(B)(p)(x),
and thus �(a + a0) = �(a) + �(a0) and �(aa0) = �(a) � �(a0). Hence addition and
multiplication in Nat(X ; A ) are de�ned by the addition and the multiplication of the
values p(a) + p(a0) resp. p(a)p(a0).

We describe the action  (B) : A � X (B) �! B of A on X (B). Let p : A �! B
be a B-point in K-cAlg(A;B) = X (B). For each a 2 A the image �(a) : X �! A
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is a natural transformation hence we have maps  (B) : A � X (B) �! B such that
 (B)(a; p) = p(a). Finally each homomorphism of algebras f : B �! B0 induces a
commutative diagram

A�X (B0) B0-
 (B0)

A�X (B) B- (B)

?

A�X (f)

?

f

Thus  (B) : A�X (B) �! B is a natural transformation.

Remark 1.1.12. Observe that the isomorphism A �= Nat(X ; A ) induces a natu-
ral transformation A�X (B) �! B (natural in B). In particular the a�ne algebra A
can be viewed as the set of functions from the set of B-points X (B) into the \base"
ring B (functions which are natural in B). In this sense the algebra A may be consid-
ered as function algebra of the geometric space X . Thus we will call A the function
algebra of X .

One can show that the algebra A is universal with respect to the property, that
for each commutative algebra D and each natural transformation � : D � X (-) �! -
there is a unique homomorphism of algebras f : D �! A, such that the triangle

A�X (B) B-
 (B)

�(B)

@
@
@
@@R

D �X (B)

?

f�1X (B)

commutes. We will show this result later on for noncommutative algebras. The
universal property implies that the function algebra A of an geometric space X is
unique up to isomorphism.

Let X be an geometric space with function algebra A = O(X ). If p : A �! K

is a rational point of X , i.e. a homomorphism of algebras, then Im(p) = K hence
Ker(p) is a maximal ideal of A of codimension 1. Conversely let m be a maximal
ideal of A of codimension 1 then this de�nes a rational point p : A �! A=m �= K. If
K is algebraicly closed and m an arbitrary maximal ideal of A, then A=m is a �nitely
generated K-algebra and a �eld extension of K, hence it coincides with K. Thus the
codimension of m is 1. The set of maximal ideals of A is called the maximal spectrum
Specm(A). This is the approach of algebraic geometry to recover the geometric space
of (rational) points from the function algebra A. We will not follow this approach
since it does not easily extend to noncommutative geometry.

Problem 1.1.2. Let X be an a�ne scheme with a�ne algebra

A = K[x1; : : : ; xn]=(p1; : : : ; pm):
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De�ne \coordinate functions" qi : X (B) �! B which describe the coordinates of
B-points and identify these coordinate functions with elements of A.

Now we will study morphisms between geometric spaces.

Theorem 1.1.13. Let X � A r and Y � A s be a�ne algebraic varieties and let
� : X �! Y be a natural transformation. Then there are polynomials

p1(x1; : : : ; xr); : : : ; ps(x1; : : : ; xr) 2 K[x1; : : : ; xr];

such that
�(A)(a1; : : : ; ar) = (p1(a1; : : : ; ar); : : : ; ps(a1; : : : ; ar));

for all A 2 K -A� and all (a1; : : : ; ar) 2 X (A), i.e. the morphisms between a�ne
algebraic varieties are of polynomial type.

Proof. Let O(X ) = K[x1; : : : ; xr]=I and O(Y) = K[y1; : : : ; ys]=J . For A 2
K-Alg and (a1; : : : ; ar) 2 X (A) let f : K[x1; : : : ; xr]=I �! A with f(xi) = ai be
the homomorphism obtained from X (A) �= K-Alg(K[x1; : : : ; xr]=I;A). The natural
transformation � is given by composition with a homomorphism g : K[y1; : : : ; ys]=J �!
K[x1; : : : ; xr]=I hence we get

�(A) : K-cAlg(K[x1; : : : ; xr]=I;A) 3 f 7! fg 2 K-cAlg(K[y1 ; : : : ; ys]=J;A):

Since g is described by g(yi) = pi(x1; : : : ; xr) 2 K[x1; : : : ; xr] we get

�(A)(a1; : : : ; as) = (fg(y1); : : : ; fg(ys))
= (f(p1(x1; : : : ; xr)); : : : ; f(ps(x1; : : : ; xr)))
= (p1(a1; : : : ; ar); : : : ; ps(a1; : : : ; ar)):

An analogous statement holds for geometric spaces.

Example 1.1.14. The isomorphism between the a�ne line (1.1.2) and the para-
bola is given by the isomorphism f : K[x; y]=(y � x2) �! K[z], f(x) = z, f(y) = z2

that has the inverse function f�1(z) = x. On the a�ne schemes A , the a�ne line,
and P, the parabola, the induced map is f : A (A) 3 a 7! (a; a2) 2 P(A) resp.
f�1 : P(A) 3 (a; b) 7! a 2 A (A).
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2. Quantum Spaces and Noncommutative Geometry

Now we come to noncommutative geometric spaces and their function algebras.
Many of the basic principles of commutative algebraic geometry as introduced in 1.1
carry over to noncommutative geometry. Our main aim, however, is to study the
symmetries (automorphisms) of noncommutative spaces which lead to the notion of
a quantum group.

Since the construction of noncommutative geometric spaces has deep applications
in theoretical physics we will also call these spaces quantum spaces.

De�nition 1.2.1. Let A be a (not necessarily commutative) K-algebra. Then
the functor X := K-Alg(A; -) : K-Alg �! Set represented by A is called (a�ne)
noncommutative (geometric) space or quantum space. The elements of K-Alg(A;B)
are called B-points of X . A morphism of noncommutative spaces f : X �! Y is a
natural transformation.

This de�nition implies immediately

Corollary 1.2.2. The noncommutative spaces form a category QS that is dual
to the category of K-algebras.

Remark 1.2.3. Thus one often calls the dual category K-Algop category of non-
commutative spaces.

If A is a �nitely generated algebra then it may be considered as a residue class
algebra A �= Khx1 ; : : : ; xni=I of a polynomial algebra in noncommuting variables (cf.
A.6). If I = (p1(x1; : : : ; xn); : : : ; pm(x1; : : : ; xn)) is the two-sided ideal generated
by the polynomials p1; : : : ; pm then the sets K-Alg(A;B) can be considered as sets
of zeros of these polynomials in Bn. In fact, we have K-Alg(Khx1; : : : ; xni; B) �=
Map(fx1; : : : ; xng; B) = Bn. Thus K-Alg(A;B) can be considered as the set of those
homomorphisms of algebras from Khx1; : : : ; xni to B that vanish on the ideal I or as
the set of zeros of these polynomials in Bn.

Similar to Theorem 1.1.13 one shows also in the noncommutative case that mor-
phisms between noncommutative spaces are described by polynomials.

The Theorem 1.1.11 on the operation of the a�ne algebra A = O(X ) on X as
function algebra can be carried over to the noncommutative case as well: the natural
transformation  (B) : A�X (B) �! B (natural in B) is given by  (B)(a; p) := p(a)
and comes from the isomorphism A �= Nat(X ; A ).

Now we come to a claim on the function algebra A that we did not prove in the
commutative case, but that holds in the commutative as well as in the noncommuta-
tive situation.
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Lemma 1.2.4. Let D be a set and � : D � X (-) �! A (-) be a natural transfor-
mation. Then there exists a unique map f : D �! A such that the diagram

A�X (B) B-
 (B)

D �X (B)

?
f�1 �(B)

PPPPPPq

commutes.

Proof. Let � : D�X �! A be given. We �rst de�ne a map f 0 : D �! Nat(X ; A )
by f 0(d)(B)(p) := �(B)(d; p).

We claim that f 0(d) : X �! A is a natural transformation. Observe that the
diagram

D �X (B0) A (B0) = B0-
�(B0)

D �X (B) A (B) = B-�(B)

?

D �X (g)

?

g

commutes for any g : B �! B0, since � is a natural transformation. Thus the diagram

X (B0) A (B0) = B0-
f 0(d)(B0)

X (B) A (B) = B-f 0(d)(B)

?

X (g)

?

g

commutes since

(g � f 0(d)(B))(p) = (g � �(B))(d; p)
= �(B0) � (1�X (g))(d; p)
= �(B0)(d;X (g)(p))
= f 0(d)(B0)(X (g)(p)):

Hence f 0(d) 2 Nat(X; A ) and f 0 : D �! Nat(X ; A ).

Now we de�ne f : D �! A as D
f 0

�! Nat(X ; A ) �= A. By using the isomorphism
from 1.1.11 we get f(d) = f 0(d)(A)(1). (Actually we get f(d) = f 0(d)(A)(1)(x) but
we identify A (B) and B by A (B) 3 p 7! p(x) 2 B.)
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Then we get

 (B)(f � 1)(d; p) =  (B)(f(d); p)
=  (B)(f 0(d)(A)(1)(x); p) (by de�nition of f)
= p � f 0(d)(A)(1) (since we may omit x)
= p � �(A)(d; 1) (by de�nition of f 0)
= �(B)(D �X (p))(d; 1) (since � is a natural transformation)
= �(B)(d; p):

Hence the diagram in the Lemma commutes.
To show the uniqueness of f let g : D �! A be a homomorphism such that

 (B)(g � 1) = �(B). Then we have

f(d) = f 0(d)(A)(1) = �(A)(d; 1) =  (A)(g�1)(d; 1) =  (A)(f(d); 1) = 1�g(d) = g(d)

hence f = g.

Problem 1.2.3. De�nition: Let D be an algebra. A natural transformation
� : D � X �! A is called an algebra action if �(B)(-; p) : D �! A (B) = B is an
algebra homomorphism for all B and all p 2 X (B).

Lemma: The natural transformation  : A�X �! A is an algebra action.
Theorem: Let D be an algebra and � : D �X (-) �! A (-) be an algebra action.

Then there exists a unique algebra homomorphism f : D �! A such that the diagram

A�X (B) B-
 (B)

�(B)

@
@
@
@@R

D �X (B)

?

f�1

commutes.

De�nition 1.2.5. The noncommutative space A 2j0
q with the function algebra

O(A 2j0
q ) := Khx; yi=(xy � q�1yx)

with q 2 K nf0g is called the (deformed) quantum plane. The noncommutative space

A
0j2
q with the function algebra

O(A 0j2
q ) := Kh�; �i=(�2 ; �2; �� + q��)

is called the dual (deformed) quantum plane. We have

A
2j0
q (A) =

��
x
y

���x; y 2 A;xy = q�1yx

�

and

A
0j2
q (A) =

��
�; �

����; � 2 A; �2 = 0; �2 = 0; �� = �q��
	
:
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De�nition 1.2.6. Let X be a noncommutative space with function algebra A
and let Xc be the restriction of the functor X : K-Alg �! Set to the category of
commutative algebras: Xc : K-cAlg �! Set. Then we call Xc the commutative part
of the noncommutative space X .

Lemma 1.2.7. The commutative part Xc of a noncommutative space X is an
a�ne variety.

Proof. The underlying functor A : K-cAlg �! K-Alg has a left adjoint functor
K-Alg 3 A 7! A=[A;A] 2 K-cAlg where [A;A] denotes the two-sided ideal of A
generated by the elements ab � ba. In fact for each homomorphism of algebras f :
A �! B with a commutative algebra B there is a factorization through A=[A;A] since
f vanishes on the elements ab� ba.

Hence if A = O(X ) is the function algebra of X then A=[A;A] is the representing
algebra for Xc.

Remark 1.2.8. For any commutative algebra (of coe�cients) B the spaces X
and Xc have the same B-points: X (B) = Xc(B). The two spaces di�er only for
noncommutative algebras of coe�cients. In particular for commutative �elds B as

algebras of coe�cients the quantum plane A
2j0
q has only B-points on the two axes

since the function algebra Khx; yi=(xy � q�1yx; xy� yx) �= K[x; y]=(xy) de�nes only
B-points (b1; b2) where at least one of the coe�cients is zero.

Problem 1.2.4. Let S3 be the symmetric group and A := K[S3] be the group
algebra on S3. Describe the points of X (B) = K-Alg(A;B) as a subspace of A 2(B).
What is Xc(B) and what is the a�ne algebra of Xc?

To understand how Hopf algebras �t into the context of noncommutative spaces
we have to better understand the tensor product in K-Alg.

De�nition 1.2.9. Let A = O(X ) and A0 = O(Y) be the function algebras of
the noncommutative spaces X resp. Y. Two B-points p : A �! B in X (B) and
p0 : A0 �! B in Y(B) are called commuting points if we have for all a 2 A and all
a0 2 A0

p(a)p0(a0) = p0(a0)p(a);

i.e. if the images of the two homomorphisms p and p0 commute.

Remark 1.2.10. To show that the points p and p0 commute, it is su�cient to
check that the images of the algebra generators p(x1); : : : ; p(xm) commute with the
images of the algebra generators p0(y1); : : : ; p0(yn) under the multiplication. This
means that we have

bib
0
j = b0jbi

for the B-points (b1; : : : ; bm) 2 X (B) and (b01; : : : ; b
0
n) 2 Y(B).
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De�nition 1.2.11. The functor

(X ? Y)(B) := f(p; p0) 2 X (B)� Y(B)jp; p0 commuteg

is called the orthogonal product of the noncommutative spaces X and Y.

Remark 1.2.12. Together with X and Y the orthogonal product X ? Y is again
a functor, since homomorphisms f : B �! B0 are compatible with the multiplication
and thus preserve commuting points. Hence X ? Y is a subfunctor of X � Y.

Lemma 1.2.13. If X and Y are noncommutative spaces, then X ? Y is a non-
commutative space with function algebra O(X ? Y) = O(X )
O(Y).

If X and Y have �nitely generated function algebras then the function algebra of
X ? Y is also �nitely generated.

Proof. Let A := O(X ) and A0 := O(Y). Let (p; p0) 2 (X ? Y)(B) be a pair of
commuting points. Then there is a unique homomorphism of algebras h : A
A0 �! B
such that the following diagram commutes

A A
A0-�

p
@
@
@
@@R
B:
?

h

A0��
0

p0
�

�
�

��	

De�ne h(a 
 a0) := p(a)p0(a0) and check the necessary properties. Observe that for
an arbitrary homomorphism of algebras h : A 
 A0 �! B the images of elements of
the form a
 1 and 1
 a0 commute since these elements already commute in A
A0.
Thus we have

(X ? Y)(B) �= K-Alg(A
A0; B):

If the algebra A is generated by the elements a1; : : : ; am and the algebra A0 is
generated by the elements a01; : : : ; a

0
n then the algebra A 
 A0 is generated by the

elements ai 
 1 and 1 
 a0j.

Proposition 1.2.14. The orthogonal product of noncommutative spaces is asso-
ciative, i.e. for noncommutative spaces X , Y, and Z we have

(X ? Y) ? Z �= X ? (Y ? Z):

Proof. Let B be a coe�cient algebra and let px 2 X (B), py 2 Y(B), and
pz 2 Z(B) be points such that ((px; py); pz) is a pair of commuting points in ((X ?
Y) ? Z)(B). In particular (px; py) is also a pair of commuting points. Thus we have
for all a 2 A := O(X ), a0 2 A0 := O(Y), and a00 2 A00 := O(Z)

px(a)py(a
0)pz(a

00) = (px; py)(a
 a0)pz(a
00) = pz(a

00)(px; py)(a
 a0) = pz(a
00)px(a)py(a

0)

and
px(a)py(a

0) = py(a
0)px(a):
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If we choose a = 1 then we get py(a0)pz(a00) = pz(a00)py(a0). For arbitrary a; a0; a00 we
then get

px(a)py(a
0)pz(a

00) = pz(a
00)px(a)py(a

0) = pz(a
00)py(a

0)px(a) = py(a
0)pz(a

00)px(a)

hence (py ; pz) and (px; (py; pz)) are also pairs of commuting points.

Problem 1.2.5. Show that the orthogonal product of quantum spaces X ? Y is
a tensor product for the category QS (in the sense of monoidal categories { if you
know already what that is).
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3. Quantum Monoids and their Actions on Quantum Spaces

We use the orthogonal product introduced in the previous section as \product"
to de�ne the notion of a monoid (some may call it an algebra w.r.t. the orthogonal
product). Observe that on the geometric level the orthogonal product consists only
of commuting points. So whenever we de�ne a morphism on the geometric side with
domain an orthogonal product of quantum spaces f : X ? Y �! Z then we only have
to de�ne what happens to commuting pairs of points. That makes it much easier to
de�ne such morphisms for noncommutative coordinate algebras.

We are going to de�ne monoids in this sense and study their actions on quantum
spaces.

Let E be the functor represented by K. It maps each algebraH to the one-element
set f� : K �! Hg.

De�nition 1.3.1. Let M be a noncommutative space and let

m :M?M�!M and e : E �!M

be morphisms in QS such that the diagrams

M?M M-
m

M?M?M M?M-m ? 1

?

1 ? m

?

m

and

E ?M �=M�=M? E M?M-id?�

?

�?id

?

r

M?M M-
r

1M

HHHHHHHHHj

commute. Then (M;m; e) is called a quantum monoid.

Proposition 1.3.2. Let M be a noncommutative space with function algebra H.
Then H is a bialgebra if and only if M is a quantum monoid.

Proof. Since the functors M ? M, M ? E and E ? M are represented by
H 
H resp. H 
 K �= H resp. K 
H �= H the Yoneda Lemma de�nes a bijection
between the morphisms m : M ? M �! M and the algebra homomorphisms � :
H �! H 
H and similarly a bijection between the morphisms e : E �!M and the
algebra homomorphisms " : H �! K. Again by the Yoneda Lemma the bialgebra
diagrams in K-Alg commute if and only if the corresponding diagrams for a quantum
monoid commute.
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Observe that a similar result cannot be formulated for Hopf algebras H since
neither the antipode S nor the multiplicationr : H
H �! H are algebra homomor-
phisms. In contrast to a�ne algebraic groups (2.3.2) Hopf algebras in the category
K-Algop �= QR are not groups. Nevertheless, one de�nes

De�nition 1.3.3. A functor de�ned on the category of K-algebras and repre-
sented by a Hopf algebra H is called a quantum group.

De�nition 1.3.4. Let X be a noncommutative space and let M be a quantum
monoid. A morphism (a natural transformation) of quantum spaces � :M? X �! X
is called an operation of M on X if the diagrams

M? X X-
�

M?M? X M ? X-m ? 1

?

1 ? �

?

�

and
X �= E ? X M ? X-�?id

X
?

�idX

HHHHHHHHHj

commute. We call X a noncommutativeM-space.

Proposition 1.3.5. Let X be a noncommutative space with function algebra A =
O(X ). Let M be a quantum monoid with function algebra B = O(M). Let � :
M ? X �! X be a morphism in QS and let f : A �! B 
 A be the associated
homomorphism of algebras. Then the following are equivalent

1. (X ;M; �) is an operation of the quantum monoid M on the noncommutative
space X ;

2. (A;H; f) de�ne an H-comodule algebra.

Proof. The homomorphisms of algebras � 
 1A, 1B 
 f , � 
 1A etc. represent
the morphisms of quantum spaces m ? id, id ? �, � ? id etc. Hence the required
diagrams are transferred by the Yoneda Lemma.

Example 1.3.6. 1. The quantum monoid of \quantum matrices":
We consider the algebra

Mq(2) := Kha; b; c; di=I = K

�
a b
c d

�
=I

where the two-sided ideal I is generated by the elements

ab� q�1ba; ac� q�1ca; bd� q�1db; cd� q�1dc; ad� da� (q�1 � q)bc; bc� cb:
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The quantum space Mq(2) associated with the algebra Mq(2) is given by

Mq(2)(A)= K-Alg(Mq(2); A)

=

��
a0 b0

c0 d0

�
ja0; b0; c0; d0 2 A; a0b0 = q�1b0a0; : : : ; b0c0 = c0b0

�

where each homomorphism of algebras f :Mq(2) �! A is described by the quadruple
(a0; b0; c0; d0) of images of the algebra generators a; b; c; d. The images must satisfy the
same relations that generate the two-sided ideal I hence

a0b0 = q�1b0a0; a0c0 = q�1c0a0; b0d0 = q�1d0b0; c0d0 = q�1d0c0;
b0c0 = c0b0; a0d0 � q�1b0c0 = d0a0 � qc0b0:

We write these quadruples as 2 � 2-matrices and call them quantum matrices. The
unusual commutation relations are chosen so that the following examples work.

The quantum space of quantum matrices turns out to be a quantum monoid. We
give both the algebraic (with function algebras) and the geometric (with quantum
spaces) approach to de�ne the multiplication.

a) The algebraic approach:
The algebra Mq(2) is a bialgebra with the diagonal

�

�
a b
c d

�
=

�
a b
c d

�



�
a b
c d

�
;

i.e. by �(a) = a 
 a + b 
 c, �(b) = a 
 b + b 
 d, �(c) = c 
 a + d 
 c and
�(d) = c
 b+ d 
 d, and with the counit

"

�
a b
c d

�
=

�
1 0
0 1

�
;

i.e. "(a) = 1, "(b) = 0, "(c) = 0, and "(d) = 1. We have to prove that � and " are
homomorphisms of algebras and that the coalgebra laws are satis�ed. To obtain a
homomorphism of algebras � :Mq(2) �!Mq(2)
Mq(2) we de�ne � : Kha; b; c; di �!
Mq(2) 
Mq(2) on the free algebra (the polynomial ring in noncommuting variables)
Kha; b; c; di generated by the set fa; b; c; dg and show that it vanishes on the ideal
I or more simply on the generators of the ideal. Then it factors through a unique
homomorphism of algebras � :Mq(2) �!Mq(2)
Mq(2). We check this only for one
generator of the ideal I:

�(ab� q�1ba) = �(a)�(b)� q�1�(b)�(a) =
= (a
 a+ b
 c)(a
 b+ b
 d) � q�1(a
 b+ b
 d)(a
 a+ b
 c)
= aa
 ab+ ab
 ad+ ba
 cb+ bb
 cd� q�1(aa
 ba+ ab
 bc+ ba
 da+ bb
 dc)
= aa
 (ab� q�1ba) + ab
 (ad� q�1bc) + ba
 (cb� q�1da) + bb
 (cd� q�1dc)
= ba
 (q�1ad� q�2bc+ cb� q�1da) � 0 mod (I):

The reader should check the other identities.
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The coassociativity follows from

(�
 1)�

�
a b
c d

�
= �

�
a b
c d

�



�
a b
c d

�
= (

�
a b
c d

�



�
a b
c d

�
)


�
a b
c d

�
=

=

�
a b
c d

�

 (

�
a b
c d

�



�
a b
c d

�
) =

�
a b
c d

�

�

�
a b
c d

�
= (1
�)�

�
a b
c d

�
:

The reader should check the properties of the counit.
b) The geometric approach:
Mq(2) has a rather remarkable (and actually well known) comultiplication that is

better understood by using the induced multiplication of commuting points. Given

two commuting quantum matrices

�
a1 b1
c1 d1

�
and

�
a2 b2
c2 d2

�
inMq(2)(A). Then their

matrix product �
a1 b1
c1 d1

��
a2 b2
c2 d2

�
=

�
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

�

is again a quantum matrix. To prove this we only check one of the relations

(a1a2 + b1c2)(a1b2 + b1d2) = a1a2a1b2 + a1a2b1d2 + b1c2a1b2 + b1c2b1d2
= a1a1a2b2 + a1b1a2d2 + b1a1c2b2 + b1b1c2d2
= q�1a1a1b2a2 + q�1b1a1(d2a2 + (q�1 � q)b2c2) + b1a1b2c2 + q�1b1b1d2c2
= q�1(a1a1b2a2 + a1b1b2c2 + b1a1d2a2 + b1b1d2c2)
= q�1(a1b2a1a2 + a1b2b1c2 + b1d2a1a2 + b1d2b1c2)
= q�1(a1b2 + b1d2)(a1a2 + b1c2)

We have used that the two points are commuting points. This multiplication obviously
is a natural transformation Mq(2) ? Mq(2)(A) �! Mq(2)(A) (natural in A). It is

associative and has unit

�
1 0
0 1

�
. For the associativity observe that by 1.2.14

((

�
a1 b1
c1 d1

�
;

�
a2 b2
c2 d2

�
);

�
a3 b3
c3 d3

�
)

is a pair of commuting points if and only if

(

�
a1 b1
c1 d1

�
; (

�
a2 b2
c2 d2

�
;

�
a3 b3
c3 d3

�
))

is a pair of commuting points.

Since

�
1 0
0 1

��
a b
c d

�
=

�
a b
c d

�
=

�
a b
c d

��
1 0
0 1

�
for all quantum matrices�

a b
c d

�
2 Mq(2)(B) we see that Mq(2) is a quantum monoid.

It remains to show that the multiplication of Mq(2) and the comultiplication of
Mq(2) correspond to each other by the Yoneda Lemma. The identity morphism of
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Mq(2) 
Mq(2) is given by the pair of commuting points

(�1; �2) 2 Mq(2) ?Mq(2)(Mq(2)
Mq(2)) = K-Alg(Mq(2)
Mq(2);Mq(2)
Mq(2)):

Since �1 =

�
a b
c d

�

 1 =

�
a
 1 b
 1
c 
 1 d
 1

�
and �2 = 1 


�
a b
c d

�
=

�
1 
 a 1
 b
1
 c 1
 d

�

we have id = (�1; �2) = (

�
a b
c d

�

 1; 1 


�
a b
c d

�
). The Yoneda Lemma de�nes the

diagonal as the image of the identity under K-Alg(Mq(2)
Mq(2);Mq(2)
Mq(2)) �!

K-Alg(Mq(2);Mq(2)
Mq(2)) by the multiplication. So �(

�
a b
c d

�
) = � = �1 � �2 =

(

�
a b
c d

�

 1) � (1


�
a b
c d

�
) =

�
a b
c d

�



�
a b
c d

�
.

Thus Mq(2) de�nes a quantum monoid Mq(2) with

Mq(2)(B) =

��
a0 b0

c0 d0

���a0; b0; c0; d0 2 B; a0b0 = q�1b0a0; : : : ; b0c0 = c0b0
�
:

This is the deformed version of M�
2 the multiplicative monoid of the 2 � 2-matrices

of commutative algebras.

2. Let A
2j0
q = Khx; yi=(xy � q�1yx) be the function algebra of the quantum plane

A
2j0
q . By the de�nition 1.2.5 we have

A
2j0
q (A0) =

��
x
y

���x; y 2 A0;xy = q�1yx

�
:

The set

Mq(2)(A
0) =

��
u x
y z

���u; x; y; z 2 A0;ux = q�1xu; : : : ; xy = yx

�

operates on this quantum plane by matrix multiplication

Mq(2)(A
0) ? A

2j0
q (A0) 3 (

�
a b
c d

�
;

�
x
y

�
) 7!

�
a b
c d

�
�

�
x
y

�
2 A

2j0
q (A0):

Again one should check that the required equations are preserved. Since we have
a matrix multiplication we get an operation as in the preceding proposition. In

particular A
2j0
q is a Mq(2)-comodule algebra.

As in example 1. we get the comultiplication as �(

�
x
y

�
) = � = (

�
a b
c d

�

 1) �

(1


�
x
y

�
) =

�
a b
c d

�



�
x
y

�
:

3. LetA
0j2
q = Kh�; �i=(�2; �2; ��+q��) be the function algebra of the dual quantum

plane A
0j2
q . By the de�nition 1.2.5 we have

A
0j2
q (A0) =

n�
a0 b0

����a0; b0 2 A0; a0
2
= 0; b0

2
= 0; a0b0 = �qb0a0

o
:
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The quantum monoid Mq(2) also operates on the dual quantum plane by matrix
multiplication

A
0j2
q (A0) ?Mq(2)(A

0) 3 (
�
� �

�
;

�
a b
c d

�
) 7!

�
� �

�
�

�
a b
c d

�
2 A

0j2
q (A0):

This gives another example of a Mq(2)-comodule algebra A0j2
q �! A

0j2
q 
Mq(2) with

�(
�
� �

�
) = � = (

�
� �

�

 1) � (1


�
a b
c d

�
) =

�
� �

�



�
a b
c d

�
:

What is now the reason for the remarkable relations on Mq(2)? It is based on
a fact that we will show later namely that Mq(2) is the universal quantum monoid

acting on the quantum plane A 2j0
q from the left and on the dual quantum plane A 0j2

q

from the right. This however happens in the category of quantum planes represented
by quadratic algebras. Here we will show a simpler theorem for �nite dimensional
algebras.

Problem 1.3.6. Determine the H -points of the quantum plane A
2j0
q where H is

the R-algebra of the quaternions.

De�nition 1.3.7. 1. Let X be a quantum space. A quantum space M(X )
together with a morphism of quantum spaces � :M(X ) ? X �! X is called a
quantum space acting universally on X (or simply a universal quantum space
for X ) if for every quantum space Y and every morphism of quantum spaces
f : Y ? X �! X there is a unique morphism of quantum spaces g : Y �!M(X )
such that the following diagram commutes

M(X ) ? X X :-
�

f

@
@
@
@@R

Y ? X

?

g?1X

2. Let A be a K-algebra. A K-algebra M(A) together with a homomorphism of
algebras � : A �!M(A)
 A is called an algebra coacting universally on A (or
simply a universal algebra for A) if for every K-algebra B and every homomor-
phism of K-algebras f : A �! B 
 A there exists a unique homomorphism of
algebras g :M(A) �! B such that the following diagram commutes

A M(A)
A-�

f

@
@
@
@@R
B 
A
?

g
1A

By the universal properties the universal algebra M(A) for A and the universal
quantum space M(X ) for X are unique up to isomorphism.
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Proposition 1.3.8. 1. Let A be a K-algebra with universal algebra M(A) and
� : A �! M(A) 
 A. Then M(A) is a bialgebra and A is an M(A)-comodule
algebra by �.

2. If B is a bialgebra and if f : A �! B
A de�nes the structure of a B-comodule
algebra on A then there is a unique homomorphism g :M(A) �! B of bialgebras
such that the following diagram commutes

A M(A)
A-�

f
@
@
@
@@R
B 
A
?

g 
 1A

The corresponding statement for quantum spaces and quantum monoids is the
following.

Proposition 1.3.9. 1. Let X be a quantum space with universal quantum
space M(X ) and � :M(X ) ? A �! A. Then M(X ) is a quantum monoid and
X is an M(X )-space by �.

2. If Y is another quantum monoid and if f : Y ? X �! X de�nes the structure
of a Y-space on X then there is a unique morphism of quantum monoids g :
Y �!M(X ) such that the following diagram commutes

M(X ) ? X X :-
�

f

@
@
@
@@R

Y ? X

?

g?1X

Proof. We give the proof for the algebra version of the proposition. Consider
the following commutative diagram

M(A)
A M(A)
M(A)
A-
1M(A)
�

A M(A)
A-�

?
�

?
�
1A

where the morphism of algebras � is de�ned by the universal property of M(A)
with respect to the algebra morphism (1M(A) 
 �)�. Furthermore there is a unique
morphism of algebras � :M(A) �! K such that

A M(A)
A-�

1A

@
@
@
@@R

A �= K 
A
?

�
1A
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commutes.
The coalgebra axioms arise from the following commutative diagrams

A M(A)
A-�

?
�

?
�
1A

M(A)
A M(A)
M(A)
A-1M(A)
�

?
�
1A

?
1M(A)
�

?
�
1M(A)
1A

?
1M(A)
�
1A

M(A)
M(A)
A M(A)
M(A)
M(A)
A-1M(A)
1M(A)
�

and

A M(A)
A-�

?
�

?
�
1A

?

1M(A)
1AM(A)
A M(A)
M(A)
A-1M(A)
�

1M(A)
1A

PPPPPPPPPPq
M(A)
A �=M(A)
 K 
A

?
1M(A)
�
1A

and

A M(A)
A-�

?

1A

?
�

?
�
1A

M(A)
A M(A)
M(A)
A-1M(A)
�

?
�
1A

?
�
1M(A)
1A

A M(A)
A �= K 
M(A)
A:-�

In fact these diagrams imply by the uniqueness of the induced homomorphisms of
algebras (�
 1M(A))� = (1M(A) 
�)�, (1M(A) 
 �)� = 1M(A) and � 
 (1M(A))� =
1M(A). Finally A is an M(A)-comodule algebra by the de�nition of � and �.

Now assume that a structure of a B-comodule algebra on A is given by a bialgebra
B and f : A �! B
A. Then there is a unique homomorphism of algebras g :M(A) �!
B such that the diagram

A M(A)
A-�

f

@
@
@
@@R
B 
A
?

g
1A
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commutes. Then the following diagram

A M(A)
A-� M(A)
A M(A)
M(A)
A-�
1A
-

1M(A)
�

f

Q
Q
Q
QQs ?

g
1A

?
g
g
1A

B 
A B 
B 
A
-�B
1A
-

1B
f

implies ((g 
 g)� 
 1A)� = (g 
 g 
 1A)(� 
 1A)� = (g 
 g 
 1A)(1M(A) 
 �)� =
(g 
 (g 
 1A)�)� = (1B 
 (g 
 1A)�)(g 
 1A)� = (1B 
 f)f = (�B 
 1A)f = (�B 

1A)(g 
 1A)� = (�Bg 
 1A)� hence (g 
 g)� = �Bg. Furthermore the diagram

A M(A)
A-�

B 
A

f

HHHHHHHj ?
g
1A

?

�
1A

A �= K 
A

1A

@
@
@
@
@
@
@
@R ?

�B
1A

implies �Bg = �. Thus g is a homomorphism of bialgebras.

Since universal algebras for algebras A tend to become very big they do not exist
in general. But a theorem of Tambara's says that they exist for �nite dimensional
algebras (over a �eld K).

De�nition 1.3.10. If X is a quantum space with �nite dimensional function
algebra then we call X a �nite quantum space.

The following theorem is the quantum space version and equivalent to a theorem
of Tambara.

Theorem 1.3.11. Let X be a �nite quantum space. Then there exists a (univer-
sal) quantum space M(X ) with morphism of quantum spaces � :M(X ) ? X �! X .

The algebra version of this theorem is

Theorem 1.3.12. (Tambara) Let A be a �nite dimensional K-algebra. Then
there exists a (universal) K-algebra M(A) with homomorphism of algebras � : A �!
M(A)
A.

Proof. We are going to construct the K-algebra M(A) quite explicitly. First
we observe that A� = HomK(A;K) is a coalgebra (cf. problem A.6.8) with the
structural morphism � : A� �! (A 
 A)� �= A� 
 A�. Denote the dual basis byPn

i=1 ai 
 �ai 2 A
A�. Now let T (A
A�) be the tensor algebra of the vector space
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A
A�. Consider elements of the tensor algebra

xy 
 � 2 A
A�;
x
 y 
�(�) 2 A
A
A� 
A� �= A
A� 
A
A�;
1
 � 2 A
A�;
�(1) 2 K:

The following elements

xy 
 � � x
 y 
�(�)(1)

and

1
 � � �(1)(2)

generate a two-sided ideal I � T (A
A�). Now we de�ne

M(A) := T (A
A�)=I

and the cooperation � : A 3 a �!
Pn

i=1(a
 �ai) 
 ai 2 T (A 
 A�)=I 
 A. This is a
well-de�ned linear map.

To show that this map is a homomorphism of algebras we �rst describe the mul-
tiplication of A by aiaj =

P
k �

k
ijak. Then the comultiplication of A� is given by

�(�ak) =
P

ij �
k
ij�a

i 
 �aj since (�(�ak); al 
 am) = (�ak; alam) =
P

r �
r
lm(�a

k; ar) =

�klm =
P

ij �
k
ij(�a

i; al)(�aj; am) = (
P

ij �
k
ij�a

i 
 �aj; al 
 am). Now write 1 =
P
�kak.

Then we get �(�ai) = �i since �(�ai) = (�ai; 1) =
P

j �
j(�ai; aj) = �i. So we have

�(a)�(b) = (
Pn

i=1(a
 �ai)
 ai) � (
Pn

j=1(b
 �aj)
 aj) =
P

ij(a
 b
 �ai 
 �aj)
 aiaj =P
ijk �

k
ij(a
 b
 �ai
 �aj)
 ak =

P
k(a
 b
�(�ak))
 ak =

P
k(ab
 �ak)
 ak = �(ab).

Furthermore we have �(1) =
P

i(1
 �ai)
ai =
P

i �a
i(1)
ai = 1


P
i �a

i(1)ai = 1
1.
Hence � is a homomorphism of algebras.

Now we have to show that there is a unique g for each f . First of all f : A �! B
A
induces uniquely determined linear maps fi : A �! B with f(a) =

P
i fi(a)
 ai since

the ai form a basis. Since f is a homomorphism of algebras we get from
P

k fk(a)

ak = f(ab) = f(a)f(b) =

P
ij(fi(a) 
 ai)(fj(b) 
 aj) =

P
ij fi(a)fj(b) 
 aiaj =P

ijk �
k
ijfi(a)fj(b)
 ak by comparison of coe�cients

fk(ab) =
X
ij

�kijfi(a)fj(b):

Furthermore we de�ne g(a
 �a) := (1
 �a)f(a) 2 B. Then we get in particular g(a

�ai) = (1
 �ai)(

P
j
fj(a)
 aj) = fi(a). We can extend the map g to a homomorphism

of algebras g : T (A 
 A�) �! B. Applied to the generators of the ideal we get
g(ab 
 �ak � a 
 b 
 �(�ak)) = (1 
 �ak)

P
l fl(ab) 
 al �

P
rsij �

k
ij(1 
 �ai)(fr(a) 


ar) � (1 
 �aj)(fs(b) 
 as) = fk(ab) �
P

ij
�kijfi(a)fj(b) = 0. We have furthermore

g(1 
 � � �(1)) = (1 
 �)f(1) � �(1) = (1 
 �)(1 
 1) � �(1) = 1�(1) � �(1) = 0.
Thus the homomorphism of algebras g vanishes on the ideal I so it may be factored
through M(A) = T (A)=I. Denote this factorization also by g. Then the diagram
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commutes since (g 
 1A)�(a) = (g 
 1A)(
P

i(a 
 �ai) 
 ai) =
P

i(1 
 �ai)f(a) 
 ai =P
ij fj(a)(�a

i; aj)
 ai =
P

i fi(a)
 ai = f(a).
We still have to show that g is uniquely determined. Assume that we also have

(h 
 1A)� = f then
P

i h(a 
 �ai) 
 ai = (h 
 1A)�(a) = f(a) =
P

i fi(a)
 ai hence
h(a
 �ai) = fi(a) = g(a
 �ai), i.e. g = h.

De�nition 1.3.13. Let A be a K-algebra. The universal algebra M(A) for A
that is a bialgebra is also called the coendomorphism bialgebra of A.

Problem 1.3.7. 1. Determine explicitly the dual coalgebra A� of the algebra
A := Khxi=(x2). (Hint: Find a basis for A.)

2. Determine and describe the coendomorphism bialgebra of A from problem 1.1.
(Hint: Determine �rst a set of algebra generators of M(A). Then describe the
relations.)

3. Determine explicitly the dual coalgebra A� of A := Khxi=(x3).
4. Determine and describe the coendomorphism bialgebra of A from problem 1.3.
5. (*) Determine explicitly the dual coalgebra A� of A := Khx; yi=I where the

ideal I is generated as a two-sided ideal by the polynomials

xy � q�1yx; x2; y2:

6. (*) Determine the coendomorphism bialgebra of A from problem 1.5.
7. Let A be a �nite dimensional K-algebra with universal bialgebra A �! B 
A.

Show
i) that Aop �! Bop 
 Aop is universal (where Aop has the multiplication
r� : A
A �! A
A �! A);

ii) that A �= Aop implies B �= Bop (as bialgebras);
iii) that for commutative algebras A the algebra B satis�es B �= Bop but that

B need not be commutative.
iv) Find an isomorphismB �= Bop for the bialgebra B = Kha; bi=(a2; ab+ba).

(compare problem 1.7 2).
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Sketch of solution:
1/2. The bialgebra has the formB = Kha; bi=(a2; ab+ba) with �(a) = a
1+b
a,

�(b) = b
 b and "(a) = 0, "(b) = 1. The coaction is �(x) = a
 1 + b
 x.
3/4. A has the basis 1; x; x2. The dual coalgebra has the dual basis e; �; �2 with

�(e) = e
 e, �(�) = � 
 e+ e
 � and �(�2) = �2 
 e+ � 
 � + e
 �2.
The universal bialgebra B = T (A
A�)=I satis�es �(x) = x
 e
 1 +x
 � 
x+

x
 �2 
 x2 = a
 1 + b
 x+ c
 x2. Thus it is generated by the elements a = x
 e,
b = x
 � and c = x
 �2. The multiplication table and the relations arise from

1 
 e = 1;
1 
 � = 1 
 �2 = 0;
x2 
 e = (x
 e)(x
 e);
x2 
 � = (x
 �)(x
 e) + (x
 e)(x
 �);
x2 
 �2 = (x
 �2)(x
 e) + (x
 �)(x
 �) + (x
 e)(x
 �2);

0 = x3 
 e = (x2 
 e)(x
 e);
0 = x3 
 � = (x2 
 �)(x
 e) + (x2 
 e)(x
 �);
0 = x3 
 �2 = (x2 
 �2)(x
 e) + (x2 
 �)(x
 �) + (x2 
 e)(x
 �2)

We use the abbreviation fu; vg := u2v + uvu+ vu2 and have

a3 = 0;
fa; bg = 0;
fa; cg+ fb; ag = 0:

The condition (1 
 �)� = (�
 1)� implies

�(a) = a
 1 + b
 a+ c
 a2;
�(b) = b
 b+ c
 (ba+ ab);
�(c) = b
 c+ c
 b2 + c
 (ca+ ac);
�(a) = 0;
�(b) = 1;
�(c) = 0:

5/6. A has the basis 1; x; y; xy. The dual basis of A� is denoted by e; �; �; �. The
diagonal is

�(e) = e
 e;
�(�) = � 
 e+ e
 �;
�(�) = � 
 e+ e
 �;
�(�) = � 
 e+ e
 � + � 
 � + q� 
 �:

Thus the coendomorphism bialgebra has the algebra generators a 
 � with a 2
f1; x; y; xyg and � 2 fe; �; �; �g. The generators of the relations (of I) are given
by the equations 1.1 and 1.2. They imply that 1 
 e is the unit element, that



30 1. COMMUTATIVE AND NONCOMMUTATIVE ALGEBRAIC GEOMETRY

1
 � = 1
 � = 1 
 � = 0 and that

ab
 e = (a
 e)(b
 e);
ab
 � = (a
 �)(b
 e) + (a
 1)(b
 �);
ab
 � = (a
 �)(b
 e) + (a
 1)(b
 �);
ab
 � = (a
 �)(b
 e) + (a
 1)(b
 �) + (a
 �)(b 
 �) + q(a
 �)(b
 �):

Furthermore for ab we have to take into account the relations in A.
We de�ne

a := x
 e; b := x
 �; c := x
 �; d := x
 �;
e := y 
 e; f := y 
 �; g := y 
 �; h := x
 �;

and get �(x) = a
1+ b
x+ c
y+d
xy and �(y) = e
1+f 
x+ g
y+h
xy.
Hence B is generated by a; : : : ; h as an algebra. The relations are

a2 = e2 = 0;
ab+ ba = ac+ ca = ef + fe = eg + ge = 0;
ad+ da+ bc+ qcb = eh+ he+ fg + qgf = 0;
ae = qea;
af + be = q(fa+ eb);
ag + ce = q(ga+ ec);
ah� qha+ de� qed+ bg � q2gb+ qcf � qfc = 0:

The diagonal is

�(a) = a
 1 + b
 a+ c
 e+ d 
 ae;
�(b) = b
 b+ c
 f + d
 (af + be);
�(c) = b
 c+ c
 g + d
 (ag + ce);
�(d) = b
 d+ c
 h+ d 
 (ah+ de+ bg + q�1cf) etc.


