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1. Tensor Products and Free Modules

1.1. Modules.

Definition 1.1. Let R be a ring (always associative with unit element). A left R-module RM
is an Abelian group M (with composition written as addition) together with an operation

R×M 3 (r,m) 7→ rm ∈M
such that

(1) (rs)m = r(sm),
(2) (r + s)m = rm+ sm,
(3) r(m+m′) = rm+ rm′,
(4) 1m = m

for all r, s ∈ R, m,m′ ∈M .
If R is a field then a (left) R-module is a (called a) vector space over R.
A homomorphism of left R-modules or simply an R-module homomorphism f : RM −→ RN
is a homomorphism of groups with f(rm) = rf(m).
Right R-modules and homomorphisms of right R-modules are defined analogously.
We define

HomR(.M, .N) := {f : RM −→ RN |f is a homomorphism of left R-modules}.
Similarly HomR(M.,N.) denotes the set of homomorphisms of right R-modules MR and NR.
An R-module homomorphism f : RM −→ RN is

a monomorphism if f is injective,
an epimorphism if f is surjective,
an isomorphism if f is bijective,
an endomorphism if M = N ,
an automorphism if f is an endomorphism and an isomorphism.

Problem 1.1. Let R be a ring and M be an Abelian group. Show that there is a one-to-one
correspondence between maps f : R×M −→M that make M into a left R-module and ring
homomorphisms (always preserving the unit element) g : R −→ End(M).

Lemma 1.2. HomR(M,N) is an Abelian group by (f + g)(m) := f(m) + g(m).

Proof. Since N is an Abelian group the set of maps Map(M,N) is also an Abelian group.
The set of group homomorphisms Hom(M,N) is a subgroup of Map(M,N) (observe that this
holds only for Abelian groups). We show that HomR(M,N) is a subgroup of Hom(M,N).
We must only show that f − g is an R-module homomorphism if f and g are. Obviously
f − g is a group homomorphism. Furthermore we have (f − g)(rm) = f(rm) − g(rm) =
rf(m)− rg(m) = r(f(m)− g(m)) = r(f − g)(m). �

Problem 1.2. Let f : M −→ N be an R-module homomorphism.

(1) f is an isomorphism if and only if (iff) there exists an R-module homomorphism
g : N −→M such that

fg = idN and gf = idM .

Furthermore g is uniquely determined by f .
(2) The following are equivalent:

(a) f is a monomorphism,
(b) for all R-modules P and all homomorphisms g, h : P −→M

fg = fh =⇒ g = h,
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(c) for all R-modules P the homomorphism of Abelian groups

HomR(P, f) : HomR(P,M) 3 g 7→ fg ∈ HomR(P,N)

is a monomorphism.
(3) The following are equivalent:

(a) f is an epimorphism,
(b) for all R-modules P and all homomorphisms g, h : N −→ P

gf = hf =⇒ g = h,

(c) for all R-modules P the homomorphism of Abelian groups

HomR(f, P ) : HomR(N,P ) 3 g 7→ gf ∈ HomR(M,P )

is a monomorphism.

Remark 1.3. Each Abelian group is a Z-module in a unique way. Each homomorphism of
Abelian groups is a Z-module homomorphism.

Proof. By exercise 1.1 we have to find a unique ring homomorphism g : Z −→ End(M).
This holds more generally. If S is a ring then there is a unique ring homomorphism g : Z
−→ S. Since a ring homomorphism must preserve the unit we have g(1) = 1. Define
g(n) := 1+ . . .+1 (n-times) for n ≥ 0 and g(−n) := −(1+ . . .+1) (n-times) for n > 0. Then
it is easy to check that g is a ring homomorphism and it is obviously unique. This means
that M is a Z-module by nm = m+ . . .+m (n-times) for n ≥ 0 and (−n)m = −(m+ . . .+m)
(n-times) for n > 0.
If f : M −→ N is a homomorphism of (Abelian) groups then f(nm) = f(m + . . . + m) =
f(m) + . . . + f(m) = nf(m) for n ≥ 0 and f((−n)m) = f(−(m + . . . + m)) = −(f(m) +
. . .+ f(m)) = (−n)f(m) for n > 0. Hence f is a Z-module homomorphism. �

Problem 1.3. (1) Let R be a ring. Then RR is a left R-module.

(2) Let M be a Abelian group and End(M) be the endomorphism ring of M . Then M
is an End(M)-module.

(3) {(1̄, 0̄), (0̄, 1̄)} is a generating set for the Z-module Z/(2)× Z/(3).
(4) {(1̄, 1̄)} is a generating set for the Z-module Z/(2)× Z/(3).
(5) ZZ/(n) has no basis as a module, i.e. this module is not free.

(6) Let V =
⊕∞

i=0Kbi be a countably infinite dimensional vector space over the field K.
Let p, q, a, b ∈ Hom(V, V ) be defined by

p(bi) := b2i,
q(bi) := b2i+1,

a(bi) :=

{
bi/2, if i is even, and

0, if i is odd.

b(bi) :=

{
bi−1/2, if i is odd, and

0, if i is even.

Show pa+ qb = idV , ap = bq = id, aq = bp = 0.
Show for R = EndK(V ) that RR = Ra⊕Rb and RR = pR⊕ qR holds.

(7) Are {(0, . . . , a, . . . , 0)|a ∈ Kn} and {(a, 0, . . . , 0)|a ∈ Kn} isomorphic as Mn(K)-
modules?

(8) For each module P there is a module Q such that P ⊕Q ∼= Q.

(9) Which of the following statements is correct?
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(a) P1 ⊕Q = P2 ⊕Q =⇒ P1 = P2?
(b) P1 ⊕Q = P2 ⊕Q =⇒ P1

∼= P2?
(c) P1 ⊕Q ∼= P2 ⊕Q =⇒ P1

∼= P2?

(10) Z/(2)⊕ Z/(6)⊕ Z/(6)⊕ . . . ∼= Z/(6)⊕ Z/(6)⊕ Z/(6)⊕ . . ..
(11) Z/(2)⊕ Z/(4)⊕ Z/(4)⊕ . . . 6∼= Z/(4)⊕ Z/(4)⊕ Z/(4)⊕ . . ..
(12) Find two Abelian groups P and Q, such that P is isomorphic to a subgroup of Q

and Q is isomorphic to a subgroup of P and P 6∼= Q.

1.2. Tensor products I.

Definition and Remark 1.4. Let MR and RN be R-modules, and let A be an Abelian
group. A map f : M ×N −→ A is called R-bilinear if

(1) f(m+m′, n) = f(m,n) + f(m′, n),
(2) f(m,n+ n′) = f(m,n) + f(m,n′),
(3) f(mr, n) = f(m, rn)

for all r ∈ R, m,m′ ∈M, n, n′ ∈ N .
Let BilR(M,N ;A) denote the set of all R-bilinear maps f : M ×N −→ A.
BilR(M,N ;A) is an Abelian group with (f + g)(m,n) := f(m,n) + g(m,n).

Definition 1.5. Let MR and RN be R-modules. An Abelian group M ⊗R N together with
an R-bilinear map

⊗ : M ×N 3 (m,n) 7→ m⊗ n ∈M ⊗R N
is called a tensor product of M and N over R if for each Abelian group A and for each
R-bilinear map f : M × N −→ A there exists a unique group homomorphism g : M ⊗R N
−→ A such that the diagram

M ×N M ⊗R N-⊗

f
@

@
@

@@R
A
?

g

commutes. The elements of M ⊗R N are called tensors, the elements of the form m⊗ n are
called decomposable tensors.
Warning: If you want to define a homomorphism f : M ⊗R N −→ A with a tensor product
as domain you must define it by giving an R-bilinear map defined on M ×N .

Proposition 1.6. A tensor product (M ⊗R N,⊗) defined by MR and RN is unique up to a
unique isomorphism.

Proof. Let (M ⊗R N,⊗) and (M �R N,�) be tensor products. Then

M ×N

⊗
��

���
�����

�
�

�
�

��	

⊗
@

@
@

@@R

�

HH
HHH

HHHHj
M ⊗R N M �R N-h -k M ⊗R N M �R N-h

implies k = h−1. �

Because of this fact we will henceforth talk about the tensor product of M and N over R.

Proposition 1.7. (Rules of computation in a tensor product) Let (M⊗RN,⊗) be the tensor
product. Then we have for all r ∈ R, m,m′ ∈M , n, n′ ∈ N
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(1) M ⊗R N = {
∑

imi ⊗ ni | mi ∈M,ni ∈ N},
(2) (m+m′)⊗ n = m⊗ n+m′ ⊗ n,
(3) m⊗ (n+ n′) = m⊗ n+m⊗ n′,
(4) mr ⊗ n = m⊗ rn (observe in particular, that ⊗ : M ×N −→M ⊗N is not injective

in general),
(5) if f : M × N −→ A is an R-bilinear map and g : M ⊗R N −→ A is the induced

homomorphism, then

g(m⊗ n) = f(m,n).

Proof. (1) Let B := 〈m⊗ n〉 ⊆ M ⊗R N denote the subgroup of M ⊗R N generated by the
decomposable tensors m⊗ n. Let j : B −→M ⊗R N be the embedding homomorphism. We
get an induced map ⊗′ : M ×N −→ B. The following diagram

M ×N B-⊗′ M ⊗R N-j

B M ⊗R N-j

⊗′
@

@
@

@@R ?

jpp
�

�
�

��	

induces a unique p with p ◦ j ◦ ⊗′ = p ◦ ⊗ = ⊗′ since ⊗′ is R-bilinear. Because of jp ◦ ⊗ =
j ◦⊗′ = ⊗ = idM⊗RN ◦⊗ we get jp = idM⊗RN , hence the embedding j is surjective and thus
the identity.
(2) (m+m′)⊗ n = ⊗(m+m′, n) = ⊗(m,n) +⊗(m′, n) = m⊗ n+m′ ⊗ n.
(3) and (4) analogously.
(5) is precisely the definition of the induced homomorphism. �

To construct tensor products, we need the notion of a free module.

1.3. Free modules.

Definition 1.8. Let X be a set and R be a ring. An R-module RX together with a map
ι : X −→ RX is called a free R-module generated by X (or an R-module freely generated
by X), if for every R-module M and for every map f : X −→ M there exists a unique
homomorphism of R-modules g : RX −→M such that the diagram

X RX-ι

f
@

@
@

@@R
M
?

g

commutes.
An R-module F is a free R-module if there is a set X and a map ι : X −→ F such that F is
freely generated by X. Such a set X (or its image ι(X)) is called a free generating set for F .

Warning: If you want to define a homomorphism g : RX −→ M with a free module as
domain you should define it by giving a map f : X −→M .

Proposition 1.9. A free R-module ι : X −→ RX defined over a set X is unique up to a
unique isomorphism of R-modules.
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Proof. follows from the following diagram

X

ι

���
���

����

ι′
�

�
�

��	

ι
@

@
@

@@R

ι′

HHH
HHH

HHHj

RX RX ′-h -k
RX RX ′-h

�

Proposition 1.10. (Rules of computation in a free R-module) Let ι : X −→ RX be a free
R-module over X. Let x̃ := ι(x) ∈ RX for all x ∈ X. Then we have

(1) X̃ = {x̃| ∃x ∈ X : x̃ = ι(x)} is a generating set of RX, i.e. each element m ∈ RX
is a linear combination m =

∑n
i=1 rix̃i of the x̃.

(2) X̃ ⊆ RX is linearly independent and ι is injective, i.e. if
∑′

x∈X rxx̃ = 0, then we
have ∀x ∈ X : rx = 0.

Proof. (1) Let M := 〈x̃|x ∈ X〉 ⊆ RX be the submodule generated by the x̃. Then the
diagram

X RX-ι

RX/M

0
@

@
@

@@R ?

0

?

ν

commutes with both maps 0 and ν. Thus 0 = ν and RX/M = 0 and hence RX = M .
(2) Let

∑n
i=0 rix̃i = 0 and r0 6= 0. Let j : X −→ R be the map given by j(x0) = 1, j(x) = 0

for all x 6= x0. =⇒ ∃g : RX −→ R with

X RX-ι

j
@

@
@

@@R
R
?

g

commutative and 0 = g(0) = g(
∑n

i=0 rix̃i) =
∑n

i=0 rig(x̃i) =
∑n

i=0 rij(xi) = r0. Contradic-
tion. Hence the second statement. �

Notation 1.11. Since ι is injective we will identifyX with it’s image in RX and we will write∑
x∈X rxx for an element

∑
x∈X rxι(x) ∈ RX. The coefficients rx are uniquely determined.

Proposition 1.12. Let X be a set. Then there exists a free R-module ι : X −→ RX over X.

Proof. Obviously RX := {α : X −→ R| for almost all x ∈ X : α(x) = 0} is a submodule
of Map(X,R) which is an R-module by componentwise addition and multiplication. Define
ι : X −→ RX by ι(x)(y) := δxy.
Let f : X −→M be an arbitrary map. Let α ∈ RX. Define g(α) :=

∑
x∈X α(x) · f(x). Then

g is well defined, because we have α(x) 6= 0 for only finitely many x ∈ X. Furthermore
g is an R-module homomorphism: rg(α) + sg(β) = r

∑
α(x) · f(x) + s

∑
β(x) · f(x) =∑

(rα(x) + sβ(x)) · f(x) =
∑

(rα + sβ)(x) · f(x) = g(rα + sβ).
Furthermore we have gι = f : gι(x) =

∑
y∈X ι(x)(y) · f(y) =

∑
δxy · f(y) = f(x). For

α ∈ RX we have α =
∑

x∈X α(x)ι(x) since α(y) =
∑
α(x)ι(x)(y). In order to show

that g is uniquely determined by f , let h ∈ HomR(RX,M) be given with hι = f . Then
h(α) = h(

∑
α(x)ι(x)) =

∑
α(x)hι(x) =

∑
α(x)f(x) = g(α) hence h = g. �
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Remark 1.13. If the base ring K is a field then a K-module is a vector space. Each vector
space V has a basis X (proof by Zorn’s lemma). V together with the embedding X −→ V is
a free K-module (as one shows in Linear Algebra). Hence every vector space is free. This is
why one always defines vector space homomorphisms only on the basis.
For a vector space V any two bases have the same number of elements. This is not true for
free modules over an arbitrary ring (see Exercise 1.4).

Problem 1.4. Show that for R := EndK(V ) for a vector space V of infinite countable
dimension there is an isomorphism of left R-modules RR ∼= RR⊕ RR. Conclude that R is a
free module on a generating set {1} with one element and also free on a generating set with
two elements.

Problem 1.5. Let ι : X −→ RX be a free module. Let f : X −→ M be a map and g : RX
−→M be the induced R-module homomorphism. Then

g(
∑
X

rxx) =
∑
X

rxf(x).

1.4. Tensor products II.

Proposition 1.14. Given R-modules MR and RN . Then there exists a tensor product
(M ⊗R N,⊗).

Proof. Define M ⊗R N := Z(M × N)/U where Z(M × N) is a free Z-module over M × N
(the free Abelian group) and U is generated by

ι(m+m′, n)− ι(m,n)− ι(m′, n)
ι(m,m+ n′)− ι(m,n)− ι(m,n′)
ι(mr, n)− ι(m, rn)

for all r ∈ R, m,m′ ∈M , n, n′ ∈ N . Consider

M ×N Z(M ×N)-ι M ⊗R N-ν = Z(M ×N)/U

A

ψ

PPPPPPPPPPPPPq

ρ

Q
Q

Q
Q

Q
QQs ?

g

Let ψ be given. Then there is a unique ρ ∈ Hom(Z(M ×N), A) such that ρι = ψ. Since ψ is
R-bilinear we get ρ(ι(m+m′, n)− ι(m,n)− ι(m′n)) = ψ(m+m′, n)−ψ(m,n)−ψ(m′, n) = 0
and similarly ρ(ι(m,n + n′) − ι(m,n) − ι(m,n′)) = 0 and ρ(ι(mr, n) − ι(m, rn)) = 0. So
we get ρ(U) = 0. This implies that there is a unique g ∈ Hom(M ⊗R N,A) such that
gν = ρ (homomorphism theorem). Let ⊗ := ν ◦ ι. Then ⊗ is bilinear since (m+m′)⊗ n =
ν ◦ ι(m+m′, n) = ν(ι(m+m′, n)) = ν(ι(m+m′, n)− ι(m,n)− ι(m′, n)+ ι(m,n)+ ι(m′, n)) =
ν(ι(m,n) + ι(m′, n)) = ν ◦ ι(m,n) + ν ◦ ι(m′, n) = m⊗n+m′⊗n. The other two properties
are obtained in an analogous way.
We have to show that (M ⊗R N,⊗) is a tensor product. The above diagram shows that
for each Abelian group A and for each R-bilinear map ψ : M × N −→ A there is a g ∈
Hom(M ⊗R N,A) such that g ◦ ⊗ = ψ. Given h ∈ Hom(M ⊗R N,A) with h ◦ ⊗ = ψ. Then
h ◦ ν ◦ ι = ψ. This implies h ◦ ν = ρ = g ◦ ν hence g = h. �

Proposition and Definition 1.15. Given two homomorphisms

f ∈ Hom R(M.,M ′.) and g ∈ Hom R(.N, .N ′).

Then there is a unique homomorphism

f ⊗R g ∈ Hom(M ⊗R N,M ′ ⊗R N ′)
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such that f ⊗R g(m⊗ n) = f(m)⊗ g(n), i.e. the following diagram commutes

M ′ ×N ′ M ′ ⊗R N ′-
⊗

M ×N M ⊗R N-⊗

?

f × g
?

f ⊗R g

Proof. ⊗ ◦ (f × g) is bilinear. �

Notation 1.16. We often write f ⊗R N := f ⊗R 1N and M ⊗R g := 1M ⊗R g.
We have the following rule of computation:

f ⊗R g = (f ⊗R N ′) ◦ (M ⊗R g) = (M ′ ⊗R g) ◦ (f ⊗R N)

since f × g = (f ×N ′) ◦ (M × g) = (M ′ × g) ◦ (f ×N).

1.5. Bimodules.

Definition 1.17. Let R, S be rings and letM be a left R-module and a right S-module. M is
called an R-S-bimodule if (rm)s = r(ms). We define HomR-S(.M., .N.) := HomR(.M, .N) ∩
HomS(M.,N.).

Remark 1.18. Let MS be a right S-module and let R × M −→ M be a map. M is an
R-S-bimodule if and only if

(1) ∀r ∈ R : (M 3 m 7→ rm ∈M) ∈ HomS(M.,M.),
(2) ∀r, r′ ∈ R,m ∈M : (r + r′)m = rm+ r′m,
(3) ∀r, r′ ∈ R,m ∈M : (rr′)m = r(r′m),
(4) ∀m ∈M : 1m = m.

Lemma 1.19. Let RMS and SNT be bimodules. Then R(M ⊗S N)T is a bimodule by r(m⊗
n) := rm⊗ n and (m⊗ n)t := m⊗ nt.
Proof. Clearly we have that (r⊗S id)(m⊗n) = rm⊗n = r(m⊗n) is a homomorphism. Then
(2)-(4) hold. Thus M ⊗S N is a left R-module. Similarly it is a right T -module. Finally we
have r((m⊗ n)t) = r(m⊗ nt) = rm⊗ nt = (rm⊗ n)t = (r(m⊗ n))t. �

Corollary 1.20. Given bimodules RMS, SNT , RM
′
S, SN

′
T and homomorphisms f ∈

HomR-S(.M., .M ′.) and g ∈ HomS-T (.N., .N ′.). Then we have f ⊗S g ∈ HomR-T
(.M ⊗S N., .M ′ ⊗S N ′.).

Proof. f ⊗S g(rm⊗ nt) = f(rm)⊗ g(nt) = r(f ⊗S g)(m⊗ n)t. �

Remark 1.21. Unless otherwise defined K will always be a commutative ring.
Every module M over the commutative ring K and in particular every vector space over a
field K is a K-K-bimodule by λm = mλ. Observe that there are K-K-bimodules that do not
satisfy λm = mλ. Take for example an automorphism α : K −→ K and a left K-module M
and define mλ := α(λ)m. Then M is such a K-K-bimodule.
The tensor product M ⊗K N of two K-K-bimodules M and N is again a K-K-bimodule. If
we have, however, K-K-bimodules M and N arising from K-modules as above, i.e. satisfying
λm = mλ, then their tensor product M ⊗K N also satisfies this equation, so M ⊗K N comes
from a (left) K-module. Indeed we have λm ⊗ n = mλ ⊗ n = m ⊗ λn = m ⊗ nλ. Thus we
can also define a tensor product of two left K-modules.
We often write the tensor product of two vector spaces or two left modules M and N over
a commutative ring K as M ⊗N instead of M ⊗K N and the tensor product over K of two
K-module homomorphisms f and g as f ⊗ g instead of f ⊗K g.
(Warning: Do not confuse this with a tensor f ⊗ g. See the following exercise.)
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Problem 1.6. (1) Let MR, RN , M ′
R, and RN

′ be R-modules. Show that the following is a
homomorphism of Abelian groups:

µ : HomR(M,M ′)⊗Z HomR(N,N ′) 3 f ⊗ g 7→ f ⊗R g ∈ Hom(M ⊗R N,M ′ ⊗R N ′).

(2) Find examples where µ is not injective and where µ is not surjective.
(3) Explain why f ⊗ g is a decomposable tensor whereas f ⊗R g is not a tensor.

Theorem 1.22. Let RMS, SNT , and TPU be bimodules. Then there are canonical isomor-
phisms of bimodules

(1) Associativity Law: α : (M ⊗S N)⊗T P ∼= M ⊗S (N ⊗T P ).
(2) Law of the Left Unit: λ : R⊗RM ∼= M .
(3) Law of the Right Unit: ρ : M ⊗S S ∼= M .
(4) Symmetry Law: If M , N are K-modules then there is an isomorphism of K-modules

τ : M ⊗N ∼= N ⊗M .
(5) Existence of Inner Hom-Functors: Let RMT , SNT , and SPR be bimodules. Then there

are canonical isomorphisms of bimodules

HomS-T (.P ⊗RM., .N.) ∼= HomS-R(.P., .HomT (M.,N.).) and

HomS-T (.P ⊗RM., .N.) ∼= HomR-T (.M., .HomS(.P, .N).).

Proof. We only describe the corresponding homomorphisms.
(1) Use 1.7 (5) to define α((m⊗ n)⊗ p) := m⊗ (n⊗ p).
(2) Define λ : R⊗RM −→M by λ(r ⊗m) := rm.
(3) Define ρ : M ⊗S S −→M by ρ(m⊗ s) := ms.
(4) Define τ(m⊗ n) := n⊗m.
(5) For f : P ⊗RM −→ N define φ(f) : P −→ HomT (M,N) by φ(f)(p)(m) := f(p⊗m) and
ψ(f) : M −→ HomS(P,N) by ψ(f)(m)(p) := f(p⊗m). �

Usually one identifies threefold tensor products along the map α so that we can use M ⊗S
N⊗TP := (M⊗SN)⊗TP = M⊗S (N⊗TP ). For the notion of a monoidal or tensor category,
however, this canonical isomorphism (natural transformation) is of central importance and
will be discussed later.

Problem 1.7.
(1) Give a complete proof of Theorem 1.22. In (5) show how HomT (M.,N.) becomes an
S-R-bimodule.
(2) Give an explicit proof of M ⊗R (X ⊕ Y ) ∼= M ⊗R X ⊕M ⊗R Y .
(3) Show that for every finite dimensional vector space V there is a unique element

∑n
i=1 vi⊗

v∗i ∈ V ⊗ V ∗ such that the following holds

∀v ∈ V :
∑
i

v∗i (v)vi = v.

(Hint: Use an isomorphism End(V ) ∼= V ⊗ V ∗ and dual bases {vi} of V and {v∗i } of V ∗.)
(4) Show that the following diagrams (coherence diagrams or constraints) of K-modules
commute:

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D-α(A,B,C)⊗1
A⊗ ((B ⊗ C)⊗D)-α(A,B⊗C,D)

?

α(A⊗B,C,D)

?

1⊗α(B,C,D)

(A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))-α(A,B,C⊗D)



Tensor products and free modules 11

(A⊗K)⊗B A⊗ (K⊗B)-α(A,K,B)

A⊗B

ρ(A)⊗1

Q
Q

Q
QQs

1⊗λ(B)

�
�

�
��+

(5) Write τ(A,B) : A⊗B −→ B ⊗ A for τ(A,B) : a⊗ b 7→ b⊗ a. Show that

(A⊗B)⊗ C (B ⊗ A)⊗ C-τ(X,B)⊗1
B ⊗ (A⊗ C)-α

?

α

?

1⊗τ(A,C)

A⊗ (B ⊗ C) (B ⊗ C)⊗ A-τ(A,B⊗C)
B ⊗ (C ⊗ A)-α

commutes for all K-modules A,B,C and that

τ(B,A)τ(A,B) = idA⊗B

for all K-modules A and B. Let f : A −→ A′ and g : B −→ B′ be K-modules homomorphisms.
Show that

A⊗B B ⊗ A-τ(A,B)

?

f⊗g

?

g⊗f

A′ ⊗B′ B′ ⊗ A′-τ(A′,B′)

commutes.
(6) Find an example of M , N ∈ K-Mod-K such that M ⊗K N 6∼= N ⊗K M .

Proposition 1.23. Let (RX, ι) be a free R-module and SMR be a bimodule. Then every
element u ∈M ⊗R RX has a unique representation u =

∑
x∈X mx ⊗ x.

Proof. By 1.10
∑

x∈X rxx is the general element of RX. Hence we have u =
∑
mi ⊗ αi =∑

mi ⊗
∑
rx,ix =

∑
i

∑
xmirx,i ⊗ x =

∑
x(

∑
imirx,i) ⊗ x. To show the uniqueness let∑

y∈X my ⊗ y = 0. Let x ∈ X and fx : RX −→ R be defined by fx(ι(y)) = fx(y) := δxy.

Then (1M ⊗R fx)(
∑
my ⊗ y) =

∑
my ⊗ fx(y) = mx ⊗ 1 = 0 for all x ∈ X. Now let

M ×R M ⊗R R-⊗

mult

@
@

@
@@R
M
?

ρ

be given. Then ρ(mx ⊗ 1) = mx · 1 = mx = 0 hence we have uniqueness. From 1.22 (3) we
know that ρ is an isomorphism. �

Corollary 1.24. Let SMR, RN be (bi-)modules. Let M be a free S-module over Y , and N
be a free R-module over X. Then M ⊗R N is a free S-module over Y ×X.

Proof. Consider the diagram

Y ×X M ×N-ιY × ιX
SM ⊗R N-⊗

SU

f

PPPPPPPPPPPPPq

g
@

@
@

@@R ?

h



12 Advanced Algebra – Pareigis

Let f be an arbitrary map. For all x ∈ X we define homomorphisms g(-, x) ∈ HomS(.M, .U)
by the commutative diagram

Y SM-ιY

f(-, x)
@

@
@

@@R

SU
?

g(-, x)

Let g̃ ∈ HomR(.N, .HomS(.MR, .U)) be defined by

X RN-ιx

g(-, -)
@

@
@

@@R

R HomS(.MR, .U)
?̃

g

with x 7→ g(-, x). Then we define g(m,n) := g̃(n)(m) =: h(m ⊗ n). Observe that g is
additive in m and in n (because g̃ is additive in m and in n), and g is R-bilinear, because
g(mr, n) = g̃(n)(mr) = (rg̃(n))(m) = g̃(rn)(m) = g(m, rn). Obviously g(y, x) = f(y, x),
hence h ◦ ⊗ ◦ ιY × ιX = f . Furthermore we have h(sm ⊗ n) = g̃(n)(sm) = s(g̃(n)(m)) =
sh(m⊗ n), hence h is an S-module homomorphism.
Let k be an S-module homomorphism satisfying k◦⊗◦ιY ×ιX = f , then k◦⊗(-, x) = g(-, x),
since k ◦ ⊗ is S-linear in the first argument. Thus k ◦ ⊗(m,n) = g̃(n)(m) = h(m⊗ n), and
hence h = k. �

Problem 1.8. (Tensors in physics:) Let V be a finite dimensional vector space over the field
K and let V ∗ be its dual space. Let t be a tensor in V ⊗. . .⊗V ⊗V ∗⊗. . .⊗V ∗ = V ⊗r⊗(V ∗)⊗s.
(1) Show that for each basis B = (b1, . . . , bn) and dual basis B∗ = (b1, . . . , bn) there is
a uniquely determined scheme (a family or an (r + s)-dimensional matrix) of coefficients
(a(B)i1,...,irj1,...,js

) with a(B)i1,...,irj1,...,js
∈ K such that

(1) t =
n∑

i1=1

. . .
n∑

ir=1

n∑
j1=1

. . .
n∑

js=1

a(B)i1,...,irj1,...,js
bi1 ⊗ . . .⊗ bir ⊗ bj1 ⊗ . . .⊗ bjs .

(2) Show that for each change of bases L : B −→ C with cj =
∑
λijbi (with inverse matrix

(µij)) the following transformation formula holds

(2) a(B)i1,...,irj1,...,js
=

n∑
k1=1

. . .
n∑

kr=1

n∑
l1=1

. . .

n∑
ls=1

λi1k1 . . . λ
ir
kr
µl1j1 . . . µ

ls
js
a(C)k1,...,kr

l1,...,ls

(3) Show that every family of schemes of coefficients (a(B)|B basis of V ) with a(B) =
(a(B)i1,...,irj1,...,js

) and a(B)i1,...,irj1,...,js
∈ K satisfying the transformation formula (2) defines a unique

tensor (independent of the choice of the basis) t ∈ V ⊗r ⊗ (V ∗)⊗s such that (1) holds.
Rule for physicists: A tensor is a collection of schemes of coefficients that transform accord-
ing to the transformation formula for tensors.

1.6. Complexes and exact sequences.

Definition 1.25. A (finite or infinite) sequence of homomorphisms

. . . −→Mi−1
fi−1−→ Mi

fi−→Mi+1 −→ . . .

is called a complex, if fifi−1 = 0 for all i ∈ I (or equivalently Im(fi−1) ⊆ Ke(fi)).
A complex is called exact or an exact sequence if Im(fi−1) = Ke(fi) for all i ∈ I.
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Lemma 1.26. A complex

. . . −→Mi−1
fi−1−→ Mi

fi−→Mi+1 −→ . . .

is exact if and only if the sequences

0 −→ Im(fi−1) −→Mi −→ Im(fi) −→ 0

are exact for all i ∈ I, if and only if the sequences

0 −→ Ke(fi−1) −→Mi−1 −→ Ke(fi) −→ 0

are exact for all i ∈ I.

Proof. The sequences

0 −→ Ke(fi) −→Mi −→ Im(fi) −→ 0

are obviously exact since Ke(fi) −→Mi is a monomorphism, Mi −→ Im(fi) is an epimorphism
and Ke(fi) is the kernel of Mi −→ Im(fi).
The sequence

0 −→ Im(fi−1) −→Mi −→ Im(fi) −→ 0

is exact if and only if Im(fi−1) = Ke(fi).
The sequence

0 −→ Ke(fi−1) −→Mi−1 −→ Ke(fi) −→ 0

is exact if and only if Mi−1 −→ Ke(fi) is surjective, if and only if Im(fi−1) = Ke(fi). �

Problem 1.9. (1) In the tensor product C⊗C C we have 1⊗ i− i⊗ 1 = 0.
In the tensor product C⊗R C we have 1⊗ i− i⊗ 1 6= 0.

(2) For each R-module M we have R⊗RM ∼= M .

(3) Given the Q-vector space V = Qn.
(a) Determine dimR(R⊗Q V ).
(b) Describe explicitely an isomorphism R⊗Q V ∼= Rn.

(4) Let V be a Q-vector space and W be an R-vector space.
(a) HomR(.RQ, .W ) ∼= W in Q-Mod.
(b) HomQ(.V, .W ) ∼= HomR(.R⊗Q V, .W ).
(c) Let dimQV < ∞ and dimRW < ∞. How can one explain that in 4b we have

infinite matrices on the left hand side and finite matrices on the right hand side?
(d) HomQ(.V,HomR(.R, .W ) ∼= HomR(.R⊗Q V, .W ).

(5) Z/(18)⊗Z Z/(30) 6= 0.

(6) m : Z/(18)⊗Z Z/(30) 3 x⊗ y 7→ xy ∈ Z/(6) is a homomorphism and m is bijective.

(7) For Q-vector spaces V and W we have V ⊗Z W ∼= V ⊗Q W .

(8) For each finite Abelian group M we have Q⊗Z M = 0.

(9) Z/(m)⊗Z Z/(n) ∼= Z/(ggT(m,n)).

(10) Q⊗Z Z/(n) = 0.

(11) HomZ(Q,Z/(n)) = 0.

(12) Determine explicitely isomorphisms for

Z⊗Z Q ∼= Q,
3Z⊗Z Q ∼= Q.
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Show that the following diagram commutes

Q Q-
3·

3Z⊗Z Q Z⊗Z Q-

?

∼=
?

∼=

(13) The homomorphism 2Z⊗Z Z/(2) −→ Z⊗Z Z/(2) is the zero homomorphism, but both
modules are different from zero.
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2. Algebras and Coalgebras

2.1. Algebras. Let K be a commutative ring. We consider all K-modules as K-K-bimodules
as in Remark 1.21. Tensor products of K-modules will be simply written as M ⊗ N :=
M ⊗K N .

Definition 2.1. A K-algebra is a K-module A together with a multiplication ∇ : A ⊗ A
−→ A (K-module homomorphism) that is associative:

A⊗ A A-
∇

A⊗ A⊗ A A⊗ A-id⊗∇

?

∇⊗id

?

∇

and a unit η : K −→ A (K-module homomorphism):

K⊗ A ∼= A ∼= A⊗K A⊗ A-id⊗η

?

η⊗id

?

∇

A⊗ A A.-
∇

id

H
HHH

HHH
HHj

A K-algebra A is commutative if the following diagram commutes

A⊗ A A⊗ A-τ

A.

∇

A
A
A
AAU

∇

�
�

�
���

Let A and B be K-algebras. A homomorphism of algebras f : A −→ B is a K-module
homomorphism such that the following diagrams commute:

A B-
f

A⊗ A B ⊗B-f⊗f

?

∇A

?

∇B

and
K

ηA

�
�

�
���

ηB

A
A
A
AAU

A B.-f

Remark 2.2. Every K-algebra A is a ring with the multiplication

A× A ⊗−→ A⊗ A ∇−→ A.

The unit element is η(1), where 1 is the unit element of K.
Obviously the composition of two homomorphisms of algebras is again a homomorphism of
algebras. Furthermore the identity map is a homomorphism of algebras.
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Problem 2.1. (1) Show that EndK(V ) is a K-algebra.
(2) Show that (A,∇ : A ⊗ A −→ A, η : K −→ A) is a K-algebra if and only if A with the

multiplication A× A ⊗−→ A⊗ A ∇−→ A and the unit η(1) is a ring and η : K −→ Cent(A) is a
ring homomorphism into the center of A, where Cent(A) := {a ∈ A|∀b ∈ A : ab = ba}.
(3) Let V be a K-module. Show thatD(V ) := K×V with the multiplication (r1, v1)(r2, v2) :=
(r1r2, r1v2 + r2v1) is a commutative K-algebra.

Lemma 2.3. Let A and B be algebras. Then A ⊗ B is an algebra with the multiplication
(a1 ⊗ b1)(a2 ⊗ b2) := a1a2 ⊗ b1b2.

Proof. Certainly the algebra properties can easily be checked by a simple calculation with
elements. For later applications we prefer a diagrammatic proof.
Let ∇A : A⊗A −→ A and ∇B : B ⊗B −→ B denote the multiplications of the two algebras.
Then the new multiplication is ∇A⊗B := (∇A⊗∇B)(1A⊗ τ ⊗1B) : A⊗B⊗A⊗B −→ A⊗B
where τ : B ⊗ A −→ A ⊗ B is the symmetry map from Theorem 1.22. Now the following
diagram commutes

A⊗B ⊗ A⊗B ⊗ A⊗B A⊗ A⊗B ⊗B ⊗ A⊗B-1⊗τ⊗13

A⊗B ⊗ A⊗B-∇⊗∇⊗12

A⊗B ⊗ A⊗ A⊗B ⊗B A⊗ A⊗ A⊗B ⊗B ⊗B-
1⊗τB,A⊗A⊗12 A⊗ A⊗B ⊗B-∇⊗1⊗∇⊗1

?

13⊗τ⊗1

?

12⊗τB⊗B,A⊗1

?

1⊗τ⊗1A⊗ A⊗B ⊗ A⊗B ⊗B

1⊗τ⊗13

��
����*

13⊗τ⊗1

���
����

12⊗τ⊗12

HH
HHHHj

A⊗B ⊗ A⊗B A⊗ A⊗B ⊗B-1⊗τ⊗1
A⊗B-∇⊗∇?

12⊗∇⊗∇

?

1⊗∇⊗1⊗∇

?

∇⊗∇

In the left upper rectangle of the diagram the quadrangle commutes by the properties of the
tensor product and the two triangles commute by inner properties of τ . The right upper and
left lower rectangles commute since τ is a natural transformation (use Exercise 1.7 (5)) and
the right lower rectangle commutes by the associativity of the algebras A and B.
Furthermore we use the homomorphism η = ηA⊗B : K −→ K⊗K −→ A⊗ B in the following
commutative diagram

K⊗ A⊗B ∼= A⊗B ∼= A⊗B ⊗K A⊗B ⊗K⊗K- A⊗B ⊗ A⊗B-12⊗η⊗η

1

HH
HHH

HHH
HHH

HHH
HHHH

HHH
HHH

HHHj

HH
HHH

HHHHj
A⊗K⊗B ⊗K A⊗ A⊗B ⊗B-

1⊗η⊗1⊗η

?

1⊗τ⊗1

?

1⊗τ⊗1

?

∇⊗∇

HH
HHH

HHHHj
K⊗K⊗ A⊗B K⊗ A⊗K⊗B-1⊗τ⊗1

?

A⊗B ⊗ A⊗B A⊗ A⊗B ⊗B-1⊗τ⊗1
A⊗B.-∇⊗∇?

η⊗η⊗12

?

η⊗1⊗η⊗1

�
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2.2. Tensor algebras.

Definition 2.4. Let K be a commutative ring. Let V be a K-module. A K-algebra T (V )
together with a homomorphism of K-modules ι : V −→ T (V ) is called a tensor algebra over
V if for each K-algebra A and for each homomorphism of K-modules f : V −→ A there exists
a unique homomorphism of K-algebras g : T (V ) −→ A such that the diagram

V T (V )-ι

f
@

@
@

@@R
A
?

g

commutes.
Note: If you want to define a homomorphism g : T (V ) −→ A with a tensor algebra as domain
you should define it by giving a homomorphism of K-modules defined on V .

Lemma 2.5. A tensor algebra (T (V ), ι) defined by V is unique up to a unique isomorphism.

Proof. Let (T (V ), ι) and (T ′(V ), ι′) be tensor algebras over V . Then

V

ι

�
���

���
���

ι′
�

�
�

��	

ι
@

@
@

@@R

ι′

H
HHH

HHH
HHj

T (V ) T ′(V )-h -k T (V ) T ′(V )-h

implies k = h−1. �

Proposition 2.6. (Rules of computation in a tensor algebra) Let (T (V ), ι) be the tensor
algebra over V . Then we have

(1) ι : V −→ T (V ) is injective (so we may identify the elements ι(v) and v for all v ∈ V ),
(2) T (V ) = {

∑
n,i vi1 · . . . · vin|i = (i1, . . . , in) multiindex of length n}, where vij ∈ V ,

(3) if f : V −→ A is a homomorphism of K-modules, A is a K-algebra, and g : T (V )
−→ A is the induced homomorphism of K-algebras, then

g(
∑
n,i

vi1 · . . . · vin) =
∑
n,i

f(vi1) · . . . · f(vin).

Proof. (1) Use the embedding homomorphism j : V −→ D(V ), where D(V ) is defined as in
2.1 (3) to construct g : T (V ) −→ D(V ) such that g ◦ ι = j. Since j is injective so is ι.
(2) Let B := {

∑
n,i vi1 · . . . · vin|i = (i1, . . . , in) multiindex of length n}. Obviously B is the

subalgebra of T (V ) generated by the elements of V . Let j : B −→ T (V ) be the embedding
homomorphism. Then ι : V −→ T (V ) factors through a K-module homomorphism ι′ : V
−→ B. The following diagram

V B-ι′ T (V )-j

B T (V )-j

ι′
@

@
@

@@R ?

jpp
�

�
�

��	

induces a unique p with p ◦ j ◦ ι′ = p ◦ ι = ι′ since ι′ is a homomorphism of K-modules.
Because of jp ◦ ι = j ◦ ι′ = ι = idT (V ) ◦ι we get jp = idT (V ), hence the embedding j is
surjective and thus j is the identity.
(3) is precisely the definition of the induced homomorphism. �
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Proposition 2.7. Given a K-module V . Then there exists a tensor algebra (T (V ), ι).

Proof. Define T n(V ) := V ⊗ . . . ⊗ V = V ⊗n to be the n-fold tensor product of V . Define
T 0(V ) := K and T 1(V ) := V . We define

T (V ) :=
⊕
i≥0

T i(V ) = K⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . . .

The components T n(V ) of T (V ) are called homogeneous components.
The canonical isomorphisms Tm(V )⊗ T n(V ) ∼= Tm+n(V ) taken as multiplication

∇ : Tm(V )⊗ T n(V ) −→ Tm+n(V )
∇ : T (V )⊗ T (V ) −→ T (V )

and the embedding η : K = T 0(V ) −→ T (V ) induce the structure of a K-algebra on T (V ).
Furthermore we have the embedding ι : V −→ T 1(V ) ⊆ T (V ).
We have to show that (T (V ), ι) is a tensor algebra. Let f : V −→ A be a homomorphism of
K-modules. Each element in T (V ) is a sum of decomposable tensors v1 ⊗ . . . ⊗ vn. Define
g : T (V ) −→ A by g(v1 ⊗ . . . ⊗ vn) := f(v1) . . . f(vn) (and (g : T 0(V ) −→ A) = (η : K
−→ A)). By induction one sees that g is a homomorphism of algebras. Since (g : T 1(V )
−→ A) = (f : V −→ A) we get g ◦ ι = f . If h : T (V ) −→ A is a homomorphism of algebras
with h ◦ ι = f we get h(v1 ⊗ . . .⊗ vn) = h(v1) . . . h(vn) = f(v1) . . . f(vn) hence h = g. �

Problem 2.2. (1) Let X be a set and V := KX be the free K-module over X. Show that
X −→ V −→ T (V ) defines a free algebra over X, i.e. for every K-algebra A and every map
f : X −→ A there is a unique homomorphism of K-algebras g : T (V ) −→ A such that the
diagram

X T (V )-

f
@

@
@

@@R
A
?

g

commutes.
We write K〈X〉 := T (KX) and call it the polynomial ring over K in the non-commuting
variables X.
(2) Let T (V ) and ι : V −→ T (V ) be a tensor algebra. Regard V as a subset of T (V ) by
ι. Show that there is a unique homomorphism of algebras ∆ : T (V ) −→ T (V ) ⊗ T (V ) with
∆(v) = v ⊗ 1 + 1⊗ v for all v ∈ V .
(3) Show that (∆⊗ 1)∆ = (1⊗∆)∆ : T (V ) −→ T (V )⊗ T (V )⊗ T (V ).
(4) Show that there is a unique homomorphism of algebras ε : T (V ) −→ K with ε(v) = 0 for
all v ∈ V .
(5) Show that (ε⊗ 1)∆ = (1⊗ ε)∆ = idT (V ).
(6) Show that there is a unique homomorphism of algebras S : T (V ) −→ T (V )op with
S(v) = −v. (T (V )op is the opposite algebra of T (V ) with multiplication s ∗ t := ts for all
s, t ∈ T (V ) = T (V )op and where st denotes the product in T (V ).)
(7) Show that the diagrams

T (V ) K-ε T (V )-η

T (V )⊗ T (V ) T (V )⊗ T (V )-1⊗S
S⊗1

?

∆
6
∇

commute.
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2.3. Symmetric algebras.

Definition 2.8. Let K be a commutative ring. Let V be a K-module. A K-algebra S(V )
together with a homomorphism of K-modules ι : V −→ S(V ), such that ι(v)·ι(v′) = ι(v′)·ι(v)
for all v, v′ ∈ V , is called a symmetric algebra over V if for each K-algebra A and for each
homomorphism of K-modules f : V −→ A, such that f(v)·f(v′) = f(v′)·f(v) for all v, v′ ∈ V ,
there exists a unique homomorphism of K-algebras g : S(V ) −→ A such that the diagram

V S(V )-ι

f
@

@
@

@@R
A
?

g

commutes.
Note: If you want to define a homomorphism g : S(V ) −→ A with a symmetric algebra as
domain you should define it by giving a homomorphism of K-modules f : V −→ A satisfying
f(v) · f(v′) = f(v′) · f(v) for all v, v′ ∈ V .

Lemma 2.9. A symmetric algebra (S(V ), ι) defined by V is unique up to a unique isomor-
phism.

Proof. Let (S(V ), ι) and (S ′(V ), ι′) be symmetric algebras over V . Then

V

ι

�
���

���
���

ι′
�

�
�

��	

ι
@

@
@

@@R

ι′

H
HHH

HHH
HHj

S(V ) S ′(V )-h -k S(V ) S ′(V )-h

implies k = h−1. �

Proposition 2.10. (Rules of computation in a symmetric algebra) Let (S(V ), ι) be the
symmetric algebra over V . Then we have

(1) ι : V −→ S(V ) is injective (we will identify the elements ι(v) and v for all v ∈ V ),
(2) S(V ) = {

∑
n,i vi1 · . . . · vin|i = (i1, . . . , in) multiindex of length n},

(3) if f : V −→ A is a homomorphism of K-modules satisfying f(v) · f(v′) = f(v′) · f(v)
for all v, v′ ∈ V , A is a K-algebra, and g : S(V ) −→ A is the induced homomorphism
K-algebras, then

g(
∑
n,i

vi1 · . . . · vin) =
∑
n,i

f(vi1) · . . . · f(vin).

Proof. (1) Use the embedding homomorphism j : V −→ D(V ), where D(V ) is the commuta-
tive algebra defined in 2.1 (3) to construct g : S(V ) −→ D(V ) such that g ◦ ι = j. Since j is
injective so is ι.
(2) Let B := {

∑
n,i vi1 · . . . · vin|i = (i1, . . . , in) multiindex of length n}. Obviously B is the

subalgebra of S(V ) generated by the elements of V . Let j : B −→ S(V ) be the embedding
homomorphism. Then ι : V −→ S(V ) factors through a K-module homomorphism ι′ : V
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−→ B. The following diagram

V B-ι′ S(V )-j

B S(V )-j

ι′
@

@
@

@@R ?

jpp
�

�
�

��	

induces a unique p with p ◦ j ◦ ι′ = p ◦ ι = ι′ since ι′ is a homomorphism of K-modules
satisfying ι′(v) · ι′(v′) = ι′(v′) · ι′(v) for all v, v′ ∈ V . Because of jp ◦ ι = j ◦ ι′ = ι = idS(V ) ◦ι
we get jp = idS(V ), hence the embedding j is surjective and thus the identity.
(3) is precisely the definition of the induced homomorphism. �

Proposition 2.11. Let V be a K-module. The symmetric algebra (S(V ), ι) is commutative
and satisfies the following universal property:
for each commutative K-algebra A and for each homomorphism of K-modules f : V −→ A
there exists a unique homomorphism of K-algebras g : S(V ) −→ A such that the diagram

V S(V )-ι

f
@

@
@

@@R
A
?

g

commutes.

Proof. Commutativity follows from the commutativity of the generators: vv′ = v′v which
carries over to the elements of the form

∑
n,i vi1 · . . . ·vin . The universal property follows since

the defining condition f(v) ·f(v′) = f(v′) ·f(v) for all v, v′ ∈ V is automatically satisfied. �

Proposition 2.12. Given a K-module V . Then there exists a symmetric algebra (S(V ), ι).

Proof. Define S(V ) := T (V )/I where I = 〈vv′−v′v|v, v′ ∈ V 〉 is the two-sided ideal generated
by the elements vv′ − v′v. Let ι be the canonical map V −→ T (V ) −→ S(V ). Then the
universal property is easily verified by the homomorphism theorem for algebras. �

Problem 2.3. (1) Let X be a set and V := KX be the free K-module over X. Show that
X −→ V −→ S(V ) defines a free commutative algebra over X, i.e. for every commutative
K-algebra A and every map f : X −→ A there is a unique homomorphism of K-algebras
g : S(V ) −→ A such that the diagram

X S(V )-

f
@

@
@

@@R
A
?

g

commutes.
The algebra K[X] := S(KX) is called the polynomial ring over K in the (commuting) vari-
ables X.
(2) Let S(V ) and ι : V −→ S(V ) be a symmetric algebra. Show that there is a unique
homomorphism of algebras ∆ : S(V ) −→ S(V ) ⊗ S(V ) with ∆(v) = v ⊗ 1 + 1 ⊗ v for all
v ∈ V .
(3) Show that (∆⊗ 1)∆ = (1⊗∆)∆ : S(V ) −→ S(V )⊗ S(V )⊗ S(V ).
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(4) Show that there is a unique homomorphism of algebras ε : S(V ) −→ K with ε(v) = 0 for
all v ∈ V .
(5) Show that (ε⊗ 1)∆ = (1⊗ ε)∆ = idS(V ).
(6) Show that there is a unique homomorphism of algebras S : S(V ) −→ S(V ) with S(v) =
−v.
(7) Show that the diagrams

S(V ) K-ε S(V )-η

S(V )⊗ S(V ) S(V )⊗ S(V )-1⊗S
S⊗1

?

∆
6
∇

commute.

2.4. Exterior algebras.

Definition 2.13. Let K be a commutative ring. Let V be a K-module. A K-algebra E(V )
together with a homomorphism of K-modules ι : V −→ E(V ), such that ι(v)2 = 0 for all
v ∈ V , is called an exterior algebra or Grassmann algebra over V if for each K-algebra A
and for each homomorphism of K-modules f : V −→ A, such that f(v)2 = 0 for all v ∈ V ,
there exists a unique homomorphism of K-algebras g : E(V ) −→ A such that the diagram

V E(V )-ι

f
@

@
@

@@R
A
?

g

commutes.
The multiplication in E(V ) is usually denoted by u ∧ v.
Note: If you want to define a homomorphism g : E(V ) −→ A with an exterior algebra as
domain you should define it by giving a homomorphism of K-modules defined on V satisfying
f(v)2 = 0 for all v, v′ ∈ V .

Problem 2.4. (1) Let f : V −→ A be a K-module homomorphism satisfying f(v)2 = 0 for
all v ∈ V . Then f(v)f(v′) = −f(v′)f(v) for all v, v′ ∈ V .
(2) Let 2 be invertible in K (e.g. K a field of characteristic 6= 2). Let f : V −→ A be a K-
module homomorphism satisfying f(v)f(v′) = −f(v′)f(v) for all v, v′ ∈ V . Then f(v)2 = 0
for all v ∈ V .

Lemma 2.14. An exterior algebra (E(V ), ι) defined by V is unique up to a unique isomor-
phism.

Proof. Let (E(V ), ι) and (E ′(V ), ι′) be exterior algebras over V . Then

V

ι

��
���

�����

ι′
�

�
�

��	

ι
@

@
@

@@R

ι′

HH
HHH

HHHHj
E(V ) E ′(V )-h -k E(V ) E ′(V )-h

implies k = h−1. �

Proposition 2.15. (Rules of computation in an exterior algebra) Let (E(V ), ι) be the exte-
rior algebra over V . Then we have

(1) ι : V −→ E(V ) is injective (we will identify the elements ι(v) and v for all v ∈ V ),
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(2) E(V ) = {
∑

n,i vi1 ∧ . . . ∧ vin|i = (i1, . . . , in) multiindex of length n},
(3) if f : V −→ A is a homomorphism of K-modules satisfying f(v) · f(v′) = −f(v′) · f(v)

for all v, v′ ∈ V , A is a K-algebra, and g : E(V ) −→ A is the induced homomorphism
K-algebras, then

g(
∑
n,i

vi1 ∧ . . . ∧ vin) =
∑
n,i

f(vi1) · . . . · f(vin).

Proof. (1) Use the embedding homomorphism j : V −→ D(V ), where D(V ) is the algebra
defined in 2.1 (3) to construct g : E(V ) −→ D(V ) such that g ◦ ι = j. Since j is injective so
is ι.
(2) Let B := {

∑
n,i vi1 ∧ . . .∧ vin|i = (i1, . . . , in) multiindex of length n}. Obviously B is the

subalgebra of E(V ) generated by the elements of V . Let j : B −→ E(V ) be the embedding
homomorphism. Then ι : V −→ E(V ) factors through a K-module homomorphism ι′ : V
−→ B. The following diagram

V B-ι′ E(V )-j

B E(V )-j

ι′
@

@
@

@@R ?

jpp
�

�
�

��	

induces a unique p with p ◦ j ◦ ι′ = p ◦ ι = ι′ since ι′ is a homomorphism of K-modules
satisfying ι′(v) · ι′(v′) = −ι′(v′) · ι′(v) for all v, v′ ∈ V . Because of jp◦ ι = j ◦ ι′ = ι = idE(V ) ◦ι
we get jp = idE(V ), hence the embedding j is surjective and thus j is the identity.
(3) is precisely the definition of the induced homomorphism. �

Proposition 2.16. Given a K-module V . Then there exists an exterior algebra (E(V ), ι).

Proof. Define E(V ) := T (V )/I where I = 〈v2|v ∈ V 〉 is the two-sided ideal generated by the
elements v2. Let ι be the canonical map V −→ T (V ) −→ E(V ). Then the universal property
is easily verified by the homomorphism theorem for algebras. �

Problem 2.5. (1) Let V be a finite dimensional vector space of dimension n. Show that
E(V ) is finite dimensional of dimension 2n. (Hint: The homogeneous components Ei(V )

have dimension
(

n
i

)
.

(2) Show that the symmetric group Sn operates (from the left) on T n(V ) by σ(v1⊗. . .⊗vn) =
vσ−1(1) ⊗ . . .⊗ vσ−1(n) with σ ∈ Sn and vi ∈ V .

(3) A tensor a ∈ T n(V ) is called a symmetric tensor if σ(a) = a for all σ ∈ Sn. Let Ŝn(V )
be the subspace of symmetric tensors in T n(V ).
a) Show that S : T n(V ) 3 a 7→

∑
σ∈Sn

σ(a) ∈ T n(V ) is a linear map (symmetrization).

b) Show that S has its image in Ŝn(V ).

c) Show that Im(S) = Ŝn(V ) if n! is invertible in K.

d) Show that Ŝn(V ) ↪→ T n(V )
ν→ Sn(V ) is an isomorphism if n! is invertible in K and

ν : T n(V ) −→ Sn(V ) is the restriction of ν : T (V ) −→ S(V ), where S(V ) is the symmetric
algebra.
(4) A tensor a ∈ T n(V ) is called an antisymmetric tensor if σ(a) = ε(σ)a for all σ ∈ Sn
where ε(σ) is the sign of the permutation σ. Let Ên(V ) be the subspace of antisymmetric
tensors in T n(V ).
a) Show that E : T n(V ) 3 a 7→

∑
σ∈Sn

ε(σ)σ(a) ∈ T n(V ) is a K-module homomorphism
(antisymmetrization).
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b) Show that E has its image in Ên(V ).

c) Show that Im(E) = Ên(V ) if n! is invertible in K.

d) Show that Ên(V ) ↪→ T n(V )
ν→ En(V ) is an isomorphism if n! is invertible in K and

ν : T n(V ) −→ En(V ) is the restriction of ν : T (V ) −→ E(V ), where E(V ) is the exterior
algebra.

2.5. Left A-modules.

Definition 2.17. Let A be a K-algebra. A left A-module is a K-module M together with a
homomorphism µM : A⊗M −→M , such that the diagrams

A⊗M M-
µ

A⊗ A⊗M A⊗M-id⊗µ

?

∇⊗id

?

µ

and

M ∼= K⊗M A⊗M-η⊗id

M
?

µid

H
HHH

HHH
HHj

commute.
Let AM and AN be left A-modules and let f : M −→ N be a K-linear map. The map f is
called a homomorphism of left A-modules if the diagram

A⊗N N-
µN

A⊗M M-µM

?

1⊗f

?

f

commutes.

Problem 2.6. Show that an Abelian group M is a left module over the ring A if and only
if M is a K-module and a left A-module in the sense of Definition 2.17.

2.6. Coalgebras.

Definition 2.18. A K-coalgebra is a K-module C together with a comultiplication or diagonal
∆ : C −→ C ⊗ C (K-module homomorphism) that is coassociative:

C ⊗ C C ⊗ C ⊗ C-
id⊗∆

C C ⊗ C-∆

?

∆

?

∆⊗id
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and a counit or augmentation ε : C −→ K (K-module homomorphism):

C C ⊗ C-∆

?

∆

?

id⊗ε

C ⊗ C K⊗ C ∼= C ∼= C ⊗K.-
ε⊗id

id

HHHH
HHH

HHj

A K-coalgebra C is cocommutative if the following diagram commutes

C ⊗ C C ⊗ C-τ

C

∆

�
�

�
���

∆

A
A
A
AAU

Let C and D be K-coalgebras. A homomorphism of coalgebras f : C −→ D is a K-module
homomorphism such that the following diagrams commute:

C ⊗ C D ⊗D-
f⊗f

C D-f

?

∆C

?

∆D

and

K

εC

A
A
A
AAU

εD

�
�

�
���

C D.-f

Remark 2.19. Obviously the composition of two homomorphisms of coalgebras is again a
homomorphism of coalgebras. Furthermore the identity map is a homomorphism of coalge-
bras.

Problem 2.7. (1) Show that V ⊗V ∗ is a coalgebra for every finite dimensional vector space
V over a field K if the comultiplication is defined by ∆(v⊗v∗) :=

∑n
i=1 v⊗v∗i ⊗vi⊗v∗ where

{vi} and {v∗i } are dual bases of V resp. V ∗.
(2) Show that the free K-modules KX with the basisX and the comultiplication ∆(x) = x⊗x
is a coalgebra. What is the counit? Is the counit unique?
(3) Show that K⊕ V with ∆(1) = 1⊗ 1, ∆(v) = v ⊗ 1 + 1⊗ v defines a coalgebra.
(4) Let C and D be coalgebras. Then C ⊗ D is a coalgebra with the comultiplication
∆C⊗D := (1C ⊗ τ ⊗ 1D)(∆C ⊗∆D) : C ⊗D −→ C ⊗D⊗C ⊗D and counit ε = εC⊗D : C ⊗D
−→ K⊗K −→ K. (The proof is analogous to the proof of Lemma 2.3.)

To describe the comultiplication of a K-coalgebra in terms of elements we introduce a no-
tation first introduced by Sweedler similar to the notation ∇(a⊗ b) = ab used for algebras.
Instead of ∆(c) =

∑
ci ⊗ c′i we write

∆(c) =
∑

c(1) ⊗ c(2).

Observe that only the complete expression on the right hand side makes sense, not the
components c(1) or c(2) which are not considered as families of elements of C. This notation
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alone does not help much in the calculations we have to perform later on. So we introduce
a more general notation.

Definition 2.20. (Sweedler Notation) Let M be an arbitrary K-module and C be a K-
coalgebra. Then there is a bijection between all multilinear maps

f : C × . . .× C −→M

and all linear maps

f ′ : C ⊗ . . .⊗ C −→M.

These maps are associated to each other by the formula

f(c1, . . . , cn) = f ′(c1 ⊗ . . .⊗ cn).
For c ∈ C we define ∑

f(c(1), . . . , c(n)) := f ′(∆n−1(c)),

where ∆n−1 denotes the n− 1-fold application of ∆, for example ∆n−1 = (∆⊗ 1⊗ . . .⊗ 1) ◦
. . . ◦ (∆⊗ 1) ◦∆.
In particular we obtain for the bilinear map ⊗ : C × C 3 (c, d) 7→ c ⊗ d ∈ C ⊗ C (with
associated identity map) ∑

c(1) ⊗ c(2) = ∆(c),

and for the multilinear map ⊗2 : C × C × C −→ C ⊗ C ⊗ C∑
c(1) ⊗ c(2) ⊗ c(3) = (∆⊗ 1)∆(c) = (1⊗∆)∆(c).

With this notation one verifies easily∑
c(1) ⊗ . . .⊗∆(c(i))⊗ . . .⊗ c(n) =

∑
c(1) ⊗ . . .⊗ c(n+1)

and ∑
c(1) ⊗ . . .⊗ ε(c(i))⊗ . . .⊗ c(n) =

∑
c(1) ⊗ . . .⊗ 1⊗ . . .⊗ c(n−1)

=
∑
c(1) ⊗ . . .⊗ c(n−1)

This notation and its application to multilinear maps will also be used in more general
contexts like comodules.

Proposition 2.21. Let C be a coalgebra and A an algebra. Then the composition f ∗ g :=
∇A(f ⊗ g)∆C defines a multiplication

Hom(C,A)⊗ Hom(C,A) 3 f ⊗ g 7→ f ∗ g ∈ Hom(C,A),

such that Hom(C,A) becomes an algebra. The unit element is given by K 3 α 7→ (c 7→
η(αε(c))) ∈ Hom(C,A).

Proof. The multiplication of Hom(C,A) obviously is a bilinear map. The multiplication is
associative since (f ∗ g) ∗ h = ∇A((∇A(f ⊗ g)∆C)⊗ h)∆C = ∇A(∇A⊗ 1)((f ⊗ g)⊗ h)(∆C ⊗
1)∆C = ∇A(1⊗∇A)(f ⊗ (g ⊗ h))(1⊗∆C)∆C = ∇A(f ⊗ (∇A(g ⊗ h)∆C))∆C = f ∗ (g ∗ h).
Furthermore it is unitary with unit 1Hom(C,A) = ηAεC since ηAεC ∗ f = ∇A(ηAεC ⊗ f)∆C =
∇A(ηA ⊗ 1A)(1K ⊗ f)(εC ⊗ 1C)∆C = f and similarly f ∗ ηAεC = f . �

Definition 2.22. The multiplication ∗ : Hom(C,A) ⊗ Hom(C,A) −→ Hom(C,A) is called
convolution.

Corollary 2.23. Let C be a K-coalgebra. Then C∗ = HomK(C,K) is an K-algebra.

Proof. Use that K itself is a K-algebra. �



26 Advanced Algebra – Pareigis

Remark 2.24. If we write the evaluation as C∗ ⊗ C 3 a⊗ c 7→ 〈a, c〉 ∈ K then an element
a ∈ C∗ is completely determined by the values of 〈a, c〉 for all c ∈ C. So the product of a
and b in C∗ is uniquely determined by the formula

〈a ∗ b, c〉 = 〈a⊗ b,∆(c)〉 =
∑

a(c(1))b(c(2)).

The unit element of C∗ is ε ∈ C∗.

Lemma 2.25. Let K be a field and A be a finite dimensional K-algebra. Then A∗ =
HomK(A,K) is a K-coalgebra.

Proof. Define the comultiplication on A∗ by

∆ : A∗
∇∗−→ (A⊗ A)∗

can−1

−→ A∗ ⊗ A∗.
The canonical map can : A∗⊗A∗ −→ (A⊗A)∗ is invertible, since A is finite dimensional. By
a diagrammatic proof or by calculation with elements it is easy to show that A∗ becomes a
K-coalgebra. �

Remark 2.26. If K is an arbitrary commutative ring and A is a K-algebra, then A∗ =
HomK(A,K) is a K-coalgebra if A is a finitely generated projective K-module.

Problem 2.8. Find sufficient conditions for an algebra A resp. a coalgebra C such that
Hom(A,C) becomes a coalgebra with co-convolution as comultiplication.

2.7. Comodules.

Definition 2.27. Let C be a K-coalgebra. A left C-comodule is a K-module M together
with a K-module homomorphism δM : M −→ C ⊗M , such that the diagrams

C ⊗M C ⊗ C ⊗M-
id⊗δ

M C ⊗M-δ

?

δ

?

∆⊗id

and
M

?

δ

C ⊗M K⊗M ∼= M.-
ε⊗id

id

HHH
HHH

HHHj

commute.
Let CM and CN be C-comodules and let f : M −→ N be a K-module homomorphism. The
map f is called a homomorphism of comodules if the diagram

N C ⊗N-
δN

M C ⊗M-δM

?

f

?

1⊗f

commutes.
Let N be an arbitrary K-module and M be a C-comodule. Then there is a bijection between
all multilinear maps

f : C × . . .× C ×M −→ N
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and all linear maps

f ′ : C ⊗ . . .⊗ C ⊗M −→ N.

These maps are associated to each other by the formula

f(c1, . . . , cn,m) = f ′(c1 ⊗ . . .⊗ cn ⊗m).

For m ∈M we define ∑
f(m(1), . . . ,m(n),m(M)) := f ′(δn(m)),

where δn denotes the n-fold application of δ, i.e. δn = (1⊗ . . .⊗ 1⊗ δ) ◦ . . . ◦ (1⊗ δ) ◦ δ.
In particular we obtain for the bilinear map ⊗ : C ×M −→ C ⊗M∑

m(1) ⊗m(M) = δ(m),

and for the multilinear map ⊗2 : C × C ×M −→ C ⊗ C ⊗M∑
m(1) ⊗m(2) ⊗m(M) = (1⊗ δ)δ(c) = (∆⊗ 1)δ(m).

Problem 2.9. Show that a finite dimensional vector space V is a comodule over the coalge-
bra V ⊗V ∗ as defined in exercise 2.7 (1) with the coaction δ(v) :=

∑
v⊗v∗i ⊗vi ∈ (V ⊗V ∗)⊗V

where
∑
v∗i ⊗ vi is the dual basis of V in V ∗ ⊗ V .

Theorem 2.28. (Fundamental Theorem for Comodules) Let K be a field. Let M be a left
C-comodule and let m ∈ M be given. Then there exists a finite dimensional subcoalgebra
C ′ ⊆ C and a finite dimensional C ′-comodule M ′ with m ∈ M ′ ⊆ M where M ′ ⊆ M is a
K-submodule, such that the diagram

M C ⊗M-
δ

M ′ C ′ ⊗M ′-δ′

? ?

commutes.

Corollary 2.29. (1) Each element c ∈ C of a coalgebra is contained in a finite dimensional
subcoalgebra of C.
(2) Each element m ∈M of a comodule is contained in a finite dimensional subcomodule of
M .

Corollary 2.30. (1) Each finite dimensional subspace V of a coalgebra C is contained in a
finite dimensional subcoalgebra C ′ of C.
(2) Each finite dimensional subspace V of a comodule M is contained in a finite dimensional
subcomodule M ′ of M .

Corollary 2.31. (1) Each coalgebra is a union of finite dimensional subcoalgebras.
(2) Each comodule is a union of finite dimensional subcomodules.

Proof. (of the Theorem) We can assume that m 6= 0 for else we can use M ′ = 0 and C ′ = 0.
Under the representations of δ(m) ∈ C ⊗M as finite sums of decomposable tensors pick one

δ(m) =
s∑
i=1

ci ⊗mi
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of shortest length s. Then the families (ci|i = 1, . . . , s) and (mi|i = 1, . . . , s) are linearly
independent. Choose coefficients cij ∈ C such that

∆(cj) =
t∑
i=1

ci ⊗ cij, ∀j = 1, . . . , s,

by suitably extending the linearly independent family (ci|i = 1, . . . , s) to a linearly indepen-
dent family (ci|i = 1, . . . , t) and t ≥ s.
We first show that we can choose t = s. By coassociativity we have

∑s
i=1 ci ⊗ δ(mi) =∑s

j=1 ∆(cj)⊗mj =
∑s

j=1

∑t
i=1 ci⊗cij⊗mj. Since the ci and the mj are linearly independent

we can compare coefficients and get

(3) δ(mi) =
s∑
j=1

cij ⊗mj, ∀i = 1, . . . , s

and 0 =
∑s

j=1 cij ⊗mj for i > s. The last statement implies

cij = 0, ∀i > s, j = 1, . . . , s.

Hence we get t = s and

∆(cj) =
s∑
i=1

ci ⊗ cij, ∀j = 1, . . . , s.

Define finite dimensional subspaces C ′ = 〈cij|i, j = 1, . . . , s〉 ⊆ C and M ′ = 〈mi|i =
1, . . . , s〉 ⊆ M . Then by (3) we get δ : M ′ −→ C ′ ⊗ M ′. We show that m ∈ M ′ and
that the restriction of ∆ to C ′ gives a K-module homomorphism ∆ : C ′ −→ C ′ ⊗ C ′ so that
the required properties of the theorem are satisfied. First observe that m =

∑
ε(ci)mi ∈M ′

and cj =
∑
ε(ci)cij ∈ C ′. Using coassociativity we get∑s

i,j=1 ci ⊗∆(cij)⊗mj =
∑s

k,j=1 ∆(ck)⊗ ckj ⊗mj

=
∑s

i,j,k=1 ci ⊗ cik ⊗ ckj ⊗mj

hence

∆(cij) =
s∑

k=1

cik ⊗ ckj.

�

Remark 2.32. We give a sketch of a second proof of Theorem 2.28 which is somewhat more
technical. Since C is a K-coalgebra, the dual C∗ is an algebra. The comodule structure
δ : M −→ C⊗M leads to a module structure by ρ = (ev⊗1)(1⊗ δ) : C∗⊗M −→ C∗⊗C⊗M
−→ M . Consider the submodule N := C∗m. Then N is finite dimensional, since c∗m =∑n

i=1〈c∗, ci〉mi for all c∗ ∈ C∗ where
∑n

i=1 ci⊗mi = δ(m). Observe that C∗m is a subspace of
the space generated by the mi. But it does not depend on the choice of the mi. Furthermore
if we take δ(m) =

∑
ci ⊗mi with a shortest representation then the mi are in C∗m since

c∗m =
∑
〈c∗, ci〉mi = mi for c∗ an element of a dual basis of the ci.

N is a C-comodule since δ(c∗m) =
∑
〈c∗, ci〉δ(mi) =

∑
〈c∗, ci(1)〉ci(2) ⊗mi ∈ C ⊗ C∗m.

Now we construct a subcoalgebra D of C such that N is a D-comodule with the induced
coaction. Let D := N ⊗N∗. By 2.9 N is a comodule over the coalgebra N ⊗N∗. Construct
a K-module homomorphism φ : D −→ C by n⊗ n∗ 7→

∑
n(1)〈n∗, n(N)〉. By definition of the
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dual basis we have n =
∑
ni〈n∗i , n〉. Thus we get

(φ⊗ φ)∆D(n⊗ n∗) = (φ⊗ φ)(
∑
n⊗ n∗i ⊗ ni ⊗ n∗)

=
∑
n(1)〈n∗i , n(N)〉 ⊗ ni(1)〈n∗, ni(N)〉

=
∑
n(1) ⊗ ni(1)〈n∗, ni(N)〉〈n∗i , n(N)〉

=
∑
n(1) ⊗ n(2)〈n∗, n(N)〉 =

∑
∆C(n(1))〈n∗, n(N)〉

= ∆Cφ(n⊗ n∗).
Furthermore εCφ(n⊗ n∗) = ε(

∑
n(1)〈n∗, n(N)〉) = 〈n∗,

∑
ε(n(1))n(N)〉 = 〈n∗, n〉 = ε(n⊗ n∗).

Hence φ : D −→ C is a homomorphism of coalgebras, D is finite dimensional and the image
C ′ := φ(D) is a finite dimensional subcoalgebra of C. Clearly N is also a C ′-comodule, since
it is a D-comodule.
Finally we show that the D-comodule structure on N if lifted to the C-comodule structure
coincides with the one defined on M . We have

δC(c∗m) = δC(
∑
〈c∗,m(1)〉m(M)) =

∑
〈c∗,m(1)〉m(2) ⊗m(M)

=
∑
〈c∗,m(1)〉m(2) ⊗mi〈m∗

i ,m(M)〉 =
∑
〈c∗,m(1)〉m(2)〈m∗

i ,m(M)〉 ⊗mi

= (φ⊗ 1)(
∑
〈c∗,m(1)〉m(M) ⊗m∗

i ⊗mi) = (φ⊗ 1)(
∑
c∗m⊗m∗

i ⊗mi)
= (φ⊗ 1)δD(c∗m).
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3. Projective Modules and Generators

3.1. Products and coproducts.

Definition 3.1.
(1) Let (Mi|i ∈ I) be a family of R-modules. An R-module

∏
Mi together with a family

of homomorphisms (pj :
∏
Mi −→ Mj|j ∈ I) is called a (direct) product of the Mi and the

homomorphisms pj :
∏
Mi −→ Mj are called projections, if for each R-module N and for

each family of homomorphisms (fj : N −→Mj|j ∈ I) there is a unique homomorphism f : N
−→

∏
Mi such that

∏
Mi Mj

-
pj

fj

@
@

@
@@R

N

?

f

commute for all j ∈ I.
(2) “The dual notion is called coproduct”: Let (Mi|i ∈ I) be a family of R-modules. An
R-module

∐
Mi together with a family of homomorphisms (ιj : Mj −→

∐
Mi|j ∈ I) is

called a coproduct or direct sum of the Mi and the homomorphisms ιj : Mj −→
∐
Mi are

called injections, if for each R-module N and for each family of homomorphisms (fj : Mj

−→ N |j ∈ I) there is a unique homomorphism f :
∐
Mj −→ N such that

Mj

∐
Mi

-
ιj

fj

@
@

@
@@R
N
?

f

commute for all j ∈ I.

Remark 3.2. An analogous definition can be given for algebras, coalgebras, comodules,
groups, Abelian groups etc.

Note: If you want to define a homomorphism f : N −→
∏
Mi with a product as range

(codomain) you should define it by giving homomorphisms fi : N −→Mi.
If you want to define a homomorphism f :

∐
Mi −→ N with a coproduct as domain you

should define it by giving homomorphisms fi : Mi −→ N .

Lemma 3.3. Products and coproducts are unique up to a unique isomorphism.

Proof. analogous to Proposition1.6. �

Proposition 3.4. (Rules of computation in a product of R-modules) Let (
∏
Mi, (pj)) be a

product of the family of R-modules (Mi)i∈I .

(1) There is a bijection of sets∏
Mi 3 a 7→ (ai) := (pi(a)) ∈

{
(ai)|∀i ∈ I : ai ∈Mi

}
such that a+ b 7→ (ai + bi) and ra 7→ (rai).

(2) If (fi : N −→ Mi) is a family of homomorphisms and f : N −→
∏
Mi is the induced

homomorphism then the family associated to f(n) ∈
∏
Mi is (fi(n)), i.e. (pi(f(n))) =

(fi(n)).
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Proof. Let a family (ai|i ∈ I) be given. Form ϕi : {1} −→ Mi with ϕi(1) = ai for all i ∈ I.
Construct gi ∈ HomR(R,Mi) such that the diagrams

{1} R-

ϕi
@

@
@

@@R
Mi

?

gi

commute (R is the free R-module over the set {1}). Then there is a unique g : R −→
∏
Mi

with

∏
Mi Mj

-
pj

gj
@

@
@

@@R

R

?

g

for all j ∈ I. The homomorphism g is completely and uniquely determined by g(1) =: a and
by the commutative diagram

{1} R-

∏
Mi

@
@

@
@@R

Mj

ϕj

A
A
A
A
A
A
A
A
A
AAU

?

g

?

pj

@@R

?

gj

��	

where pj(a) = ϕj(1) = aj. So we have found a ∈
∏
Mi with (pi(a)) = (ai). Hence the map

given in the proposition is surjective. Given a and b in
∏
Mi with (pi(a)) = (pi(b)) then

ϕj(1) := pj(a) and ψj(1) := pj(b) define equal maps ϕj = ψj, hence the induced maps gj : R
−→Mj and hj : R −→Mj are equal so that g = h and hence a = g(1) = h(1) = b. Hence the
map given in the proposition is bijective.
Since a is uniquely determined by the pj(a) = aj we have pj(a+ b) = pj(a) + pj(b) = aj + bj
and pj(ra) = rpj(a) = raj
The last statement is pif = fi. �

Remark 3.5. Observe that this construction can always be performed if there is a free
object (algebra, coalgebra, comodule, group, Abelian group, etc.) R over the set {1} i.e. if

{1} R-

@
@

@
@@R

T
?

has a universal solution.

Proposition 3.6. (Rules of computation in a coproduct of R-modules) Let (
∐
Mi, (ιj)) be

a coproduct of the family of R-modules (Mi)i∈I .

(1) The homomorphisms ιj : Mj −→
∐
Mi are injective.

(2) For each element a ∈
∐
Mi there are finitely many ai ∈ Mi with a =

∑n
i=1 ιi(ai).

The ai ∈Mi are uniquely determined by a.
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Proof. (1) To show the injectivity of ιi define fi : Mi −→Mj by

fi :=

{
id, i = j,
0, else.

Then the diagram

Mi

∐
Mj

-ιi

fi

@
@

@
@@R
Mj

?

f

defines a uniquely determined homomorphism f . For i = j this implies fιi = idMi
, hence ιi

is injective.

(2) Define M̃ :=
∑
ιj(Mj) ⊆

∐
Mj. Then the following diagram commutes with both 0 and

ν
Mi

∐
Mj

-ιi

∐
Mj/M̃

0
@

@
@

@@R ?

0

?

ν

Hence ν = 0 and
∐
Mj = M̃ . Let a =

∑
ιj(aj). Define f as in (1). Then we have

f(a) = f(
∑
ιj(aj)) =

∑
fιj(aj) =

∑
fj(aj) = ai, hence the ai are uniquely determined by

a. �

Propositions 3.4 and 3.6 give already an indication of how to construct products and co-
products.

Proposition 3.7. Let (Mi|i ∈ I) be a family of R-modules. Then there exist a product
(
∏
Mi, (pj :

∏
Mi −→Mj|j ∈ I)) and a coproduct (

∐
Mi, (ιj : Mj −→

∏
Mi|j ∈ I)).

Proof. 1. Define ∏
Mi := {a : I −→ ∪i∈IMi| ∀j ∈ I : a(j) = aj ∈Mj}

and pj :
∏
Mi −→ Mj, pj(a) := a(j) = aj ∈ Mj. It is easy to check that

∏
Mi is an

R-module with componentwise operations and that the pj are homomorphisms. If (fj :
N −→ Mj) is a family of homomorphisms then there is a unique map f : N −→

∏
Mi,

f(n) = (fi(n)|i ∈ I) such that pjf = fj for all j ∈ I. The following families are equal:
(pjf(n + n′)) = (fj(n + n′)) = (fj(n) + fj(n

′)) = (pjf(n) + pjf(n′)) = (pj(f(n) + f(n′))),
hence f(n + n′) = f(n) + f(n′). Analogously one shows f(rn) = rf(n). Thus f is a
homomorphism and

∏
Mi is a product.

2. Define ∐
Mi := {a : I −→ ∪i∈IMi|∀j ∈ I : a(j) ∈Mj; a with finite support}

(the notion with finite support means that all but a finite number of the a(j)’s are zero)
and ιj : Mj −→

∐
Mi, ιj(aj)(i) := δijai. Then

∐
Mi ⊆

∏
Mi is a submodule and the ιj

are homomorphisms. Given (fj : Mj −→ N |j ∈ I). Define f(a) = f(
∑
ιiai) =

∑
fιi(ai) =∑

fi(ai). Then f is an R-module homomorphism and we have fιi(ai) = fi(ai) hence fιi = fi.
If gιi = fi for all i ∈ I then g(a) = g(

∑
ιiai) =

∑
gιiai =

∑
fi(ai) hence f = g. �

Proposition 3.8. Let (Mi|i ∈ I) be a family of submodules of M . The following statements
are equivalent:
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(1) (M, (ιi : Mi −→M)) is a coproduct of R-modules.
(2) M =

∑
i∈IMi and (

∑
mi = 0 =⇒ ∀i ∈ I : mi = 0).

(3) M =
∑

i∈IMi and (
∑
mi =

∑
m′
i =⇒ ∀i ∈ I : mi = m′

i).
(4) M =

∑
i∈IMi and ∀i ∈ I : Mi ∩

∑
j 6=i,j∈IMj = 0.

Definition 3.9. Is one of the equivalent conditions of Proposition 3.8 is satisfied then M is
called an internal direct sum of the Mi and we write M = ⊕i∈IMi.

Proof of Proposition 3.8: (1) =⇒ (2): Use the commutative diagram

Mj M-
ιj

M/
∑
Mi

0
@

@
@

@@R ?

0

?

ν

to conclude ν = 0 and M =
∑
Mi. If

∑
mi = 0 then use the diagram

Mj M-
ιj

δjk

@
@

@
@@R
Mk

?

pk

to show 0 = pk(0) = pk(
∑
mj) =

∑
j pkιj(mj) =

∑
j δjk(mj) = mk.

(2) =⇒ (3): trivial.
(3) =⇒ (4): Let mi =

∑
j 6=imj. Then mi = 0 and mj = 0 for all j 6= i.

(4) =⇒ (2): If
∑
mj = 0 then mi =

∑
j 6=i−mj = 0 ∈Mi ∩

∑
j 6=iMj.

(3) =⇒ (1): Define f for the diagram

Mi M-ιi

fi

@
@

@
@@R
N
?

f

by f(
∑
mi) :=

∑
fi(mi). Then f is a well defined homomorphism and we have fιj(mj) =

f(mj) = fj(mj). Furthermore f is uniquely determined since gιj = fj =⇒ g(
∑
mi) =∑

g(mi) =
∑
gιi(mi) =

∑
fi(mi) = f(

∑
mi) =⇒ f = g. �

Proposition 3.10. Let (
∐
Mi, (ιj : Mj −→

∐
i6=jMi)) be a coproduct of R-modules. Then∐

Mi is an internal direct sum of the ιj(Mj).

Proof. ιj is injective =⇒ Mj
∼= ιj(Mj) =⇒

Mj
∼= ιj(Mj)

∐
Mi

-

H
HHH

HHH
HHj

@
@

@
@@R
N
?

defines a coproduct. By 3.8 we have an internal direct sum. �

Definition 3.11. A submodule M ⊆ N is called a direct summand of N if there is a
submodule M ′ ⊆ N such that N = M ⊕M ′ is an internal direct sum.
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Proposition 3.12. For a submodule M ⊆ N the following are equivalent:

(1) M is a direct summand of N .
(2) There is p ∈ HomR(.N, .M) with

(M N-ι
M) = idM .-p

(3) There is f ∈ HomR(.N, .N) with f 2 = f and f(N) = M.

Proof. (1) =⇒ (2): Let M1 := M and M2 ⊆ N with N = M1 ⊕M2. We define p = p1 : N
−→M1 by

Mi N-ιi

δij

@
@

@
@@R
Mj

?

pj

where δij = 0 for i 6= j and δij = idMi
for i = j. Then p1ι1 = δ11 = idM .

(2) =⇒ (3): For f := ιp : N −→ N we have f 2 = ιpιp = ιp = f since pι = id. Furthermore
f(N) = ιp(N) = M since p is surjective.
(3) =⇒ (1): Let M ′ = Ke(f). We first show N = M + M ′. Take n ∈ N . Then we have
n = f(n) + (n − f(n)) with f(n) ∈ M . Since f(n − f(n)) = f(n) − f 2(n) = 0 we get
n − f(n) ∈ Ke(f) = M ′ so that N = M + M ′. Now let n ∈ M ∩M ′. Then f(n) = 0 and
n = f(n′) for n′ ∈ N hence n = f(n′) = f 2(n′) = f(n) = 0. �

Problem 3.1. Discuss the definition and the properties of products of groups.

Problem 3.2. Show that the tensor product of two commutative K-algebras is a coproduct.

Problem 3.3. Show that the disjoint union of two sets is a coproduct.

3.2. Projective modules.

Definition 3.13. An R-module P is called projective if for each epimorphism f : M −→ N
and for each homomorphism g : P −→ N there exists a homomorphism h : P −→ M such
that the diagram

M N-
f

h

�
�

�
��	

P

?

g

commutes.

Example 3.14. All vector spaces are projective. Z/nZ (n > 1) is not a projective Z-module.

Lemma 3.15. Let P = ⊕i∈IPi. P is projective iff all Pi, i ∈ I are projective.

Proof. Let P be projective. We show that Pi is projective. Let f : M −→ N be an epimor-
phism and g : Pi −→ N be a homomorphism. Consider the diagram

Pi P-ιi Pi-pi

M N-f

hιi

@
@

@
@@R ?

h

?

g
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where pi and ιi are projections and injections of the direct sum, in particular piιi = idPi
.

Since f is an epimorphism there is an h : P −→ M with fh = gpi hence g = gpiιi = fhιi.
Thus Pi is projective.
Assume that all Pi are projective. Let f : M −→ N be an epimorphism and g : P −→ N be a
homomorphism. Consider the diagram

Pi P-ιi

M N-f?

hi

?

gh

�
�

�
��	

Since f is surjective there are hi : Pi −→ M , i ∈ I with fhi = gιi. Since P is the coproduct
of the Pi there is a (unique) h : P −→ M with hιi = hi for all i ∈ I. Thus fhιi = fhi = gιi
for all i ∈ I hence fh = g. So P is projective. �

Proposition 3.16. Let P be an R-module. Then the following are equivalent

(1) P is projective.
(2) Each epimorphism f : M −→ P splits, i.e. for each R-module M and each epimor-

phism f : M −→ P there is a homomorphism g : P −→M such that fg = idP .
(3) P is isomorphic to a direct summand of a free R-module RX.

Proof. (1) =⇒ (2): The diagram

M P-
f

g
�

�
�

��	

P

?

idP

implies the existence of g with fg = idP .
(2) =⇒ (3): Let ι : P −→ RP be the free module over (the set) P with ι a map. Then there
is a homomorphism f : RP −→ P such that

P RP-ι

idP

@
@

@
@@R

P
?

f

commutes. Obviously f is surjective. By (2) there is a homomorphism g : P −→ RP with
fg = idP . By 3.12 P is a direct summand of RP (up to an isomorphism).
(3) =⇒ (1): Let f : M −→ N be surjective. Let ι : X −→ RX be a free module and let
g : RX −→ N be a homomorphism. In the following diagram let k = gι : X −→ N . Since f is
surjective there is a map h : X −→M with fh = k. Hence there is a homomorphism l : RX
−→ M with lι = h. This implies flι = fh = k = gι and thus fl = g since RX is free. So
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RX is projective. The transition to a direct summand follows from 3.15.

X RX-ι

M N-f?

h

?

g

@
@

@
@

@
@

@
@R

�
�

�
�

�
�

�
�	

kl

�

3.3. Dual basis.

Remark 3.17. Let PR be a right R-module. Then E := EndR(P.) = HomR(P., P.) is a ring
and P is an E-R-bimodule because of f(pr) = (fp)r. Let P ∗ := HomR(P., R.) be the dual of
P . Then P ∗ = R HomR(EP., RR.)E is an R-E-bimodule. The following maps are bimodule
homomorphisms

ev : RP
∗ ⊗E PR 3 f ⊗ p 7→ f(p) ∈ RRR,

the evaluation homomorphism, and

db : EP ⊗R P ∗
E −→ EEE = E EndR(P.)E

with db(p⊗f)(q) = pf(q), the dual basis homomorphism. We check the bilinearity: ev(fe, p)
= (fe)(p) = f(e(p)) = ev(f, ep) and db(pr, f)(q) = (pr)f(q) = p(rf(q)) = db(p, rf)(q). We
also check that db is a bimodule homomorphism: db(ep ⊗ f)(q) = e(p)f(q) = e(pf(q)) =
e db(p⊗ f)(q) and db(p⊗ fe)(q) = pfe(q) = db(p⊗ f)e(q).

Lemma 3.18. The following diagrams commute

R⊗R P ∗ P ∗-
µ

P ∗ ⊗E P ⊗R P ∗ P ∗ ⊗E E-1⊗ db

?

ev⊗1

?

µ

E ⊗E P P-
µ

P ⊗R P ∗ ⊗E P P ⊗R R-1⊗ ev

?

db⊗1

?

µ

Proof. The proof follows from the associative law: µ(1⊗ db)(f ⊗ p⊗ g)(q) = µ(f ⊗ pg)(q) =
f(pg)(q) = f(pg(q)) = f(p)g(q) = µ(f(p)⊗g)(q) = µ(ev⊗1)(f ⊗p⊗g)(q) and µ(db⊗1)(p⊗
f ⊗ q) = µ(pf ⊗ q) = pf(q) = µ(p⊗ f(q)) = µ(1⊗ ev)(p⊗ f ⊗ q). �

Proposition 3.19. (dual basis Lemma) Let PR be a right R-module. Then the following are
equivalent:

(1) P is finitely generated and projective,
(2) (dual basis) There are f1, . . . , fn ∈ HomR(P., R.) = P ∗ and p1, . . . , pn ∈ P so that

p =
∑

pifi(p)

for all p ∈ P
(3) The dual basis homomorphism

db : P ⊗R P ∗ −→ HomR(P., P.)

is an isomorphism.
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Proof. (1) =⇒ (2): Let P be generated by {p1, . . . , pn}. Let RX be a free right R-module
over the set X = {x1, . . . , xn}. Let πi : RX −→ R be the projections induced by

X RX-ι

σi
@

@
@

@@R
R
?

πi

where σi(xj) = δij. By Proposition 1.10 we have z =
∑
xiπi(z) for all z ∈ RX. Let g : RX

−→ P be the R-module homomorphism with g(xi) = pi. Since the pi generate P as a module,
the homomorphism g is surjective. P is projective hence there is a homomorphism h : P
−→ RX with gh = idP by 3.16. Define fi := πih. Then

∑
piπih(p) =

∑
g(xi)πih(p) =

g(
∑
xiπi(h(p))) = gh(p) = p.

(2) =⇒ (3): The homomorphism ψ : HomR(P., P.) −→ P⊗RP ∗ defined by ψ(e) =
∑
e(pi)⊗fi

is the inverse map of db. In fact we have db ◦ψ(e)(p) =
∑
e(pi)fi(p) = e(

∑
pifi(p)) = e(p),

hence db ◦ψ = id. Furthermore we have ψ ◦ db(p ⊗ f) = ψ(pf) =
∑
pf(pi) ⊗ fi = p ⊗∑

f(pi)fi = p⊗ f since
∑
f(pi)fi(q) = f(

∑
pifi(q)) = f(q), hence we have also ψ ◦db = id.

(3) =⇒ (2):
∑
pi ⊗ fi = db−1(idP ) is a dual basis, because

∑
pifi(p) = db(

∑
pi ⊗ fi)(p) =

idP (p) = p.
(2) =⇒ (1): The pi generate P since

∑
pifi(p) = p for all p ∈ P . Thus P is finitely

generated. Furthermore the homomorphism g : RX −→ P with g(xi) = pi is surjective. Let
h : P −→ RX be defined by h(p) =

∑
xifi(p). Then gh(p) = p, hence P is a direct summand

of RX, and consequently P is projective. �

Remark 3.20. Observe that analogous statements hold for left R- modules. The problem
that in that situation two rings R and EndR(.P ) operate from the left on P is best handled
by considering P as a right EndR(.P )op- module where EndR(.P )op has the opposite multipli-
cation ∗ given by f ∗g := g◦f . We leave it to the reader to verify the details. The evaluation
and dual basis homomorphisms are in this case ev : RP ⊗Eop P ∗

R 3 p⊗ f 7→ f(p) ∈ RRR, and
db : P ∗ ⊗R P −→ HomR(.P, .P ).

Proposition 3.21. Let R be a commutative ring and P be an R-module. Then the following
are equivalent

(1) RP is finitely generated and projective,
(2) there exists an R-module P ′, and homomorphisms db′ : R −→ P⊗RP ′ and ev : P ′⊗RP
−→ R such that

(P P ⊗R P ′ ⊗R P-db′⊗ id
P ) = idP ,-id⊗ ev

(P ′ P ′ ⊗R P ⊗R P ′-id⊗ db′
P ′) = idP ′ .-ev⊗ id

Proof. “⇐=”: ev ∈ HomR(P ′ ⊗R P,R) ∼= HomR(P ′,HomR(P,R)) induces a homomorphism
ε : P ′ −→ P ∗ by ε(f)(p) = ev(f ⊗ p) = fp for f ∈ P ′. Let db′(1) =

∑
pi ⊗ fi. Then

p = idP (p) = (id⊗R ev)(db′⊗R id)(p) = (id⊗R ev)(
∑
pi ⊗ fi ⊗ p) =

∑
pifip. By 3.19 P is

finitely generated and projective.
“=⇒”: Define P ′ := P ∗ and (ev : P ′⊗RP −→ R) = (ev : P ∗⊗RP −→ R). Let db′(1) =

∑
pi⊗

fi be the dual basis for P . Then we have (id⊗R ev)(db′⊗R id)(p) = (id⊗R ev)(
∑
pi⊗fi⊗p) =∑

pifi(p) = p. Furthermore we have
∑
f(pi)fi(p) = f(

∑
pifi(p)) = f(p), hence

∑
f(pi)fi =

f . This implies (ev⊗R id)(id⊗R db′)(f) = (ev⊗R id)(
∑
f ⊗ pi ⊗ fi) =

∑
f(pi)fi = f . �

Example 3.22. of a projective module, that is not free:
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Let S2 = 2-sphere = {(x1, x2, x3) ∈ R3|x2
1 +x2

2 +x2
3 = 1}. Let R be the ring of all continuous

real-valued functions on S2. Let F = {f : S2 −→ R3|f continuous} = {(f1, f2, f3)|fi ∈ R} =
R3 be the free R-module on three generators. F is a set of vector valued functions, the
vectors starting in the point of S2 where their counterimage is. These are vector fields over
S2. Let P = {tangential vector fields} and Q = {normal vector fields}. Then F = P ⊕Q as
R-modules. So P and Q are projective. Furthermore Q ∼= R. Hence F ∼= P ⊕ R. Suppose
P were free. Evaluating all elements of P in a given point p ∈ S2 we get the tangent plane
at p which is R2. If P is free then it has a basis e1, e2 (see later remarks on the rank of free
modules over a commutative ring). For p ∈ S2 we have e1(p), e2(p) generates the tangent
plane, hence is a basis for the tangent plane. So e1(p) 6= 0 for all p ∈ S2. By the “egg
theorem” this is impossible.
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3.4. Generators.

Definition 3.23. A right R-module GR is called a generator if for each homomorphism
f : M −→ N with f 6= 0 there exists a homomorphism g : G −→M such that fg 6= 0.

Proposition 3.24. Let GR be an R-module. The following are equivalent

(1) G is a generator,
(2) for each R-module MR there is a set I and an epimorphism h :

∐
I G −→M ,

(3) R is isomorphic to a direct summand of
∐

I G (for an appropriate set I),
(4) there are f1, . . . , fn ∈ G∗ = HomR(G.,R.) and q1, . . . , qn ∈ G with

∑
fi(qi) = 1.

Proof. (1) =⇒ (2): Define I := HomR(G.,M.). Then the diagram

G = Gf

∐
I Gf

-
ιf

f
@

@
@

@@R
M
?

h

defines a unique homomorphism h with hιf = f for all f ∈ I. Let N = Im(h). Consider
ν : M −→ M/N . If N 6= M then ν 6= 0. Since G is a generator there exists an f such that
νf 6= 0. This implies νh 6= 0 a contradiction to N = Im(h). Hence N = M so that h is an
epimorphism.
(2) =⇒ (3): Let

∐
G −→ R be an epimorphism. Since R is a free module hence projective,

3.16 implies that R is a direct summand of
∐
G up to isomorphism.

(3) =⇒ (4): Since R is (isomorphic to) a direct summand of
∐

I G there is p :
∐

I G −→ R
with pι = idR. Let p((gi)) = 1 and fi = pιi : G −→ R. Then 1 = p((gi)) = p(

∑
ιi(gi)) =∑

pιi(gi) =
∑
fi(qi).

(4) =⇒ (1): Assume (g : M −→ N) 6= 0. Then there is an m ∈ M with g(m) 6= 0. Define
f : R −→ M by f(1) = m, f(r) = rm. Let fi, qi be given with

∑
fi(qi) = 1. Then we have

0 6= g(m) = gf(1) =
∑
gffi(qi), so we have the existence of a homomorphism ffi : G −→M

with gffi 6= 0. �
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4. Categories and Functors

4.1. Categories. In the preceding sections we saw that certain constructions like products
can be performed for different kinds of mathematical structures, e.g. modules, rings, Abelian
groups, groups, etc. In order to indicate the kind of structure that one uses the notion of a
category has been invented.

Definition 4.1. Let C consist of

(1) a class Ob C whose elements A,B,C, . . . ∈ Ob C are called objects,
(2) a family (MorC(A,B)|A,B ∈ Ob C) of mutually disjoint sets whose elements f, g, . . .
∈ MorC(A,B) are called morphisms, and

(3) a family (MorC(A,B)×MorC(B,C) 3 (f, g) 7→ gf ∈ MorC(A,C)|A,B,C ∈ Ob C) of
maps called compositions.

C is called a category if the following axioms hold for C
(1) Associative Law:
∀A,B,C,D ∈ Ob C, f ∈ MorC(A,B), g ∈ MorC(B,C), h ∈ MorC(C,D) :

h(gf) = (hg)f ;

(2) Identity Law:
∀A ∈ Ob C ∃1A ∈ MorC(A,A) ∀B,C ∈ Ob C, ∀f ∈ MorC(A,B), ∀g ∈ MorC(C,A) :

1Ag = g and f1A = f.

Examples 4.2. (1) The category of sets Set.
(2) The categories of R-modules R-Mod, K-vector spaces K-Vec or K-Mod, groups Gr,
Abelian groups Ab, monoids Mon, commutative monoids cMon, rings Ri, fields Field, topo-
logical spaces Top.
(3) The left A-modules in the sense of Definition 2.17 and their homomorphisms form the
category A-Mod of A-modules.
(4) The K-algebras in the sense of Definition 2.1 and their homomorphisms form the category
K-Alg of K-algebras.
(5) The category of commutative K-algebras will be denoted by K-cAlg.
(6) The K-coalgebras in the sense of Definition 2.18 and their homomorphisms form a cate-
gory K-Coalg of K-coalgebras.
(7) The category of cocommutative K-coalgebras will be denoted by K-cCoalg.

For arbitrary categories we adopt many of the customary notations.

Notation 4.3. f ∈ MorC(A,B) will be written as f : A −→ B or A
f−→ B. A is called the

domain, B the range of f .
The composition of two morphisms f : A −→ B and g : B −→ C is written as gf : A −→ C or
as g ◦ f : A −→ C.

Definition and Remark 4.4. A morphism f : A −→ B is called an isomorphism if there
exists a morphism g : B −→ A in C such that fg = 1B and gf = 1A. The morphism g is
uniquely determined by f since g′ = g′fg = g. We write f−1 := g.
An object A is said to be isomorphic to an object B if there exists an isomorphism f : A
−→ B. If f is an isomorphism then so is f−1. If f : A −→ B and g : B −→ C are isomorphisms
in C then so is gf : A −→ C. We have: (f−1)−1 = f and (gf)−1 = f−1g−1. The relation of
being isomorphic between objects is an equivalence relation.

Example 4.5. In the categories Set, R-Mod, k-Vec, Gr, Ab, Mon, cMon, Ri, Field the
isomorphisms are exactly those morphisms which are bijective as set maps.
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In Top the set M = {a, b} with T1 = {∅, {a}, {b}, {a, b}} and with T2 = {∅,M} defines
two different topological spaces. The map f = id : (M,T1) −→ (M,T2) is bijective and
continuous. The inverse map, however, is not continuous, hence f is no isomorphism (home-
omorphism).

Many well known concepts can be defined for arbitrary categories. We are going to introduce
some of them. Here are two examples.

Definition 4.6. (1) A morphism f : A −→ B is called a monomorphism if ∀C ∈ Ob C, ∀g, h ∈
MorC(C,A) :

fg = fh =⇒ g = h (f is left cancellable).

(2) A morphism f : A −→ B is called an epimorphism if ∀C ∈ Ob C, ∀g, h ∈ MorC(B,C) :

gf = hf =⇒ g = h (f is right cancellable).

Definition 4.7. Given A,B ∈ C. An object A×B in C together with morphisms pA : A×B
−→ A and pB : A × B −→ B is called a (categorical) product of A and B if for every (test)
object T ∈ C and every pair of morphisms f : T −→ A and g : T −→ B there exists a unique
morphism (f, g) : T −→ A×B such that the diagram

T

f

�
�

�
��	

g

@
@

@
@@R

A A×B�pA
B-pB

?

(f,g)

commutes.
An object E ∈ C is called a final object if for every (test) object T ∈ C there exists a unique
morphism e : T −→ E (i.e. MorC(T,E) consists of exactly one element).
A category C which has a product for any two objects A and B and which has a final object
is called a category with finite products.

Remark 4.8. If the product (A × B, pA, pB) of two objects A and B in C exists then it is
unique up to isomorphism.
If the final object E in C exists then it is unique up to isomorphism.

Problem 4.1. Let C be a category with finite products. Give a definition of a product of a
family A1, . . . , An (n ≥ 0). Show that products of such families exist in C.

Definition and Remark 4.9. Let C be a category. Then Cop with the following data
Ob Cop := Ob C, MorCop(A,B) := MorC(B,A), and f ◦op g := g ◦ f defines a new category,
the dual category of C.

Remark 4.10. Any notion expressed in categorical terms (with objects, morphisms, and
their composition) has a dual notion, i.e. the given notion in the dual category.
Monomorphisms f in the dual category Cop are epimorphisms in the original category C
and conversely. A final object I in the dual category Cop is an initial object in the original
category C.

Definition 4.11. The coproduct of two objects in the category C is defined to be a product
of the objects in the dual category Cop.

Remark 4.12. Equivalent to the preceding definition is the following definition.
Given A,B ∈ C. An object AqB in C together with morphisms jA : A −→ AqB and jB : B
−→ AqB is a (categorical) coproduct of A and B if for every (test) object T ∈ C and every
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pair of morphisms f : A −→ T and g : B −→ T there exists a unique morphism [f, g] : AqB
−→ T such that the diagram

T

f

@
@

@
@@R

g

�
�

�
��	

A AqB-jA
B�jB

?

[f,g]

commutes.
The category C is said to have finite coproducts if Cop is a category with finite products. In
particular coproducts are unique up to isomorphism.

4.2. Functors.

Definition 4.13. Let C and D be categories. Let F consist of

(1) a map Ob C 3 A 7→ F(A) ∈ ObD,
(2) a family of maps

(FA,B : MorC(A,B) 3 f 7→ FA,B(f) ∈ MorD(F(A),F(B))|A,B ∈ C)

[ or (FA,B : MorC(A,B) 3 f 7→ FA,B(f) ∈ MorD(F(B),F(A))|A,B ∈ C)]
F is called a covariant [contravariant ] functor if

(1) FA,A(1A) = 1F(A) for all A ∈ Ob C,
(2) FA,C(gf) = FB,C(g)FA,B(f) for all A,B,C ∈ Ob C.

[ FA,C(gf) = FA,B(f)FB,C(g) for all A,B,C ∈ Ob C ].

Notation: We write
A ∈ C instead of A ∈ Ob C
f ∈ C instead of f ∈ MorC(A,B)
F(f) instead of FA,B(f).

Examples 4.14. The following define functors

(1) Id : Set −→ Set;
(2) Forget : R-Mod −→ Set;
(3) Forget : Ri −→ Ab;
(4) Forget : Ab −→ Gr;
(5) P : Set −→ Set,P(M) := power set of M . P(f)(X) := f−1(X) for f : M −→ N,X ⊆

N is a contravariant functor;
(6) Q : Set −→ Set,Q(M) := power set of M . Q(f)(X) := f(X) for f : M −→ N,X ⊆M

is a covariant functor;
(7) -⊗R N : Mod-R −→ Ab;
(8) M ⊗R - : R-Mod −→ Ab;
(9) -⊗R - : Mod-R×R-Mod −→ Ab;

(10) the embedding functor ι : K-Mod −→ K-Mod-K.
(11) the tensor product over K in K-Mod-K can be restricted to K-Mod so that the

following diagram of functors commutes:

K-Mod K-Mod-K.-
ι

K-Mod×K-Mod K-Mod-K×K-Mod-K-ι× ι

?

⊗K

?

⊗K
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Proof of (9). (f × g) ◦ (f ′ × g′) = ff ′ × gg′ implies (f ⊗R g) ◦ (f ′ ⊗R g′) = ff ′ ⊗R gg′.
Furthermore 1M × 1N = 1M×N implies 1M ⊗R 1N = 1M⊗RN . �

Lemma 4.15. (1) Let X ∈ C. Then

Ob C 3 A 7→ MorC(X,A) ∈ Ob Set

MorC(A,B) 3 f 7→ MorC(X, f) ∈ MorSet(MorC(X,A),MorC(X,B)),

with MorC(X, f) : MorC(X,A) 3 g 7→ fg ∈ MorC(X,B) or MorC(X, f)(g) = fg is a
covariant functor MorC(X, -).

(2) Let X ∈ C. Then

Ob C 3 A 7→ MorC(A,X) ∈ Ob Set

MorC(A,B) 3 f 7→ MorC(f,X) ∈ MorSet(MorC(B,X),MorC(A,X))

with MorC(f,X) : MorC(B,X) 3 g 7→ gf ∈ MorC(A,X) or MorC(f,X)(g) = gf is a
contravariant functor MorC(-, X).

Proof. (1) MorC(X, 1A)(g) = 1Ag = g = id(g),MorC(X, f) MorC(X, g)(h) = fgh =
MorC(X, fg)(h).
(2) analogously. �

Remark 4.16. The preceding lemma shows that MorC(-, -) is a functor in both arguments.
A functor in two arguments is called a bifunctor. We can regard the bifunctor MorC(-, -) as
a covariant functor

MorC(-, -) : Cop × C −→ Set .

The use of the dual category removes the fact that the bifunctor MorC(-, -) is contravariant
in the first variable.
Obviously the composition of two functors is again a functor and this composition is asso-
ciative. Furthermore for each category C there is an identity functor IdC.
Functors of the form MorC(X, -) resp. MorC(-, X) are called representable functors (covariant
resp. contravariant) and X is called the representing object (see also section 5).

4.3. Natural Transformations.

Definition 4.17. Let F : C −→ D and G : C −→ D be two functors. A natural transformation
or a functorial morphism ϕ : F −→ G is a family of morphisms (ϕ(A) : F(A) −→ G(A)|A ∈ C)
such that the diagram

F(B) G(B)-
ϕ(B)

F(A) G(A)-
ϕ(A)

?

F(f)

?

G(f)

commutes for all f : A −→ B in C, i.e. G(f)ϕ(A) = ϕ(B)F(f).

Lemma 4.18. Given covariant functors F = IdSet : Set −→ Set and

G = MorSet(MorSet(−, A), A) : Set −→ Set

for a set A. Then ϕ : F −→ G with

ϕ(B) : B 3 b 7→ (MorSet(B,A) 3 f 7→ f(b) ∈ A) ∈ G(B)

is a natural transformation.
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Proof. Given g : B −→ C. Then the following diagram commutes

B MorSet(MorSet(B,A), A)-
ϕ(B)

C MorSet(MorSet(C,A), A)-
ϕ(C)?

g

?

MorSet(MorSet(g, A), A)

since
ϕ(C)F(g)(b)(f) = ϕ(C)g(b)(f) = fg(b) = ϕ(B)(b)(fg)

= [ϕ(B)(b) MorSet(g, A)](f) = [MorSet(MorSet(g, A), A)ϕ(B)(b)](f).

�

Lemma 4.19. Let f : A −→ B be a morphism in C. Then MorC(f, -) : MorC(B, -)
−→ MorC(A, -) given by MorC(f, C) : MorC(B,C) 3 g 7→ gf ∈ MorC(A,C) is a natural
transformation of covariant functors.
Let f : A −→ B be a morphism in C. Then MorC(-, f) : MorC(-, A) −→ MorC(-, B) given by
MorC(C, f) : MorC(C,A) 3 g 7→ fg ∈ MorC(C,B) is a natural transformation of contravari-
ant functors.

Proof. Let h : C −→ C ′ be a morphism in C. Then the diagrams

MorC(B,C
′) MorC(A,C

′)-
MorC(f,C′)

MorC(B,C) MorC(A,C)-MorC(f,C)

?

MorC(B,h)

?

MorC(A,h)

and

MorC(C,A) MorC(C,B)-
MorC(C,f)

MorC(C
′, A) MorC(C

′, B)-MorC(C′,f)

?

MorC(h,A)

?

MorC(h,B)

commute. �

Remark 4.20. The composition of two natural transformations is again a natural transfor-
mation. The identity idF(A) := 1F(A) is also a natural transformation.

Definition 4.21. A natural transformation ϕ : F −→ G is called a natural isomorphism if
there exists a natural transformation ψ : G −→ F such that ϕ ◦ ψ = idG and ψ ◦ ϕ = idF .
The natural transformation ψ is uniquely determined by ϕ. We write ϕ−1 := ψ.
A functor F is said to be isomorphic to a functor G if there exists a natural isomorphism
ϕ : F −→ G.

Remark 4.22. The isomorphisms given in Theorem 1.22 for RMS, SNT , and TPU are natural
isomorphisms:

(1) Associativity Law: α : (M ⊗S N) ⊗T P ∼= M ⊗S (N ⊗T P ) with α((m ⊗ n) ⊗ p) :=
m⊗ (n⊗ p);

(2) Law of the Left Unit: λ : R⊗RM ∼= M with λ(r ⊗m) := rm;
(3) Law of the Right Unit: ρ : M ⊗S S ∼= M with ρ(m⊗ r) := mr;
(4) Symmetry Law: τ : M⊗N ∼= N⊗M for K-modules M and N with τ(m⊗n) := n⊗m;
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(5) Inner Hom-Functors:

φ : HomS-T (.P ⊗RM., .N.) ∼= HomS-R(.P., .HomT (M.,N.).)

with φ(f)(p)(m) := f(p⊗m) and

ψ : HomS-T (.P ⊗RM., .N.) ∼= HomR-T (.M., .HomS(.P, .N).)

with ψ(f)(m)(p) := f(p⊗m) for bimodules RMT , SNT , and SPR.

Problem 4.2. (1) Let F ,G : C −→ D be functors. Show that a natural transformation ϕ : F
−→ G is a natural isomorphism if and only if ϕ(A) is an isomorphism for all objects A ∈ C.
(2) Let (A×B, pA, pB) be the product of A and B in C. Then there is a natural isomorphism

Mor(-, A×B) ∼= MorC(-, A)×MorC(-, B).

(3) Let C be a category with finite products. For each object A in C show that there exists a
morphism ∆A : A −→ A×A satisfying p1∆A = 1A = p2∆A. Show that this defines a natural
transformation. What are the functors?
(4) Let C be a category with finite products. Show that there is a bifunctor - × - : C × C
−→ C such that (-× -)(A,B) is the object of a product of A and B. We denote elements in
the image of this functor by A×B := (-× -)(A,B) and similarly f × g.
(5) With the notation of the preceding problem show that there is a natural transformation
α(A,B,C) : (A×B)×C ∼= A× (B×C). Show that the diagram (coherence or constraints)

((A×B)× C)×D (A× (B × C))×D-α(A,B,C)×1
A× ((B × C)×D)-α(A,B×C,D)

?

α(A×B,C,D)

?

1×α(B,C,D)

(A×B)× (C ×D) A× (B × (C ×D))-α(A,B,C×D)

commutes.
(6) With the notation of the preceding problem show that there are a natural transformations
λ(A) : E×A −→ A and ρ(A) : A×E −→ A such that the diagram (coherence or constraints)

(A× E)×B A× (E ×B)-α(A,E,B)

A×B

ρ(A)×1

Q
Q

Q
QQs

1×λ(B)

�
�

�
��+

Definition 4.23. Let C and D be categories. A covariant functor F : C −→ D is called
an equivalence of categories if there exists a covariant functor G : D −→ C and natural
isomorphisms ϕ : GF ∼= IdC and ψ : FG ∼= IdD.
A contravariant functor F : C −→ D is called a duality of categories if there exists a con-
travariant functor G : D −→ C and natural isomorphisms ϕ : GF ∼= IdC and ψ : FG ∼= IdD.
A category C is said to be equivalent to a category D if there exists an equivalence F : C
−→ D. A category C is said to be dual to a category D if there exists a duality F : C −→ D.

Problem 4.3. (1) Show that the dual category Cop is dual to the category C.
(2) Let D be a category dual to the category C. Show that D is equivalent to the dual
category Cop.
(3) Let F : C −→ D be an equivalence with respect to G : D −→ C, ϕ : GF ∼= IdC, and
ψ : FG ∼= IdD. Show that G : D −→ C is an equivalence. Show that G is uniquely determined
by F up to a natural isomorphism.
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5. Representable and Adjoint Functors, the Yoneda Lemma

5.1. Representable functors.

Definition 5.1. Let F : C −→ Set be a covariant functor. A pair (A, x) with A ∈ C, x ∈ F(A)
is called a representing (generic, universal) object for F and F is called a representable
functor, if for each B ∈ C and y ∈ F(B) there exists a unique f ∈ MorC(A,B) such that
F(f)(x) = y:

A

B
?

f

F(A)

F(B)
?

F(f)

3 x

3 y
?

?

Proposition 5.2. Let (A, x) and (B, y) be representing objects for F . Then there exists a
unique isomorphism h : A −→ B such that F(h)(x) = y.

A

B
?

h

A
?

k

B
?

h

��	

?

1A

@@R

��	

?

1B

@@R

F(A)

F(B)
?

F(h)

F(A)
?

F(k)

F(B)
?

F(h)

@@R

?

1F(A)

��	

@@R

?

1F(B)

��	

x

y
?

?

?

?

x

y
?

?

Examples 5.3. (1) Let R be a ring. Let X ∈ Set be a set. F : R-Mod −→ Set, F(M) :=
Map(X,M) is a covariant functor. A representing object for F is given by the free R-module
(RX, x : X −→ RX) with the property, that for all (M, y : X −→ M) there exists a unique
f ∈ HomR(RX,M) such that F(f)(x) = Map(X, f)(x) = fx = y

X RX-x

y

@
@

@
@@R
M.

?

f

(2) Given modules MR and RN . Define F : Ab −→ Set by F(A) := BilR(M,N ;A). Then F is
a covariant functor. A representing object for F is given by the tensor product (M⊗RN,⊗ :
M × N −→ M ⊗R N) with the property that for all (A, f : M × N −→ A) there exists a
unique g ∈ Hom(M ⊗R N,A) such that F(g)(⊗) = BilR(M,N ; g)(⊗) = g⊗ = f

M ×N M ⊗R N-⊗

f

@
@

@
@@R
A.
?

g
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(3) Given a K-module V . Define F : K-Alg −→ Set by F(A) := Hom(V,A). Then F is
a covariant functor. A representing object for F is given by the tensor algebra (T (V ), ι :
V −→ T (V )) with the property that for all (A, f : V −→ A) there exists a unique g ∈
MorAlg(T (V ), A) such that F(g)(ι) = Hom(V, g)(ι) = gι = f

V T (V )-ι

f

@
@

@
@@R
A.
?

g

(4) Given a K-module V . Define F : K-cAlg −→ Set by F(A) := Hom(V,A). Then F is a
covariant functor. A representing object for F is given by the symmetric algebra (S(V ), ι :
V −→ S(V )) with the property that for all (A, f : V −→ A) there exists a unique g ∈
MorcAlg(S(V ), A) such that F(g)(ι) = Hom(V, g)(ι) = gι = f

V S(V )-ι

f

@
@

@
@@R
A.
?

g

(5) Given a K-module V . Define F : K-Alg −→ Set by

F(A) := {f ∈ Hom(V,A)|∀v, v′ ∈ V : f(v)f(v′) = f(v′)f(v)}.

Then F is a covariant functor. A representing object for F is given by the symmetric
algebra (S(V ), ι : V −→ S(V )) with the property that for all (A, f : V −→ A) such that
f(v)f(v′) = f(v′)f(v) for all v, v′ ∈ V there exists a unique g ∈ MorAlg(S(V ), A) such that
F(g)(ι) = Hom(V, g)(ι) = gι = f

V S(V )-ι

f

@
@

@
@@R
A.
?

g

(6) Given a K-module V . Define F : K-Alg −→ Set by

F(A) := {f ∈ Hom(V,A)|∀v ∈ V : f(v)2 = 0}.

Then F is a covariant functor. A representing object for F is given by the exterior algebra
(E(V ), ι : V −→ E(V )) with the property that for all (A, f : V −→ A) such that f(v)2 = 0
for all v ∈ V there exists a unique g ∈ MorAlg(E(V ), A) such that F(g)(ι) = Hom(V, g)(ι) =
gι = f

V E(V )-ι

f

@
@

@
@@R
A.
?

g

(7) Let K be a commutative ring. Let X ∈ Set be a set. F : K-cAlg −→ Set, F(A) :=
Map(X,A) is a covariant functor. A representing object for F is given by the polynomial
ring (K[X], ι : X −→ K[X]) with the property, that for all (A, f : X −→ A) there exists a
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unique g ∈ MorcAlg(K[X], A) such that F(g)(ι) = Map(X, g)(x) = gι = f

X K[X]-ι

f

@
@

@
@@R
A.
?

g

(8) Let K be a commutative ring. Let X ∈ Set be a set. F : K-Alg −→ Set, F(A) :=
Map(X,A) is a covariant functor. A representing object for F is given by the noncommuta-
tive polynomial ring (K〈X〉, ι : X −→ K〈X〉) with the property, that for all (A, f : X −→ A)
there exists a unique g ∈ MorAlg(K〈X〉, A) such that F(g)(ι) = Map(X, g)(x) = gι = f

X K〈X〉-ι

f

@
@

@
@@R
A.
?

g

Problem 5.1. (1) Given V ∈ K-Mod. For A ∈ K-Alg define

F (A) := {f : V −→ A|f K-linear,∀v, w ∈ V : f(v) · f(w) = 0}.
Show that this defines a functor F : K-Alg −→ Set.

(2) Show that F has the algebra D(V ) as constructed in Exercise 2.1 (3) as a representing
object.

Proposition 5.4. F has a representing object (A, a) if and only if there is a natural iso-
morphism ϕ : F ∼= MorC(A,−) (with a = ϕ(A)−1(1A)).

Proof. =⇒ : The map

ϕ(B) : F(B) 3 y 7→ f ∈ MorC(A,B) with F(f)(a) = y

is bijective with the inverse map

ψ(B) : MorC(A,B) 3 f 7→ F(f)(a) ∈ F(B).

In fact we have y 7→ f 7→ F(f)(a) = y and f 7→ y := F(f)(a) 7→ g such that F(g)(a) = y
but then F(g)(a) = y = F(f)(a). By uniqueness we get f = g. Hence all ϕ(B) are bijective
with inverse map ψ(B). It is sufficient to show that ψ is a natural transformation.
Given g : B −→ C. Then the following diagram commutes

MorC(A,C) F(C)-
ψ(C)

MorC(A,B) F(B)-ψ(B)

?

MorC(A,g)

?

F(g)

since ψ(C) MorC(A, g)(f) = ψ(C)(gf) = F(gf)(a) = F(g)F(f)(a) = F(g)ψ(B)(f).
⇐: Let A be given. Let a := ϕ(A)−1(1A). For y ∈ F(B) we get y = ϕ(B)−1(f) =
ϕ(B)−1(f1A) = ϕ(B)−1 MorC(A, f)(1A) = F(f)ϕ(A)−1(1A) = F(f)(a) for a uniquely deter-
mined f ∈ MorC(A,B). �

Proposition 5.5. Let D be a category. Given a representable functor FX : C −→ Set for each
X ∈ D. Given a natural transformation Fg : FY −→ FX for each g : X −→ Y (contravariant!)
such that F depends functorially on X, i.e. F1X

= 1FX
,Fhg = FgFh. Then the representing

objects (AX , aX) for FX depend functorially on X, i.e. for each g : X −→ Y there is a unique
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morphism Ag : AX −→ AY (with FX(Ag)(aX) = Fg(AY )(aY )) and the following identities
hold A1X

= 1AX
, Ahg = AhAg. So we get a covariant functor D 3 X −→ AX ∈ C.

Proof. Choose a representing object (AX , aX) for FX for each X ∈ D (by the axiom of
choice). Then there is a unique morphism Ag : AX −→ AY with

FX(Ag)(aX) = Fg(AY )(aY ) ∈ FX(AY ),

for each g : X −→ Y because Fg(AY ) : FY (AY ) −→ FX(AY ) is given. We have FX(A1)(aX) =
F1(AX)(aX) = aX = FX(1)(aX) hence A1 = 1, and FX(Ahg)(aX) = Fhg(AZ)(aZ) =
Fg(AZ)Fh(AZ)(aZ) = Fg(AZ)FY (Ah)(aY ) = FX(Ah)Fg(AY )(aY ) = FX(Ah)FX(Ag)(aX) =
FX(AhAg)(aX) hence AhAg = Ahg for g : X −→ Y and h : Y −→ Z in D. �

Corollary 5.6. (1) Map(X,M) ∼= HomR(RX,M) is a natural transformation in M (and
in X!). In particular Set 3 X 7→ RX ∈ R-Mod is a functor.
(2) BilR(M,N ;A) ∼= Hom(M ⊗R N,A) is a natural transformation in A (and in (M,N) ∈
Mod-R×R-Mod). In particular Mod-R×R-Mod 3M,N 7→M ⊗r N ∈ Ab is a functor.
(3) R-Mod-S × S-Mod-T 3 (M,N) 7→M ⊗S N ∈ R-Mod-T is a functor.

5.2. The Yoneda Lemma.

Theorem 5.7. (Yoneda Lemma) Let C be a category. Given a covariant functor F : C
−→ Set and an object A ∈ C. Then the map

π : Nat(MorC(A, -),F) 3 φ 7→ φ(A)(1A) ∈ F(A)

is bijective with the inverse map

π−1 : F(A) 3 a 7→ ha ∈ Nat(MorC(A, -),F),

where ha(B)(f) = F(f)(a).

Proof. For φ ∈ Nat(MorC(A, -),F) we have a map φ(A) : MorC(A,A) −→ F(A), hence π
with π(φ) := φ(A)(1A) is a well defined map. For π−1 we have to check that ha is a natural
transformation. Given f : B −→ C in C. Then the diagram

F(B) F(C)-
F(f)

MorC(A,B) MorC(A,C)-Mor(A,f)

?

ha(B)

?

ha(C)

is commutative. In fact if g ∈ MorC(A,B) then ha(C) MorC(A, f)(g) = ha(C)(fg) =
F(fg)(a) = F(f)F(g)(a) = F(f)ha(B)(g). Thus π−1 is well defined.
Let π−1(a) = ha. Then ππ−1(a) = ha(A)(1A) = F(1A)(a) = a. Let π(φ) = φ(A)(1A) = a.
Then π−1π(φ) = ha and ha(B)(f) = F(f)(a) = F(f)(φ(A)(1A)) = φ(B) MorC(A, f)(1A) =
φ(B)(f), hence ha = φ. �

Corollary 5.8. Given A,B ∈ C. Then the following hold
(1) MorC(A,B) 3 f 7→ MorC(f, -) ∈ Nat(MorC(B, -),MorC(A, -)) is a bijective map.
(2) Under the bijective map from (1) the isomorphisms in MorC(A,B) correspond to natural
isomorphisms in Nat(MorC(B, -),MorC(A, -)).
(3) For contravariant functors F : C −→ Set we have Nat(MorC(-, A),F) ∼= F(A).
(4) MorC(A,B) 3 f 7→ MorC(-, f) ∈ Nat(MorC(-, A),MorC(-, B)) is a bijective map that
defines a one-to-one correspondence between the isomorphisms in MorC(A,B) and the natural
isomorphisms in Nat(MorC(-, A),MorC(-, B)).
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Proof. (1) follows from the Yoneda Lemma with F = MorC(A, -).
(2) Observe that hf (C)(g) = MorC(A, g)(f) = gf = MorC(f, C)(g) hence hf = MorC(f, -).
Since we have MorC(f, -) MorC(g, -) = MorC(gf, -) and MorC(f, -) = idMorC(A,-) if and only if
f = 1A we get the one-to-one correspondence between the isomorphisms from (1).
(3) and (4) follow by dualizing. �

Remark 5.9. The map π is a natural transformation in the arguments A and F . More
precisely: if f : A −→ B and φ : F −→ G are given then the following diagrams commute

Nat(MorC(A, -),G) G(A)-
π

Nat(MorC(A, -),F) F(A)-π

?

Nat(Mor(A,-),φ)

?

φ(A)

Nat(MorC(B, -),F) F(B).-
π

Nat(MorC(A, -),F) F(A)-π

?

Nat(Mor(f,-),F)

?

F(f)

This can be easily checked. Indeed we have for ψ : MorC(A, -) −→ F

πNat(MorC(A, -), φ)(ψ) = π(φψ) = (φψ)(A)(1A) = φ(A)ψ(A)(1A) = φ(A)π(ψ)

and

πNat(MorC(f, -),F)(ψ) = π(ψMorC(f, -)) = (ψMorC(f, -))(B)(1B) = ψ(B)(f)
= ψ(B) MorC(A, f)(1A) = F(f)ψ(A)(1A) = F(f)π(ψ).

Remark 5.10. By the previous corollary the representing object A is uniquely determined
up to isomorphism by the isomorphism class of the functor MorC(A, -).

Proposition 5.11. Let G : C × D −→ Set be a covariant bifunctor such that the functor
G(C, -) : D −→ Set is representable for all C ∈ C. Then there exists a contravariant functor
F : C −→ D such that G ∼= MorD(F-, -) holds. Furthermore F is uniquely determined by G
up to isomorphism.

Proof. For each C ∈ C choose an object F(C) ∈ D and an isomorphism ξC : G(C, -) ∼=
MorD(F(C), -). Given f : C −→ C ′ in C then let F(f) : F(C ′) −→ F(C) be the uniquely
determined morphism (by the Yoneda Lemma) in D such that the diagram

G(C ′, -) MorD(F(C ′), -)-
ξC′

G(C, -) MorD(F(C), -)-ξC

?

G(f,-)

?

Mor(F(f),-)

commutes. Because of the uniqueness of F(f) and because of the functoriality of G it is
easy to see that F(fg) = F(g)F(f) and F(1C) = 1F(C) hold and that F is a contravariant
functor.
If F ′ : C −→ D is given with G ∼= MorD(F ′-, -) then φ : MorD(F -, -) ∼= MorD(F ′-, -). Hence
by the Yoneda Lemma ψ(C) : F(C) ∼= F ′(C) is an isomorphism for all C ∈ C. With these
isomorphisms induced by φ the diagram
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MorD(F ′(C ′), -) MorD(F(C ′), -)-
Mor(ψ(C′),-)

MorD(F ′(C), -) MorD(F(C), -)-Mor(ψ(C),-)

?

Mor(F ′(f),-)

?

Mor(F(f),-)

commutes. Hence the diagram

F(C) F ′(C)-
ψ(C)

F(C ′) F ′(C ′)-ψ(C′)

?

F ′(f)

?

F(f)

commutes. Thus ψ : F −→ F ′ is a natural isomorphism. �

5.3. Adjoint functors.

Definition 5.12. Let C and D be categories and F : C −→ D and G : D −→ C be covariant
functors. F is called left adjoint to G and G right adjoint to F if there is a natural isomorphism
of bifunctors φ : MorD(F -, -) −→ MorC(-,G-) from Cop ×D to Set.

Lemma 5.13. If F : C −→ D is left adjoint to G : D −→ C then F is uniquely determined by
G up to isomorphism. Similarly G is uniquely determined by F up to isomorphism.

Proof. We only prove the first claim. Assume that also F ′ is left adjoint to G with φ′ :
MorD(F ′-, -) −→ MorC(-,G-). Then we have a natural isomorphism φ′−1φ : MorD(F -, -)
−→ MorD(F ′-, -). By Proposition 5.11 we get F ∼= F ′. �

Lemma 5.14. A functor G : D −→ C has a left adjoint functor iff all functors MorC(C,G-)
are representable.

Proof. follows from 5.11. �

Lemma 5.15. Let F : C −→ D and G : D −→ C be covariant functors. Then

Nat(IdC,GF) 3 Φ 7→ G-Φ- ∈ Nat(MorD(F-, -),MorC(-,G-))
is a bijective map with inverse map

Nat(MorD(F-, -),MorC(-,G-)) 3 φ 7→ φ(-,F-)(1F-) ∈ Nat(IdC,GF).

Furthermore

Nat(FG, IdC) 3 Ψ 7→ Ψ-F- ∈ Nat(MorC(-,G-),MorD(F-, -))

is a bijective map with inverse map

Nat(MorC(-,G-),MorD(F-, -)) 3 ψ 7→ ψ(G-, -)(1G-) ∈ Nat(FG, IdC).

Proof. The natural transformation G-Φ- is defined as follows. Given C ∈ C, D ∈ D and
f ∈ MorD(F(C), D) then let (G-Φ-)(C,D)(f) := G(f)Φ(C) : C −→ GF(C) −→ G(D). It is
easy to check the properties of a natural transformation.
Given Φ then one obtains by applying the two maps G(1F(C))Φ(C) = GF(1C)Φ(C) = Φ(C).
Given φ one obtains

G(f)(φ(C,F(C))(1F(C)) = MorC(C,G(f))φ(C,F(C))(1F(C))
= φ(C,D) MorD(F(C), f)(1F(C)) = φ(C,D)(f).
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So the two maps are inverses of each other.
The second part of the lemma is proved similarly. �

Proposition 5.16. Let

φ : MorD(F-, -) −→ MorC(-,G-) and ψ : MorC(-,G-) −→ MorD(F-, -)

be natural transformations with associated natural transformations (by Lemma 5.15) Φ : IdC
−→ GF resp. Ψ : FG −→ IdD.

(1) Then we have φψ = idMor(-,G-) if and only if (G ΦG−→ GFG GΨ−→ G) = idG.

(2) Furthermore we have ψφ = idMor(F-,-) if and only if (F FΦ−→ FGF ΨF−→ F) = idF .

Proof. We get
GΨ(D)ΦG(D) = GΨ(D)φ(G(D),FG(D))(1FG(D))
= MorC(G(D),GΨ(D))φ(G(D),FG(D))(1FG(D))
= φ(G(D), D) MorD(FG(D),Ψ(D))(1FG(D))
= φ(G(D), D)(Ψ(D))
= φ(G(D), D)ψ(G(D), D)(1G(D))
= φψ(G(D), D)(1G(D)).

Similarly we get

φψ(C,D)(f) = φ(C,D)ψ(C,D)(f) = G(Ψ(D)F(f))Φ(C)
= GΨ(D)GF(f)Φ(C) = GΨ(D)ΦG(D)f. �

Corollary 5.17. Let F : C −→ D and G : D −→ C be functors. F is left adjoint to G if
and only if there are natural transformations Φ : IdC −→ GF and Ψ : FG −→ IdD such that
(GΨ)(ΦG) = idG and (ΨF)(FΦ) = idF .

Definition 5.18. The natural transformations Φ : IdC −→ GF and Ψ : FG −→ IdD given in
5.17 are called unit and counit resp. for the adjoint functors F and G.
Problem 5.2. (1) Let RMS be a bimodule. Show that the functor M ⊗S - : SM−→ RM is
left adjoint to HomR(M, -) : RM−→ SM. Determine the associated unit and counit.
(2) Show that there is a natural isomorphism Map(A × B,C) ∼= Map(B,Map(A,C)). De-
termine the associated unit and counit.
(3) Show that there is a natural isomorphism K-Alg(KG,A) ∼= Gr(G,U(A)) where U(A) is
the group of units of the algebra A and KG is the group ring (see Section 12 ). Determine
the associated unit and counit.
(4) Use Section 12 to show that there is a natural isomorphism

K-Alg(U(g), A) ∼= Lie-Alg(g, AL).

Determine the corresponding left adjoint functor and the associated unit and counit.

5.4. Universal problems.

Definition 5.19. Let G : D −→ C be a covariant functor. G generates a (co-)universal
problem a follows:
Given C ∈ C. Find an object F(C) ∈ D and a morphism ι : C −→ G(F(C)) in C such
that for each object D ∈ D and for each morphism f : C −→ G(D) in C there is a unique
morphism g : F(C) −→ D in D such that the diagram

C G(F(C))-ι

f

@
@

@
@@R
G(D)

?

G(g)
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commutes.
A pair (F(C), ι) that satisfies the above conditions is called a universal solution of the
(co-)universal problem defined by G and C.
Let F : C −→ D be a covariant functor. F generates a universal problem a follows:
Given D ∈ D. Find an object G(D) ∈ C and a morphism ν : F(G(D)) −→ D in D such
that for each object C ∈ C and for each morphism f : F(C) −→ D in D there is a unique
morphism g : C −→ G(D) in C such that the diagram

FG(D) D-
ν

f

@
@

@
@@R

F(C)

?

F(g)

commutes.
A pair (G(D), ν) that satisfies the above conditions is called a universal solution of the
universal problem defined by F and D.

Proposition 5.20. Let F : C −→ D be left adjoint to G : D −→ C. Then F(C) and the unit
ι = Φ(C) : C −→ GF(C) form a universal solution for the (co-)universal problem defined by
G and C.
Furthermore G(D) and the counit ν = Ψ(D) : FG(D) −→ D form a universal solution for
the universal problem defined by F and D.

Proof. By Theorem 5.16 the morphisms φ : MorD(F -, -) −→ MorC(-,G-) and ψ : MorC(-,G-)
−→ MorD(F -, -) are inverses of each other. Using unit and counit they are defined as
φ(C,D)(g) = G(g)Φ(C) resp. ψ(C,D)(f) = Ψ(D)F(f). Hence for each f : C −→ G(D)
there is a unique g : F(C) −→ D such that f = φ(C,D)(g) = G(g)Φ(C) = G(g)ι.
The second statement follows analogously. �

Remark 5.21. If G : D −→ C and C ∈ C are given then the universal solution (F(C), ι : C
−→ G(D)) can be considered as the best (co-)approximation of the object C in C by an object
D in D with the help of a functor G. The object D ∈ D turns out to be F(C).
If F : C −→ D and D ∈ D are given then the universal solution (G(D), ν : FG(D) −→ D) can
be considered as the best approximation of the object D in D by an object C in C with the
help of a functor F . The object C ∈ C turns out to be G(D).

Proposition 5.22. Given G : D −→ C. Assume that for each C ∈ C the universal problem
defined by G and C has a universal solution. Then there is a left adjoint functor F : C −→ D
to G.
Given F : C −→ D. Assume that for each D ∈ D the universal problem defined by F and D
has a universal solution. Then there is a right adjoint functor G : D −→ C to F .

Proof. Assume that the (co-)universal problem defined by G and C is solved by ι : C −→
GF(C). Then the map MorC(C,G(D)) 3 f 7→ g ∈ MorD(F(C), D) with G(g)ι = f is
bijective. The inverse map is given by g 7→ G(g)ι. This is a natural transformation since the
diagram

MorD(F(C), D′) MorC(C,G(D′))-
G(-)ι

MorD(F(C), D) MorC(C,G(D))-G(-)ι

?

MorD(F(C),h)

?

MorC(C,G(h))



54 Advanced Algebra – Pareigis

commutes for each h ∈ MorD(D,D′). In fact we have

MorC(C,G(h))(G(g)ι) = G(h)G(g)ι = G(hg)ι = G(MorC(F(C), h)(g))ι.

Hence for all C ∈ C the functor MorC(C,G(-)) : D −→ Set induced by the bifunctor
MorC(-,G(-)) : Cop × D −→ Set is representable. By Theorem 5.11 there is a functor F : C
−→ D such that MorC(-,G(-)) ∼= MorD(F(-), -).
The second statement follows analogously. �

Remark 5.23. One can characterize the properties that G : D −→ C (resp. F : C −→ D)
must have in order to possess a left (right) adjoint functor. One of the essential properties
for this is that G preserves limits (and thus preserves direct products and difference kernels).

Proposition 5.24. The construction of tensor algebras T (V ) defines a functor T : K-Mod
−→ K-Alg that is left adjoint to the underlying functor U : K-Alg −→ K-Mod.

Proof. Follows from the universal property and 5.22. �

Proposition 5.25. The construction of symmetric algebras S(V ) defines a functor S :
K-Mod −→ K-cAlg that is left adjoint to the underlying functor U : K-cAlg −→ K-Mod.

Proof. Follows from the universal property and 5.22. �
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6. Limits and Colimits, Products and Equalizers

6.1. Limits of diagrams. Limit constructions are a very important tool in category theory.
We will introduce the basic facts on limits and colimits in this section.

Definition 6.1. A diagram scheme D is a small category (i. e. the class of objects is a set).
Let C be an arbitrary category. A diagram in C over the diagram scheme D is a covariant
functor F : D −→ C.

Example 6.2. (for diagram schemes)

(1) The empty category D.
(2) The category with precisely one object D and precisely one morphism 1D.
(3) The category with two objects D1, D2 and one morphism f : D1 −→ D2 (apart from

the two identities).
(4) The category with two objects D1, D2 and two morphisms f, g : D1 −→ D2 between

them.
(5) The category with a family of objects (Di|i ∈ I) and the associated identities.
(6) The category with four objects D1, . . . , D4 and morphisms f, g, h, k such that the

diagram

D3 D4
-

h

D1 D2
-f

?

g

?

k

commutes, i. e. kf = hg.

Definition 6.3. Let D be a diagram scheme and C a category. Each object C ∈ C defines
a constant diagram KC : D −→ C with KC(D) := C for all D ∈ D and K(f) := 1C for all
morphisms in D. Each morphism f : C −→ C ′ in C defines a constant natural transformation
Kf : KC −→ KC′ with Kf (D) = f . This defines a constant functor K : C −→ Funct(D, C) from
the category C into the category of diagrams Funct(D, C).
Let F : D −→ C be a diagram. An object C together with a natural transformation π : KC
−→ F is called a limit or a projective limit of the diagram F with the projection π if for each
object C ′ ∈ C and for each natural transformation ϕ : KC′ −→ F there is a unique morphism
f : C ′ −→ C such that

KC F-
π

ϕ

@
@

@
@@R

KC′

?

Kf

commutes, this means in particular that the diagrams

C F(Di)-πi

πj

@
@

@
@@R
F(Dj)

?

F(g)



56 Advanced Algebra – Pareigis

commute for all morphisms g : Di −→ Dj in D (π is a natural transformation) and the
diagrams

C F(Di).-
πi

ϕi

@
@

@
@@R

C ′

?

f

commute for all objects Di in D.
A category C has limits for diagrams over a diagram scheme D if for each diagram F : D
−→ C over D there is a limit in C. A category C is called complete if each diagram in C has
a limit.

Example 6.4. (1) Let D be a diagram scheme consisting of two objects D1, D2 and the
identities. A diagram F : D −→ C is defined by giving two objects C1 and C2 in C. An object
C1×C2 together with two morphisms π1 : C1×C2 −→ C1 and π2 : C1×C2 −→ C2 is called a
product of the two objects if C1×C2, π : KC1×C2 −→ F is a limit, i. e. if for each object C ′ in
C and for any two morphisms ϕ1 : C ′ −→ C1 and ϕ2 : C ′ −→ C2 there is a unique morphism
f : C ′ −→ C1 × C2 such that

ϕ1

�
�

�
��	

ϕ2

@
@

@
@@R

C ′

?

f

C1 C1 × C2
�π1 C2

-π2

commutes. The two morphisms π1 : C1 × C2 −→ C1 and π2 : C1 × C2 −→ C2 are called the
projections from the product to the two factors.
(2) Let D a diagram scheme consisting of a finite (non empty) set of objects D1, . . . , Dn and
the associated identities. A limit of a diagram F : D −→ C is called a finite product of the
objects C1 := F(D1), . . . , Cn := F(Dn) and is denoted by C1 × . . .× Cn =

∏n
i=1Ci.

(3) A limit over a discrete diagram (i. e. D has only the identities as morphisms) is called
product of the Ci := F(Di), i ∈ I and is denoted by

∏
I Ci.

(4) Let D be the empty diagram scheme and F : D −→ C the (only possible) empty diagram.
The limit C, π : KC −→ F of F is called the final object. It has the property that for each
object C ′ in C (the uniquely determined natural transformation ϕ : KC′ −→ F does not have
to be mentioned) there is a unique morphism f : C ′ −→ C. In Set the one-point set is a final
object. In Ab, Gr, Vec the zero group 0 is a final object.
(5) Let D be the diagram scheme from 6.2 (4) with two objects D1, D2 and two morphisms
(different from the two identities) a, b : D1 −→ D2. A diagram over D consists of two objects
C1 and C2 and two morphisms g, h : C1 −→ C2. The limit of such a diagram is called equalizer
of the two morphisms and is given by an object Ke(g, h) and a morphism π1 : Ke(g, h) −→ C1.
The second morphism to C2 arises from the composition π2 = gπ1 = hπ1. The equalizer has
the following universal property. For each object C ′ and each morphism ϕ1 : C ′ −→ C1 with
gϕ1 = hϕ1(= ϕ2) there is a unique morphism f : C ′ −→ Ke(g, h) with π1f = ϕ1 (and thus
π2f = ϕ2), i. e. the diagram

C ′

f

�
�

�
��	 ?

ϕ1

Ke(g, h) C1
-π1 -g

C2-
h

commutes.
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Problem 6.1. (1) Let F : D −→ Set be a discrete diagram. Show that the Cartesian product
over F coincides with the categorical product.
(2) Let D be a pair of morphisms as in 6.4 (5) and let F : D −→ Set be a diagram. Show that
the set {x ∈ F(D1)|F(f)(x) = F(g)(x)} with the inclusion map into F(D1) is an equalizer
of F : D −→ Set.
(3) Let F : D −→ Set be a diagram. Show that the set

{(xD|D ∈ ObD, xD ∈ F(D))|∀(f : D −→ D′) ∈ D : F(f)(xD) = xD′}
with the projections into the single components of the families is the limit of F .
(4) Given a homomorphism f : M −→ N in R-Mod. Show that (K, ι : K −→ M) is a kernel
of f iff it is the equalizer of the pair of homomorphisms f, 0 : M −→ N iff the sequence

0 −→ K
ι−→M

f−−→ N

is exact.

6.2. Colimits of diagrams.

Definition 6.5. Let F : D −→ C be a diagram. An object C and a natural transformation
ι : F −→ KC is called colimit or inductive limit of the diagram F with the injection ι if for
each object C ′ ∈ C and for each natural transformation ϕ : F −→ KC′ there is a unique
morphism f : C −→ C ′ such that

F KC-ι

ϕ

@
@

@
@@R
KC′

?

Kf

commutes, i. e. the diagram

F(Dj) C-
ιj

ιi

@
@

@
@@R

F(Di)

?

F(g)

commutes for all morphisms g : Di −→ Dj in D (ι is a natural transformation) and the
diagram

F(Di) C-ιi

ϕi

@
@

@
@@R

C ′.
?

f

commutes for all objects Di in D.
The special colimits that can be formed over the diagrams as in Example 6.4 are called
coproduct, initial object, resp. coequalizer.

Example 6.6. In K-Vec the object 0 is an initial object. In K-Alg the object K is an
initial object. In K-Alg the object {a ∈ A|f(a) = g(a)} is the equalizer of the two algebra
homomorphisms f : A −→ B and g : A −→ B. In K-Alg the Cartesian (set of pairs) and the
categorical products coincide.

Remark 6.7. A colimit of a diagram C is a limit of the corresponding (dual) diagram in
the dual category Cop. Thus theorems about limits in arbitrary categories automatically also
produce (dual) theorems about colimits. However, observe that theorems about limits in a
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particular category (for example the category of vector spaces) translate only into theorems
about colimits in the dual category, which most often is not too useful.

Proposition 6.8. Limits and colimits of diagrams are unique up to isomorphism.

Proof. Let F : D −→ C be a diagram and let C, π and C̃, π̃ be limits of F . Then there are
unique morphisms f : C̃ −→ C and g : C −→ C̃ with πKf = π̃ and π̃Kg = π. This implies
πK1C

= π idKC
= π = π̃Kg = πKfKg = πKfg and analogously π̃K1C̃

= π̃Kgf . Because of the
uniqueness this implies 1C = fg and 1C̃ = gf . �

Remark 6.9. Now that we have the uniqueness of the limit resp. colimit (up to isomor-
phism) we can introduce a unified notation. The limit of a diagram F : D −→ C will be
denoted by lim←−(F), the colimit by lim−→(F).

Problem 6.2. Given a homomorphism f : M −→ N in R-Mod. Show that (Q, ν : N −→ Q)
is a cokernel of f iff it is the coequalizer of the pair of homomorphisms f, 0 : M −→ N iff the
sequence

M
f−−→ N

ν−−→ Q −→ 0

is exact.

6.3. Completeness.

Theorem 6.10. If C has arbitrary products and equalizers then C has arbitrary limits. In
this case we say that C is complete.

Proof. Let D be a diagram scheme and F : D −→ C a diagram. First we form the products∏
D∈ObD F(D) and

∏
f∈MorD F(Codom(f)) where Codom(f) is the codomain (range) of the

morphism f : D′ −→ D′′ in D so in this case Codom(f) = D′′. We define for each morphism
f : D′ −→ D′′ two morphisms as follows

pf := πF(D′′) :
∏

D∈ObD

F(D) −→ F(D′′) = F(Codom(f))

and
qf := F(f)πF(D′) :

∏
D∈ObD

F(D) −→ F(D′) −→ F(D′′) = F(Codom(f)).

These two families of morphisms induce two morphisms into the corresponding product

p, q :
∏

D∈ObD

F(D) −→
∏

f∈MorD

F(Codom(f))

with πfq = qf and πfp = pf . Now we show that the equalizer of these two morphisms

Ke(p, q)
∏

D∈ObD

F(D)-ψ
∏

f∈MorD

F(Codom(f))
-p

-
q

is the limit of the diagram F : D −→ C. We have pψ = qψ. The morphism ρ(D) := πF(D)ψ :
Ke(p, q) −→

∏
D∈ObD F(D) −→ F(D) defines a family of morphisms for D ∈ ObD. If f : D′

−→ D′′ is in D then the diagram

Ke(p, q) F(D′)-ρ(D′)

ρ(D′′)

@
@

@
@@R
F(D′′)

?

F(f)
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is commutative because of F(f)ρ(D′) = F(f)πF(D′)ψ = qfψ = πfqψ = πfpψ = pfψ =
πF(D′′)ψ = ρ(D′′). Thus we have obtained a natural transformation ρ : KKe(p,q) −→ F .
Now let an object C ′ and a natural transformation ϕ : KC′ −→ F be given. Then this defines
a unique morphism g : C ′ −→

∏
D∈ObD F(D) with πF(D)g = ϕ(D) for all D ∈ D. Since ϕ

is a natural transformation we have ϕ(D′′) = F(f)ϕ(D′) for each morphism f : D′ −→ D′′.
Thus we obtain πfpg = pfg = πF(D′′)g = ϕ(D′′) = F(f)ϕ(D′) = F(f)πF(D′)g = qfg = πfqg
for all morphisms f : D′ −→ D′′ hence pg = qg. Thus g can be uniquely factorized through
the equalizer ψ : Ke(p, q) −→

∏
D∈ObD F(D) in the form g = ψh with h : C ′ −→ Ke(p, q).

Then we have ρ(D)h = πF(D)ψh = πF(D)g = ϕ(D) for all D ∈ D hence ρKh = ϕ.
Finally let another morphism h′ : C ′ −→ Ke(p, q) with ρKh′ = ϕ be given. Then we have
πF(D)ψh

′ = ρ(D)h′ = ϕ(D) = ρ(D)h = πF(D)ψh hence ψh′ = ψh = g. Because of the
uniqueness of the factorization of g through ψ we get h = h′. Thus (Ke(p, q), ρ) is the limit
of F . �

Remark 6.11. The proof of the preceding Theorem gives an explicit construction of the
limit of F as an equalizer

Ke(p, q)
∏

D∈ObD

F(D)-ψ
∏

f∈MorD

F(Codom(f))
-p

-
q

Hence the limit can be represented as a subobject of a suitable product. Dually the colimit
can be represented as a quotient object of a suitable coproduct.

6.4. Adjoint functors and limits. Another fact is very important for us, the fact that
certain functors preserve limits resp. colimits. We say that a functor G : C −→ C ′ preserves
limits over the diagram scheme D if lim←−(GF) ∼= G(lim←−(F)) for each diagram F : D −→ C.

Proposition 6.12. Covariant representable functors preserve limits. Contravariant repre-
sentable functors map colimits into limits.

Proof. We only prove the first assertion. The second assertion is dual to the first one. For a
diagram F : D −→ Set the set

{(xD|D ∈ ObD, xD ∈ F(D))|∀(f : D −→ D′) ∈ D : F(f)(xD) = xD′}
is a limit of F by Problem 6.1 (3). Now let a diagram F : D −→ C be given and let
lim←−(F) be the limit. Furthermore let MorC(C

′, -) : C −→ Set be a representable functor.
By the definition of the limit of F there is a unique morphism f : C ′ −→ lim←−(F) with
πKf = ϕ for each natural transformation ϕ : KC′ −→ F . This defines an isomorphism
Nat(KC′ ,F) ∼= MorC(C

′, lim←−(F)). Hence we have

lim←−(MorC(C
′,F)) ∼=

{(ϕ(D) : C ′ −→ F(D)|D ∈ D)|∀(f : D −→ D′) ∈ D : F(f)ϕ(D) = ϕ(D′)}
= Nat(KC′ ,F) ∼= MorC(C

′, lim←−(F)). �

Corollary 6.13. Let F : C −→ C ′ be left adjoint to G : C ′ −→ C. Then F preserves colimits
and G preserves limits.

Proof. For a diagram H : D −→ C we have

MorC(-, lim←−(GH)) ∼= lim←−MorC(-,GH) ∼= lim←−MorC′(F -,H) ∼=
MorC′(F -, lim←−(H)) ∼= MorC(-,G(lim←−(H))),

hence lim←−(GH) ∼= G(lim←−(H)) as representing objects. The proof for the left adjoint functor
is analogous. �
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7. The Morita Theorems

Throughout this section let K be a commutative ring.

Definition 7.1. A category C is called a K-category, if MorC(M,N) is a K-module and
MorC(f, g) is a homomorphism of K-modules for all M , N , f , g ∈ C.
A functor F : C −→ D between K-categories C and D is called a K-functor, if F : MorC(M,N)
−→ MorD(F(M),F(N)) for all M,N ∈ C is a homomorphism of K-modules.
If K = Z, then K-categories are called (pre-)additive categories and K-functors are called
additive functors.

Remark 7.2. In this section 7 we always write homomorphisms at the opposite side from
where ring elements act on the modules: f : RM −→ RN with (rm)f = r(mf).

Let A and B be K-algebras. Let AM be a left A-module. Then it is also a K-module by
κm := (κ ·1A) ·m. Analogously a right B-module is also a K-module. We redefine the notion
of a bimodule as follows:

Definition 7.3. A K-bimodule AMB is an A-B-bimodule satisfying (κ · 1A) · m = κm =
mκ = m · (1B · κ) i.e. the induced right and left structures of a K-module coincide.

Definition 7.4. A Morita context consists of a 6-tuple (A,B, APB, BQA, f, g) with K-algebras
A, B, K-bimodules APB, BQA and homomorphisms of K-bimodules

f : AP ⊗B QA −→ AAA, g : BQ⊗A PB −→ BBB,

such that:

(1) qf(p⊗ q′) = g(q ⊗ p)q′ oder q(pq′) = (qp)q′,
(2) f(p⊗ q)p′ = pg(q ⊗ p′) oder (pq)p′ = p(qp′),

where we will use the following notation pq := f(p⊗ q) and qp := g(q ⊗ p).
Remark 7.5. With this convention all products are associative e.g. (pb)q = p(bq), (qa)p =
q(ap).

Lemma 7.6. Let A be a K-algebra and AP be an A-module. Then (A,B, P,Q, f = ev, g =
db) is a Morita context with

B := HomA(.P, .P ) BQA := B HomA(.PB, .AA)A
f(p⊗ q) := (p)q (p′)[g(q ⊗ p)] := (p′)qp.

Proof. as in 3.18. �

Definition 7.7. A K-equivalence of K-categories C and D consists of a pair of K-functors
F : C −→ D, G : D −→ C such that IdD ∼= FG and IdC ∼= GF .

Theorem 7.8. (Morita I)
Let (A,B, P,Q, f, g) be a Morita context. Let f and g be epimorphisms. Then the following
statements hold

(1) P is a finitely generated projective generator in A-Mod and in Mod-B.
Q is a finitely generated projective generator in Mod-A and in B-Mod.

(2) f and g are isomorphisms.
(3) Q ∼= HomA(.P, .A) ∼= HomB(P., B.)

P ∼= HomB(.Q, .B) ∼= HomA(Q.,A.)
as bimodules.

(4) A ∼= HomB(.Q, .Q) ∼= HomB(P., P.)
B ∼= HomA(.P, .P ) ∼= HomA(Q.,Q.)
as K-algebras and as bimodules.
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(5) P ⊗B - : B-Mod −→ A-Mod and Q ⊗A - : A-Mod −→ B-Mod are mutually inverse
K-equivalences. Symmetrically - ⊗A P : Mod-A −→ Mod-B and - ⊗B Q : Mod-B
−→ Mod-A are mutually inverse K-equivalences. Furthermore the following functors
are naturally isomorphic:

P ⊗B - ∼= HomB(.Q, .-),
Q⊗A - ∼= HomA(.P, .-),
-⊗A P ∼= HomA(Q., -.),
-⊗B Q ∼= HomB(P., -.).

(6) We have the following isomorphisms of lattices (ordered sets):

V(AP ) ∼= V(BB), V(PB) ∼= V(AA),
V(BQ) ∼= V(AA), V(QA) ∼= V(BB),
V(BQA) ∼= V(AAA) ∼= V(BBB) ∼= V(APB).

(7) The following centers are isomorphic Cent(A) ∼= Cent(B).

Proof. (1) The isomorphisms from Theorem 1.22 (5) map g ∈ HomB-B(.Q ⊗A P., .B.) to
homomorphisms of bimodules g1 : P −→ HomB(.Q, .B) and g2 : Q −→ HomB(P., B.). Fur-
thermore f induces homomorphisms of bimodules f1 : P −→ HomA(Q.,A.) and f2 : Q
−→ HomA(.P, .A).
If g is an epimorphism then there is an element

∑
qi ⊗ pi ∈ Q ⊗A P with g(

∑
qi ⊗ pi) =

1B = idP . Hence p =
∑
pqipi =

∑
(p)[f2(qi)]pi for each p ∈ P . By the dual basis Lemma

3.19 AP is finitely generated and projective.
If f is an epimorphism then there is an element

∑
xi ⊗ yi ∈ P ⊗B Q with f(

∑
xi ⊗ yi) =

1A =
∑

(xi)[f2(yi)]. By 3.24 AP is a generator. The claims for PB, BQ, and QA follow by
symmetry.
(2) If f(

∑
ai ⊗ bi) = 0 then

∑
i ai ⊗ bi =

∑
i,j ai ⊗ bif(xj ⊗ yj) =

∑
ai ⊗ g(bi ⊗ xj)yj =∑

aig(bi ⊗ xj) ⊗ yj =
∑
f(ai ⊗ bi)xj ⊗ yj = 0. Hence f is injective. By symmetry we get

that g is an isomorphism.
(3) The homomorphism f2 : Q −→ HomA(.P, .A) defined as in (1) satisfies (p)[f2(q)] =
f(p ⊗ q) = pq. Let ϕ ∈ HomA(.P, .A). Then (p)ϕ = (p

∑
qipi)ϕ =

∑
(pqi)(pi)ϕ hence

ϕ =
∑
qi(pi)ϕ =

∑
f2(qi(pi)ϕ). Thus f2 is an epimorphism. Let (p)[f2(q)] = pq = 0 for all

p ∈ P . Then we get q = 1Bq =
∑
qipiq = 0. Hence f2 is an isomorphism.

(4) The structure of a B-module on P induces B −→ HomA(.P, .P ). Let pb = 0 for all
p ∈ P . Then b = 1B · b =

∑
qipib = 0. If ϕ ∈ HomA(.P, .P ) then we have (p)ϕ = (p1B)ϕ =

(
∑
p(qipi))ϕ =

∑
(pqi)(pi)ϕ =

∑
p(qi(pi)ϕ) and thus ϕ =

∑
qi(pi)ϕ. This shows that we

have an isomorphism B −→ HomA(.P, .P ) of K-algebras and bimodules.
(5) AP ⊗B Q ⊗A X ∼= AA ⊗A X ∼= AX is natural in X and BQ ⊗A P ⊗B Y ∼= BB ⊗B Y ∼=
BY is natural in Y thus we get the claim. Furthermore BQ ⊗A U ∼= B HomA(.P, .A) ⊗A
U ∼= B HomA(.P, .A ⊗A U) ∼= B HomA(.P, .U) is natural in U since the homomorphism
ϕ : HomA(.P, .A) ⊗A U −→ HomA(.P, .A ⊗A U) with (p)[ϕ(f ⊗ u)] := ((p)f) ⊗ u is an
isomorphism. More generally we show:

Lemma 7.9. If AP is finitely generated projective and AVB and BU are (bi-)modules then
the natural transformation (in U and V )

ϕ : HomA(.P, .V )⊗B U −→ HomA(.P, .V ⊗B U)

is an isomorphism.

Proof. Let
∑
fi ⊗ pi ∈ HomA(.P, .A)⊗A P be a dual basis for P . Then

ϕ−1 : HomA(.P, .V ⊗B U) −→ HomA(.P, .V )⊗B U
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defined by ϕ−1(g) =
∑

i,j()fivij ⊗ uij with (pi)g =:
∑

j vij ⊗ uij is inverse to ϕ defined by

(p)[ϕ(f⊗u)] = (p)f⊗u. Since ϕ is a homomorphism (p)[ϕ(fb⊗u)] = (p)fb⊗u = (p)f⊗bu =
(p)[ϕ(f ⊗ bu)] it suffices to show that ϕ−1 is a map. Now we have (pi)ϕ(f ⊗ u) = (pi)f ⊗ u
hence ϕ−1ϕ(f ⊗ u) =

∑
()fi(pi)f ⊗ u =

∑
(()fipi)f ⊗ u = f ⊗ u. Furthermore we have

ϕϕ−1(g) = ϕ(
∑

()fi(pi)g) =
∑

()fi(pi)g = (
∑

()fipi)g = g. �

Proof of 7.8: (continued)
(6) Under the equivalence of categories AP is mapped to HomA(.P, .P ) ∼= BB. This implies
V(AP ) ∼= V(BB). In fact, a submodule of AP is an isomorphism class of monomorphisms

AU −→ AP , two such isomorphisms being called isomorphic, if there is a (necessarily unique)
isomorphism U ∼= U ′, such that

U

P

H
HHj

U ′
���*

?

commutes. Obviously such subobjects are being preserved under an equivalence of categories.
For subobjects of APB we have furthermore that

U P-

U P-

?

·b
?

·b and

HomA(.P, .U) B-

HomA(.P, .U) B-

?

·b
?

·b

commute. Hence AUB ∈ V(APB) iff HomA(.P, .U) ∈ V(BBB).
(7) The proof of this part will consist of two steps. We use the algebra Endfunkt(IdA-Mod) of
natural endomorphisms of IdA-Mod with the addition of morphisms and the composition of
morphisms as the operations of the algebra. Obviously this defines an algebra.
In a first step we show that the center of A is isomorphic to Endfunkt(IdA-Mod). In a second
step we show that Endfunkt(IdA-Mod) ∼= Endfunkt(IdB-Mod). This last step is almost trivial
since all terms defined by categorical means are preserved by an equivalence. Then we have
Cent(A) ∼= Endfunkt(IdA-Mod) ∼= Endfunkt(IdB-Mod) ∼= Cent(B).
Let z ∈ Z(A). For M = IdA-Mod(M) we have zam = azm hence z = z· ∈ EndA(M). Thus
z· defines an endomorphism of IdA-Mod(M), for

N N-
z·

M M-z·

?

f

?

f

commutes. So we have defined a homomorphism Cent(A) −→ Endfunkt(IdA-Mod). Let ϕ ∈
Endfunkt(IdA-Mod). Then the diagram

M M-
ϕ(M)

A A-
ϕ(A)

?

fm

?

fm
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commutes, where (a)fm = am. Each f ∈ HomA(.A, .M) is of this form. For M = A we have
a(1)[ϕ(A)] = (a)[ϕ(A)] = (1)[faϕ(A)] = (1)[ϕ(A)fa] = (1)[ϕ(A)]a hence (1)[ϕ(A)] ∈ Z(A).
For an arbitrary M ∈ A-Mod we then have (m)[ϕ(M)] = (1)[fmϕ(M)] = (1)[ϕ(A)fm] =
(1)[ϕ(A)]m i.e. ϕ(M) is of the form z· with z = (1)[ϕ(A)]. The maps defined in this way
obviously are inverses of each other: z 7→ z· 7→ z · 1 = z and ϕ 7→ (1)[ϕ(A)] 7→ (1)[ϕ(A)]·.
In order to show that Endfunkt(IdA-Mod) and Endfunkt(IdB-Mod) are isomorphic, let ϕ ∈
Endfunkt(IdA-Mod) =: E(A). We define ϕ′ ∈ E(B) by

ST (BM) ST (BM)-
SϕT (M)

BM BM-
ϕ′(M)

?

β(M)

?

β(M)

where S : A-Mod −→ B-Mod, T : B-Mod −→ A-Mod are the mutually inverse equivalences
from (5), and α : IdA-Mod −→ TS and β : IdB-Mod −→ ST resp. are the associated isomor-
phisms. Analogously we associate with each ψ ∈ E(B) an element ψ′ ∈ E(A) by

TS(AN) TS(AN)-
TψS(N)

AN AN-
ψ′(N)

?

α(N)

?

α(N)

.

The compositions of ψ 7→ ψ′ and ϕ 7→ ϕ′ in each direction define isomorphisms, hence each
single map is an isomorphism. One of the two compositions is contained in the following
diagram.

N N-
ϕ′′(N)

TS(N) TS(N)-
Tϕ′S(N)

T (ST )S(N) T (ST )S(N)-
TSϕTS(N)

TS(N) TS(N)-
TSϕ(N)

N N-
ϕ(N)

?
α(N)

?
α(N)

?
TβS(N)

?
TβS(N)

6
TSα(N)

6
TSα(N)

6
α(N)

6
α(N)

Thus the map ϕ 7→ ϕ′′ is an inner automorphism of E(A), hence it is bijective. �

Theorem 7.10. (Morita II)
Let S : A-Mod −→ B-Mod and T : B-Mod −→ A-Mod be mutually inverse K-equivalences.
Let APB := T (B) and BQA := S(A). Then there are isomorphisms f : AP ⊗B QA −→ AAA
and g : BQ⊗A PB −→ BBB, such that (A,B, P,Q, f, g) is a Morita context.
Furthermore the following hold S ∼= Q⊗A - and T ∼= P ⊗B -.
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Theorem 7.11. (Morita III)
Let P ∈ A-Mod be a finitely generated projective generator (= progenerator). Then the
Morita context (A,HomA(.P, .P ), P,Q, f = ev, g = db) is strict, i.e. f and g are epimor-
phisms.

Proof. Since AP is finitely generated projective, g = db is an isomorphism (3.19). Since AP
is a generator, f = ev is an epimorphism (3.24). �

Proof of 7.10: 1. Given S, T . Then S : HomA(.M, .N) 3 f 7→ S(f) ∈ HomB(.SM, .SN) is
an isomorphism. Let α : TS ∼= IdA-Mod. Then

HomA(.M, .N) HomB(.SM, .SN)-S -T HomA(.TSM, .TSN) HomA(.M, .N)-Hom(α−1,α)

is the identity, since Hom(α−1, α)TS(f) = α ◦ TSf ◦ α−1 = f . This holds since

M N-
f

TSM TSN-TDf

?

α

?

α

commutes. So S is a monomorphism and Hom(α−1, α) ◦ T is an epimorphism. Since
Hom(α−1, α) is an isomorphism, T is an epimorphism where T : HomB(.SM, .SN) −→
HomA(.TSM, .TSN). By symmetry T is a monomorphism. Hence T is an isomorphism
in the above map. Thus S is an isomorphism.

2. HomB(.SM, .N)
T−→ HomA(.TSM, .TN)

Hom(α−1,id)−→ HomA(.M, .TN) is a natural isomor-
phism. It is clear that this is an isomorphism. Since T is a functor, the first map is a
natural transformation. The second map is a natural transformation, since α is a natural
transformation. In particular, S is left adjoint to T .
3. S(⊕i∈IMi) ∼= ⊕i∈IS(Mi), since S is a left adjoint functor and thus preserves direct
coproducts.
4. If f ∈ B-Mod is an epimorphism, then Tf ∈ A-Mod is an epimorphism, too. In fact, let
f : M −→ N be an epimorphism. Let g, h ∈ A-Mod be given with g ◦ Tf = h ◦ Tf . Then we
have a commutative diagram

STM STN-STf -Sg
SM-

Sh

M N-f?

β

?

β

with Sg ◦ STf = Sh ◦ STf . Since f is an epimorphism this implies Sg = Sh, hence g = h.
5. If P ∈ A-Mod is projective, then SP ∈ B-Mod is projective. In fact given an epimorphism
f : M −→ N in B-Mod and a homomorphism g : SP −→ N . Then Tf : TM −→ TN
is an epimorphism and Tg : TSP −→ TN is in A-Mod. Since α : TSP ∼= P , there is
an h : P −→ TM with Tf ◦ h = Tg ◦ α−1 or Tf ◦ h ◦ α = Tg. We apply S and get
STf ◦ S(h ◦ α) = STg, where S(h ◦ α) ∈ HomB(.STSP, .STM). Since β : STM ∼= M , we
have an isomorphism Hom(β−1, β) : HomB(.STSP, .STM) −→ HomB(.SP, .M) with inverse
Hom(β, β−1). For k : SP −→M with k = β ◦S(h◦α)◦β−1 we then have β ◦ST (k) = k ◦β =
β ◦ S(h ◦ α) ◦ β−1 ◦ β = β ◦ S(h ◦ α), hence ST (k) = S(h ◦ α) and T (k) = h ◦ α. So we get
STf ◦ STk = STg = ST (f ◦ k) and thus g = f ◦ k. So SP is projective.
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6. SA is finitely generated as a B-module: Since SA is projective, we have SA⊕X ∼=
⊕

i∈I B.
By (3) applied to T we get A⊕TX ∼= TSA⊕TX ∼=

⊕
i∈I TB. Since A is finitely generated,

the image of A in
⊕

i∈I TB is already a direct summand in a finite direct subsum
⊕

i∈E TB,
so A ⊕ Y ∼=

⊕
i∈E TB. Hence SA ⊕ SY ∼=

⊕
i∈E STB

∼=
⊕

i∈E B and thus SA is finitely
generated.
7. If G ∈ A-Mod is a generator then SG ∈ B-Mod is also a generator. In fact let (f : M
−→ N) 6= 0 in B-Mod. Then Tf 6= 0, hence there is a g : G −→ TM with Tf ◦ g 6= 0.
Consequently STf ◦ Sg 6= 0 and f ◦ (α ◦ Sg) = α ◦ STf ◦ Sg 6= 0.
8. This shows that S(A) is a finitely generated projective generator.
(Remark: An equivalence S always maps finitely generated modules to finitely generated
modules. We will give the proof further down in Proposition 7.12.)

9. A ∼= HomB(.SA, .SA) as algebras, since A ∼= HomA(.A, .A)
S−→ HomB(.SA, .SA).

10. TB ∼= HomB(.SA, .B), since HomB(.SA, .B)
T−→ HomA(.TSA, .TB) ∼= HomA(.A, .TB) ∼=

TB.
11. (B,A, SA, TB, f, g) defines a strict Morita context by Morita III.
12. The functor S is isomorphic to SA ⊗A −. Infact we have HomB(.SA ⊗A M, .N) ∼=
HomA(.M, .HomB(.SA, .N))

∼= HomA(.M, .HomA(.A, .TN))
∼= HomA(.M, .TN)
∼= HomB(.SM, .N).

The representing object BSM ∼= BSA⊗AM depends functorially on M by 5.5. �

Proposition 7.12. AM is finitely generated iff in each set of submodules {Ai|i ∈ I} with
Ai ⊆ M and

∑
i∈I Ai = M there is a finite subset {Ai|i ∈ I0} (I0 ⊆ I finite) such that∑

i∈I0 Ai = M .

Proof. Let M = Am1 + . . . + Amn. Each mj is contained in a finite sum of the Ai, hence
all of the mj and hence the module M itself. Conversely consider {Am|m ∈ M}. Then
M =

∑
Am, hence M is a sum of finitely many of the Am and thus is finitely generated. �

Corollary 7.13. Under an equivalence of categories T : A-Mod −→ B-Mod finitely generated
modules are mapped into finitely generated modules.

Proof. The lattice of submodules V(M) is isomorphic to the lattice of submodules V(TM).
�

Problem 7.1. Let A-Mod be equivalent to B-Mod. Show that Mod-A and Mod-B are also
equivalent.

Problem 7.2. Show that an equivalence of arbitrary categories preserves monomorphisms.

Problem 7.3. Show that an equivalence of module categories preserves projective modules,
but not free modules.
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8. Simple and Semisimple rings and Modules

8.1. Simple and Semisimple rings.

Definition 8.1. An ideal RI ⊆ RR is called nilpotent, if there is n ≥ 1 such that In = 0.
A module RM is called Artinian (Emil Artin, 1898-1962), if each non empty set of submodules
of M contains a minimal element.
A module RM is called Noetherian (Emmy Noether, 1882-1935), if each non empty set of
submodules of M contains a maximal element.
A ring R is called simple, if RR as a module is Artinian and if R does not have non trivial
(6= 0, R) two sided ideals.
A ring R is called semisimple, if RR is Artinian and if R does not have non trivial (6= 0)
nilpotent left ideals.

Lemma 8.2. Each simple ring is semisimple.

Proof. C :=
∑

(I|RI ⊆ RR nilpotent) is a two sided ideal. In fact take a ∈ I and r ∈ R.
Then

(r1ar)(r2ar) . . . (rnar) = (r1a)(rr2a) . . . (rrna)r ∈ InR = 0.

Hence we have (Rar)n = 0 =⇒ Rar ⊆ C, so ar ∈ C and C is a two sided ideal. Thus C = 0
or C = R. If C = 0 then there are no non trivial nilpotent ideals. If C = R then there
are ideals and elements ai ∈ Ii such that 1 = a1 + . . . + an. The ideal I1 + I2 is nilpotent
since (a1 + b1)(a2 + b2) . . . (a2n + b2n) consists of monomials either in In1 ·R or in In2 ·R. But
In1 = 0 = In2 =⇒ (I1 + I2)

2n = 0. Hence 1 is nilpotent. Contradiction. �

Definition 8.3. A module RM is called simple iff M 6= 0 and M has only the modules 0
and M as submodules. An ideal RI is called simple or minimal, if it is simple as a module.

Lemma 8.4. Let R be semisimple. Then each left ideal of R is a direct summand of R.

Proof. Let I be an ideal in R, that is not a direct summand, and let I be minimal with
respect to this property. Such an ideal exists, since R Artinian.
Case 1: Let I ⊆ R be an ideal that is not minimal (simple), i.e. there is an ideal J ⊆ I with
0 6= J 6= I. Then J is a direct summand of R, i.e. there is a homomorphism f : R −→ J

with (J −→ I −→ R
f−→ J) = idJ . This implies I = J ⊕K for K := Ke(I −→ R

f−→ J). Since

K 6= I, there is also a g : R −→ K with (K −→ I −→ R
g−→ K) = idK . The map f + g− gf : I

−→ R −→ I satisfies (f + g− gf)(j) = f(j) + g(j)− gf(j) = j + g(j)− g(j) = j for all j ∈ J
and (f+g−gf)(k) = f(k)+g(k)−gf(k) = 0+k−0 = k for all k ∈ K, hence (f+g−gf : I
−→ R −→ I) = idI . Thus I is a direct summand of R. Contradiction.
Case 2: Let I be a minimal or simple ideal. Since I is not nilpotent and 0 6= I2 ⊆ I holds,
we get I2 = I. In particular there exists an a ∈ I with Ia = I, since Ia is also an ideal. Thus
·a : I −→ I is an epimorphism and even an isomorphism, for Ke(·a) must be zero as an ideal
(see Lemma of Schur 8.5.) So there is an e ∈ I, e 6= 0 with ea = a. =⇒ (e2−e)a = eea−ea =
a− a = 0 =⇒ e2 − e = 0 ∈ I =⇒ e2 = e ∈ I. From I = Re we get R = Re⊕R(1− e), since
R = Re+R(1− e) and re = s(1− e) ∈ Re∩R(1− e) =⇒ re = re2 = s(1− e)e = 0. Thus I
is a direct summand of R. Contradiction. �

Lemma 8.5. (Schur) Let RM , RN be simple modules. Then the following hold:

(1) If M 6∼= N , then HomR(.M, .N) = 0.
(2) HomR(.M, .M) is a skew-field (= division algebra = non commutative field).

Proof. Let f : M −→ N be a homomorphism with f 6= 0. Then Im(f) = N , since N is
simple and Ke(f) = 0, since M is simple, hence f is an isomorphism. This implies (1).
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Furthermore we have (2), since each endomorphism f : M −→ M with f 6= 0 is invertible
under the multiplication of HomR(.M, .M). Observe that a skew-field is a ring, whose non
zero elements form a group under the multiplication. �

Remark 8.6. Let RM be simple. Then EndR(.M) = D is a skew-field. Hence the R-module
structure of M can be characterized by R −→ EndD(M.) = Mn(D).

Theorem 8.7. (Artin-Wedderburn) The following are equivalent:

(1) R is simple.
(2) R possesses a simple ideal that is an R-progenerator.
(3) R ∼= Mn(D) is a full matrix ring over a skew-field D. (n is unique, D is unique up

to isomorphism.)
(4) R = I1 ⊕ . . .⊕ In with isomorphic simple left ideals I1, . . . , In.

Proof. (1) =⇒ (2): Since R is Artinian there is a simple ideal 0 6= I ⊆ R. Let J :=
∑
{I ′|I ′

ideal in R and I ′ ∼= I}. Then J is a two sided ideal, since I ′ · r 6= 0 =⇒ ·r : I ′ −→ R with
Ke(·r) = 0, hence ·r is injective and the image I ′ · r is isomorphic to I ′ resp. I, hence is in
J . Since R is simple we have R = J =

∑
Ii. Since 1 ∈ I1 + . . .+ In, there is an epimorphism

I1 ⊕ . . . ⊕ In −→ R (exterior direct sum), that splits since R is projective. Hence R is a
direct summand of I1 ⊕ . . .⊕ In up to isomorphism, and thus I is a generator. Furthermore
I is a direct summand of R by 8.4, hence it is finitely generated projective, thus I is an
R-progenerator.
(2) =⇒ (3): By the Lemma of Schur EndR(.I) =: D is a skew-field. RID generates an
equivalence of categories. Hence R ∼= EndD(I.) ∼= Mn(D).
(3) =⇒ (4): R ∼= Mn(D) =⇒ R ∼= EndD(V.) with an n-dimensional D-vector space V . VD
is a progenerator. Hence we have V(RR) ∼= V(DV

∗). Since V ∗ ∼= D ⊕ . . . ⊕ D, we have

RR ∼= I1 ⊕ . . .⊕ In with I1 ∼= . . . ∼= In ∼= RV ⊗D D ∼= RV .
(4) =⇒ (2): I1 is obviously an R-progenerator.
(2) =⇒ (1): R-Mod ∼= D-Mod with D ∼= EndR(I). Hence V(RR) ∼= V(D HomD(I.,DD.)) is
Artinian, and we have V(RRR) ∼= V(DDD) = {0, D}. Thus R is simple. �

Corollary 8.8. Let R be a simple ring and let RM 6= 0 be finitely generated. Then the
following hold

(1) RM is an R-progenerator.
(2) S := EndR(.M) is a simple ring.
(3) Cent(R) ∼= Cent(EndR(.M)).
(4) R ∼= EndS(M.).

Proof. (1) The claim follows from the fact that R-Mod ∼= D-Mod and since each finitely
generated D-module is a progenerator.
(2) S-Mod ∼= R-Mod ∼= D-Mod implies that V(SS) ∼= V(DP ) is Artinian. Furthermore
V(SSS) ∼= V(DDD), hence S is a simple ring.
(3)+(4) follow from the Morita theorems. �

8.2. Injective Modules.

Definition and Remark 8.9. An R-module RJ is called injective, if for each monomor-
phism f : M −→ N and for each homomorphism g : M −→ J there exists a homomorphism
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h : N −→ J with hf = g

M N-f

J
?

g h

�
�

�
��	

.

Vector spaces are injective. ZZ is not injective. The injective Z-modules are exactly the
divisible Abelian groups. ZQ is injective.

Theorem 8.10. (The Baer criterion): The following are equivalent for Q ∈ R-Mod:

(1) Q is injective.
(2) ∀RI ⊆ RR, ∀g : I −→ Q ∃h : R −→ Q with hι = g

I R-ι

Q
?

g h

�
�

�
��	

.

(3) Each monomorphism f : Q
f−→ M splits, i.e. there is an epimorphism g : M −→ Q

with gf = 1Q.

Proof. (1) =⇒ (2): follows immediately from the definition.
(1) =⇒ (3): The diagram

Q M-f

Q
?

1Q g
�

�
�

��	

defines the required g.
(3) =⇒ (1): In the diagram

M N-f

Q P
-ϕ

�
ρ

?

g

?

ψ

assume that f is a monomorphism and P := N ⊕Q/{(f(m),−g(m))|m ∈ M} with ϕ resp.

ψ are canonical maps to the left resp. the right components: ϕ(q) := (0, q), ψ(n) := (n, 0).

Since ψf(m) = (f(m), 0) = (0, g(m)) = ϕg(m) we have ψf = ϕg. Let ϕ(q) = (0, q) = 0.
Then there exists an m ∈ M with f(m) = 0 and g(m) = q. Since f is an injective map, we
have m = 0 and thus ϕ injective. By (3) there is a ρ with ρϕ = 1Q. Then ρψf = ρϕg = g,
and thus Q is injective.
(2) =⇒ (1): Given a monomorphism f : M −→ N and a homomorphism g : N −→ Q.
Consider the set S := {(Ni, ϕi)}, where Ni ⊆ N is a submodule with Im(f) ⊆ Ni and ϕi : Ni
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−→ Q is a homomorphism such that

M Ni
-f

N-

Q
?

g ϕi
�

�
�

��	

commutes. We have S 6= ∅, since (Im(f), gf−1) ∈ S. Furthermore S is ordered by (Ni, ϕi) ≤
(Nj, ϕj) if Ni ⊆ Nj and ϕj|Ni

= ϕi. Let {(Ni, ϕi)|i ∈ J} be a chain in S. Then ∪Ni ⊆ N
is a submodule. ψ : ∪Ni −→ Q with ψ(ni) = ϕi(ni) is a well defined homomorphism and
(∪Ni, ψ) ∈ S. Furthermore we have (Nj, ϕj) ≤ (∪Ni, ψ) for all j ∈ J . By Zorn’s Lemma
there exists a maximal element (N ′, ϕ′) in S. We show thatN ′ = N , for then the continuation
of g to N exists. Let x ∈ N \N ′. Then N ′ $ N ′ + Rx. Let I := {r ∈ R|rx ∈ N ′}. Then I
is an ideal and we have a commutative diagram

I R-ι

M N ′-f
N ′ +Rx-

g
@

@
@

@@R
Q
?

ϕ′

�
�

�
�

�
�

�
�

�
���

σ

?

·x
?

ρ

τ
�

�
�

��	

with ρ(r) := r · x. Then we have ρ(I) ⊆ N ′. Thus by (2) there is a homomorphism σ : R
−→ Q with σι = ϕ′ ◦ (·x). We define τ : N ′+Rx −→ Q by τ(n′+ rx) := ϕ′(n′)+σ(r). This is
a well defined map, for if n′ + rx = n′1 + r1x then (r− r1)x = n′1− n′ ∈ N ′ hence r− r1 ∈ I.
Thus σ(r − r1) = ϕ′((r − r1)x) = ϕ′(n′1 − n′) and ϕ′(n′) + σ(r) = ϕ′(n′1) + σ(r1). It is easy
to see that τ is also a homomorphism. Since τ |N ′ = ϕ′ holds we have (N ′ + Rx, τ) ∈ S and
(N ′, ϕ′) � (N ′ +Rx, τ) a contradiction to the maximality of (N ′, ϕ′). Thus N ′ = N . �

Corollary 8.11. If R is a semisimple ring then each R-module is projective and injective.

Proof. Let Q be an R-module. By 8.4 each ideal is a direct summand of R. The following
diagram together with the Baer criterion shows that Q is injective:

I R
-

�

Q.
?

�
�

�
��	

Let f : N −→ P be surjective. Since Ke(f) ⊆ N is a submodule and injective there is a
g : N −→ Ke(f) with g(n) = n for all n ∈ Ke(f). We define k : P −→ N by k(p) = n− g(n)
for n ∈ N with f(n) = p. If also f(n′) = p then f(n − n′) = 0 hence n − n′ ∈ Ke(f) and
g(n−n′) = n−n′. This implies n−g(n) = n′−g(n′). So k is a well defined map. Furthermore
fk(p) = f(n − g(n)) = f(n) − fg(n) = p − 0, hence fk = 1P . In order to show that k is a
homomorphism let f(n) = p, f(n′) = p′. Then we get f(rn+ r′n′) = rp+ r′p′. This implies
k(rp+ r′p′) = rn+ r′n′− g(rn+ r′n′) = r(n− g(n)) + r′(n′− g(n′)) = rk(p) + r′k(p′). Thus
P is projective. �
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Lemma 8.12. Let 0 −→ M
f−→ N

g−→ P −→ 0 be a short exact sequence. M and P are
Artinian if and only if N is Artinian. In particular if M and N are Artinian then M ⊕N
is Artinian.

Proof. Let N be Artinian. This implies immediately that M is Artinian. If {Li} is a set of
submodules of P then {g−1(Li)} is a set of submodules of N . Let g−1(L0) be minimal in
this set. Since gg−1(Li) = Li we have that L0 is minimal in {Li}.
Let M and P be Artinian. Let {Li} be a set of submodules of N . Let L0 be chosen such
that g(L0) is minimal in the set {g(Li)}. Let L be chosen such that f−1(L) is minimal in
the set {f−1(Lj)|Lj ∈ {Li} and g(Lj) = g(L0)}. We show that L is minimal in {Li}. Let
L′ ∈ {Li} with L ⊇ L′. Then g(L0) = g(L) ⊇ g(L′), hence g(L′) = g(L0). Furthermore we
have f−1(L) ⊇ f−1(L′), hence L = L′. �

8.3. Simple and Semisimple Modules.

Lemma 8.13. Let R1, . . . , Rn be semisimple rings. Then R1× . . .×Rn is a semisimple ring.

Proof. (Only for the case R1 × R2) By Lemma 8.12 R1 × R2 is Artinian. Let I ⊆ R be
nilpotent. From In = 0 we get for each a ∈ I the equation (Ra)n = 0. From a = (a1, a2)
follows 0 = (Ra)n = (R1a1, R2a2)

n. Hence R1a1 = 0 and R2a2 = 0, i.e. Ra = 0 and thus
I = 0. �

Lemma 8.14. Each proper submodule N of a finitely generated module M is contained in
a maximal submodule of M . In particular M possesses a simple quotient module.

Proof. Let N $ M be a proper submodule of M . Let M be the set of submodules U with
N ⊆ U $ M . M is ordered by inclusion. Let (Ui) be a chain inM and U ′ := ∪Ui. Then U ′

is again a submodule and N j U ′. If U ′ = M then all generating elements m1, . . . ,mt are
in U ′, hence there is a module Ui with m1, . . . ,mt ∈ Ui. Thus Ui = M . This is impossible.
So U ′ 6= M and thus in M. Furthermore U ′ is an upper bound of (Ui). By Zorn’s Lemma
there is a maximal submodule of M (inM), that contains N . �

Lemma 8.15. (1) If X ⊆ ZQ is a set of generating elements of Q over Z and x ∈ X
then X \ {x} is also a set of generating elements of Q.

(2) ZQ possesses no maximal submodules.

Proof. (1) Let B = 〈X\{x}〉. Then Q = Zx+B. There is a y ∈ Q with 2y = x. We represent
y as y = nx+b with n ∈ Z, b ∈ B. This implies x = 2y = 2nx+2b and thus (1−2n)x = 2b ∈
B. Furthermore there is a z ∈ Q with (1−2n)z = x, since obviously 1−2n 6= 0. We represent
z as z = mx+b′. This implies x = (1−2n)z = (1−2n)mx+(1−2n)b′ = 2mb+(1−2n)b′ ∈ B.
Thus B = Q and we can omit x from the set of generating elements.
(2) Let N ⊆ Q be a maximal submodule and x ∈ Q\N . Then N ∪{x} is a set of generating
elements of Q, hence also N . Contradiction. �

Lemma 8.16. Let RM be a module in which each submodule is a direct summand. Then
each submodule 0 6= N ⊆ M contains a simple submodule. Furthermore M is a sum of
simple submodules.

Proof. Let x ∈ N , x 6= 0. It suffices to show that Rx has a simple submodule. Since Rx is
finitely generated Rx possesses a maximal submodule L. Since L is a direct summand of M ,

there is f : M −→ L with (L −→ Rx −→M
f−→ L) = 1L, hence L⊕ I = Rx, where I = Ke(Rx

−→ M −→ L). If 0 6= J $ I then L $ L + J $ Rx in contradiction to L maximal in Rx.
Hence I is simple with I ⊆ Rx ⊆ N .
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Let N :=
∑
Ij be the sum of all simple submodules of M . Then M = N ⊕ K. If K 6= 0

then K contains a simple submodule I and we have I ⊆ N ∩K. Contradiction. Thus K = 0
and M =

∑
Ij. �

Lemma 8.17. Let RM be a sum of simple submodules: M =
∑

j∈X Ij. Let N ⊆ M be a

submodule. Then there is a set Y ⊆ X with M = N ⊕
⊕

j∈Y Ij and a set Z ⊆ X with

N ∼=
⊕

j∈Z Ij. In particular each submodule N of M is a direct sum of simple submodules.

Proof. Let S = {Z ⊆ X|N + (
∑

j∈Z Ij) = N ⊕ (
⊕

j∈Z Ij)}. The set S is ordered by

inclusion and not empty since ∅ ∈ S. Let (Zi) be a chain in S. Then Z ′ := ∪Zi ∈ S. In
order to show this let n +

∑
j∈Z′ aj = 0. Then at most finitely many aj ∈ Ij are different

from 0. Hence there is a Zi in the chain with j ∈ Zi for all aj 6= 0 in the sum. From
N +(

∑
j∈Zi

Ij) = N⊕ (
⊕

j∈Zi
Ij) we get n = 0 = aj for all j ∈ Z ′. By Zorn’s Lemma there is

a maximal element Z ′′ ∈ S, and we have P := N + (
∑

j∈Z′′ Ij) = N ⊕ (
⊕

j∈Z′′ Ij). Let Ik be

simple with k ∈ X \Z ′′. If P + Ik = P ⊕ Ik, then N +(
∑

j∈Z′′ Ij)+ Ik = N ⊕ (
⊕

j∈Z′′ Ij)⊕ IR
in contradiction to the maximality of Z ′′. Hence 0 6= P ∩ Ik ⊆ Ik, or Ik ⊆ P . This implies
P = N +

∑
j∈X Ij = M .

Now we apply the first claim to
⊕

j∈Y Ij and obtain N ⊕ (
⊕

j∈Y Ij) = M = (
⊕

j∈Y Ij) ⊕
(
⊕

j∈Z Ij). This implies N ∼= M/(
⊕

j∈Y Ij)
∼=

⊕
j∈Z Ij. �

Theorem 8.18. (Structure Theorem for Semisimple Modules): For RM the following are
equivalent

(1) Each submodule of M is a sum of simple submodules.
(2) M is a sum of simple submodules.
(3) M is a direct sum of simple submodules.
(4) Each submodule of M is a direct summand.

Proof. (1) =⇒ (2): trivial.
(2) =⇒ (3): Lemma 8.17.
(3) =⇒ (1): Lemma 8.17.
(2) =⇒ (4): Lemma 8.17.
(4) =⇒ (2): Lemma 8.16. �

Definition 8.19. A module RM is called semisimple, if it satisfies one of the equivalent
conditions of Theorem 8.18.

Corollary 8.20. (1) Each submodule of a semisimple module is semisimple.
(2) Each quotient (residue class) module of a semisimple module is semisimple.
(3) Each sum of semisimple modules is semisimple.

Proof. (1) trivial.
(2) Let N ⊆M . Then M ∼= N ⊕M/N , in particular M/N is isomorphic to a submodule of
M .
(3) trivial. �

Remark 8.21. With the notion of a semisimple module we have obtained a particularly
suitable generalization of the notion of a vector space. Important theorems of linear algebra
have been generalized in Theorem 8.18. The simple modules over a field are exactly the one
dimensional vector spaces. Condition (2) of Theorem 8.18 is trivially satisfied since each
vector space is the sum of simple (one dimensional) vector spaces, one simply has to form
V =

∑
v∈V \{0}Kv or V =

∑
v∈EKv for an arbitrary set of generating elements E of V . Thus

each vector space V is semisimple. So condition (3) holds. It says that each set of generating
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elements E contains a basis. (4) is the important statement that each subspace of a vector
space has a direct complement. Lemma 8.17 also contains claims about the dimension of
vector spaces, subspaces and quotient spaces.

Theorem 8.22. (Wedderburn) The following are equivalent for R:

(1) RR is semisimple (as a ring).
(2) Each R-module is projective.
(3) Each R-module is injective.
(4) Each R-module is semisimple.
(5) RR is semisimple (as an R-module).
(6) R is a direct sum of simple left ideals.
(7) R ∼= R1 × . . .×Rn with simple rings Ri (i = 1, . . . , n).
(8) R ∼= B1 ⊕ . . .⊕Bn, where the Bi are minimal two sided ideals and RR is Artinian.
(9) RR is semisimple (as a ring).

Proof. (1) =⇒ (3): Corollary 8.11.
(3) =⇒ (4): Theorem 8.18 (4) and Theorem 8.10 (3).
(4) =⇒ (5): Specialization.
(5) =⇒ (6): Theorem 8.18 (3).
(6) =⇒ (3): Theorem 8.18 (4) and 8.11.
(6) =⇒ (2): Theorem 8.18 (4) and 8.11.
(2) =⇒ (4): Let N ⊆ M be a submodule. Then M/N is projective, so there is f : M/N
−→ M with (M/N −→ M −→ M/N) = id or (M −→ M/N −→ M) = p with p2 = p. Hence
M = Ke(p)⊕ Im(p) and Ke(p) = N .
(6) =⇒ (8): Let R = I11⊕ . . .⊕ I1i1⊕ I21⊕ . . .⊕ I2i2⊕ . . .⊕ In1⊕ . . .⊕ Inin be a direct sum of
simple ideals, finitely many, since R is finitely generated, and let Iij ∼= Iik for all i, j, k and

Ii1 6∼= Ij1 for i 6= j. Let Bk :=
⊕ik

j=1 Ikj.
Let I ⊆ R be simple. Let pk : R −→ Bk be the projection onto Bk w.r.t. R = B1 ⊕ . . .⊕Bn.
Then there is at least one k with pk(I) 6= 0. Then I ∼= pk(I) = J ⊆ Bk is a simple ideal.
Because of 8.17 we get I ⊕ (

⊕m
j=r+1 Ikj) = Bk = Ik1 ⊕ . . . ⊕ Ikr ⊕ (

⊕m
j=r+1 Ikj) using a

suitable numbering. Hence J ∼= Ik1 ⊕ . . .⊕ Ikr and thus r = 1 and I ∼= J ∼= Ik1. So there is
a unique k with pk(I) 6= 0. In particular we have I ⊆ Bk. If f : RR −→ RR with f(I) 6= 0
is given, then f(I) ∼= I is simple and f(I) ⊆ Bk for one k. So f(Bk) ⊆ Bk holds for all
f ∈ HomR(.R, .R) ∼= R, and Bk is a two sided ideal.
Observe that BiBj ⊆ Bi ∩ Bj = 0. For 1 ∈ R = B1 ⊕ . . . ⊕ Bn let 1 = e1 + . . . + en with
ei ∈ Bi. For b ∈ Bi we get eib = (e1 + . . . + en)(0 + . . . + b + . . . + 0) = b = bei. Thus
Bi can be considered as ring with unit ei. (Bi is not a subring of R but a quotient ring of
R.) Since BiBj = 0 we have that L ⊆ Bi is a (one sided resp. two sided) Bi-ideal of Bi iff
L is an R-ideal. Since Bi = I1 ⊕ . . . ⊕ In is a direct sum of simple R-ideals resp. Bi-ideals
and since Ij ∼= Ik holds, Bi is a simple ring by Theorem 8.7. In particular Bi has no two
sided nontrivial ideals, i.e. the two sided ideals Bi ⊆ R are minimal. 8.12 implies that R is
Artinian.
(8) =⇒ (7): Since BiBj ⊆ Bi ∩ Bj = 0 the Bi are simple rings as above, hence R =
R1 × . . . × Rn with Ri = Bi, because addition and multiplication are performed in the Bi

(componentwise).
(7) =⇒ (1): Lemma 8.12.
(7) =⇒ (9): In order to have condition (7) symmetric in the sides, it suffices to show that
a simple ring R is right Artinian. But R ∼= Mn(D) ∼= HomD(V ∗., V.∗) is left and right
Artinian. �
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8.4. Noetherian Modules.

Definition 8.23. A module FM is called Noetherian (Emmy Noether 1882-1935), if each
nonempty set of submodules of M has a maximal element.

Theorem 8.24. For RM the following are equivalent:

(1) M is Noetherian.
(2) Each ascending chain Mi ⊆Mi+1, i ∈ N of submodules of M becomes stationary, i.e.

there is an n ∈ N with Mn = Mn+i for all i ∈ N.
(3) Each submodule of M is finitely generated.

Proof. (2) =⇒ (1): Let M be a nonempty set of submodules without a maximal element.
Using the axiom of choice we choose for each N ∈M an N ′ ∈M with N $ N ′. For N ∈M
we then have an ascending chain M1 = N,Mi+1 = M ′

i with

M1 $ M2 $ . . . $ Mi $ Mi+1 $ . . .

This is impossible by (2).
(1) =⇒ (3): Let M ′ ⊆ M . Then {N |N ⊆ M ′, N finitely generated} 6= ∅ has a maximal
element N ′. If N ′ 6= M ′, then there is an m ∈ M ′ \ N ′. So N ′ + Rm ⊆ M ′ is finitely
generated and N ′ $ N ′+Rm in contradiction to the maximality of N ′. Hence N ′ = M ′, i.e.
M ′ is finitely generated.
(3) =⇒ (2): Let M1 ⊆ M2 ⊆ . . . ⊆ Mn ⊆ . . . ⊆ M be an ascending chain of submodules of
M . Let N :=

⋃
i∈NMi. N is a finitely generated submodule of M , i.e. N = Ra1 + . . .+Ran.

Then there is an Mr with a1, . . . , an ∈ Mr. This implies Mr = N = Mr+i for all i ∈ N, i.e.
the chain becomes stationary. �

Lemma 8.25. Let 0 −→ M
f−→ N

g−→ P −→ 0 be a short exact sequence. M and P are
Noetherian iff N is Noetherian. In particular if M and N are Noetherian then so is M ⊕N .

Proof. Let N be Noetherian. Then it is clear that M Noetherian. If {Li} is a set of
submodules of P then {g−1(Li)} is a set of submodules of N . Let g−1(L0) be maximal in
this set. With gg−1(Li) = Li we get that L0 is maximal in {Li}.
Let M and P be Noetherian. Let {Li} be a set of submodules of N . Let L0 be chosen such
that g(L0) is maximal in the set {g(Li)}. Let L be chosen such that f−1(L) is maximal in
the set {f−1(Lj)|Lj ∈ {Li} and g(Lj) = g(L0)}. We show that L is maximal in {Li}. Let
L′ ∈ {Li} with L ⊆ L′. Then g(L0) = g(L) ⊆ g(L′) hence g(L′) = g(L0). Furthermore we
have f−1(L) ⊆ f−1(L′) hence L = L′. �

Corollary 8.26. RR is Noetherian as a left R-module iff all finitely generated left R-modules
are Noetherian.

Proof. ⇐=: trivial.
=⇒: If M is finitely generated then there is a short exact sequence 0 −→ K −→ R ⊕ . . .⊕ R
−→M −→ 0. Since R is Noetherian R⊕ . . .⊕R Noetherian, too, so that M is Noetherian. �

Theorem 8.27. (Hilbert Basis Theorem) If R is left Noetherian then R[x] is left Noetherian.

Proof. Let J ⊆ R[x] be an ideal. We have to show that J finitely generated. Let J0 := {r ∈
R|∃p(x) ∈ J with highest coefficient r}. (The highest coefficient of the zero polynomial is 0
by definition.) J0 ⊆ R is an ideal, hence J0 = 〈r1, . . . , rn〉. For the ri choose pi(x) ∈ J with
highest coefficients ri. Let m ≥ deg(pi(x)) for i = 1, . . . , n. Let g ∈ J with deg(g) ≥ m.
Then g = sxt +

∑
i≤t six

i. Since s ∈ J0 we have s =
∑n

j=1 λjrj. This implies g1 :=

g −
∑n

j=1 λjpj(x)x
t−deg(pj(x)) ∈ J and deg(g1) ≤ t − 1. By induction we have g = g0 + g
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with g0 ∈
∑n

j=1R[x]pj(x) and deg(g) < m. This implies g ∈ J ∩ (R+Rx+ . . .+Rxm−1) ⊆
R+Rx+ . . .+Rxm−1. Both R-modules are finitely generated hence g =

∑k
i=1 µiqi(X) with

〈q1(x), . . . , qk(x)〉 = J ∩ (R + Rx + . . . + Rxm−1). Thus {p1(x), . . . , pn(x), q1(x), . . . , qk(x)}
form a set of generating elements of J . �

Corollary 8.28. Let R be a commutative Noetherian ring and let S be a commutative R-
algebra. Let S be finitely generated as an R-algebra (i.e. there are s1, . . . , sn ∈ S such that
for all s ∈ S there are representations s =

∑
ri1,...,ins

i1
1 . . . s

in
n ). Then S is Noetherian.

Proof. 1. By induction we have R[x1, . . . , xn] Noetherian.
2. There is an epimorphism R[x1, . . . , xn] −→ S. Thus S is a Noetherian R[x1, . . . , xn]-module
hence it is also a Noetherian S-module. �

Proposition 8.29. Let R be commutative or M be Noetherian. Let M be finitely gener-
ated. Let f : N −→ M be an epimorphism where N ⊆ M is a submodule. Then f is an
isomorphism.

Proof. 1. Let M be Noetherian. We construct an ascending chain K0 ⊆ K1 ⊆ K2 ⊆ . . .
by K0 := Ke(f) = f−1(0), Ki := f−1(Ki−1). We have K0 = f−1(0) ⊆ f−1(K0) = K1. If
Ki−2 ⊆ Ki−1 then we have Ki−1 = f−1(Ki−2) ⊆ f−1(Ki−1) = Ki. Since M is Noetherian the
chain becomes stationary Kn = Kn+1 = . . .. Let x0 ∈ K0. We want to show x0 = 0. There
is x1 ∈ K1 with f(x1) = x0, since f is an epimorphism. Similarly there are x0, x1, x2, . . .
with f(xi) = xi−1 and fn+1(xn+1) = fn(xn) = . . . = f(x1) = x0. Since the chain becomes
stationary we get xn+1 ∈ Kn, which implies f(xn+1) ∈ Kn−1 and thus fn(xn+1) ∈ K0. Hence
x0 = fn+1(xn+1) = 0. This proves that f is a monomorphism.
2. Let R commutative. Let M = Ry1 + . . .+Ryn. Let xi ∈ Ni with f(xi) = yi. Let x0 ∈ N
with f(x0) = 0. Then there are coefficients rij ∈ R with xi =

∑n
j=1 rijyj, i = 0, . . . , n. We

consider R′ := Z[rij] ⊆ R, the subring of R generated by the rij. Since Z is Noetherian
and R′ is finitely generated as a Z-algebra R′ is Noetherian. Let M ′ :=

∑n
i=1R

′yi ⊆M and
N ′ =

∑n
i=0R

′xi ⊆ N . Then N ′ ⊆ M ′ is an R′-submodule, M ′ as an R′-module is finitely
generated, hence Noetherian, and the f(xi) = yi, f(x0) = 0 generate a homomorphism of
R′-modules f ′ : N ′ −→ M ′. Since f ′ is surjective f ′ is injective and thus x0 = 0 so that f is
injective. �

Problem 8.1. Where does the commutativity of R enter the second part of the proof of
Proposition 8.29?

Corollary 8.30. Let R be commutative or RM be Noetherian. Let M = Ry1 + . . . + Rym.
Let N ⊆ M be a free submodule with the free generating elements x1, . . . , xn. Then n ≤ m.
If n = m then M is free over y1, . . . , ym.

Proof. Since N is free there is a homomorphism f : N −→ M with f(xi) = yi for i =
1, . . . ,min(m,n) and f(xi) = 0 else. If n ≥ m then f is surjective, hence bijective. Thus
we have n ≤ m. If n = m then f is bijective and M free with the generating elements
y1, . . . , yn. �

Corollary 8.31. Let R be commutative or Noetherian. Let M be free over x1, . . . , xn and
free over y1, . . . , ym. Then we have m = n.

Proof. If R is Noetherian then M is also Noetherian. Thus the claim follows from 8.30. �

Definition 8.32. Let R be commutative or Noetherian. The rank of a finitely generated
free module RM is the number of free generating elements uniquely determined by 8.31.
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Example 8.33. The endomorphism ring of a countably infinite dimensional vector space is
neither left nor right Noetherian.

Proof. From ap + bq = 1, pa = 1, qb = 1, pb = 0, qa = 0 we get (as in the exercise 1.4)

RR = RRp⊕ RRq free and RR = aRR ⊕ bRR free. �

Definition 8.34. An element r ∈ R in a ring R is called a left unit (right unit), if rR = R
(Rr = R). r ∈ R is called a unit, if Rr = R = rR.

Lemma 8.35. If r ∈ R is a unit, then there is a unique s ∈ R with sr = 1. Furthermore
we have rs = 1 and s is a unit.

Proof. Let sr = s′r = 1 and let rt = 1. Then s = s1 = srt = 1t = t and analogously
s′ = t. �

Corollary 8.36. In each left Noetherian ring R each right unit x ∈ R (i.e. Rx = R) is also
a left unit and conversely.

Proof. Let Rx = R. Then ·x : R −→ R is an epimorphism, hence an isomorphism. So there
is an inverse isomorphism g : R −→ R with g ∈ HomR(.R, .R) ∼= R, hence g = ·y. This
implies 1 · x · y = 1 and 1 · y · x = 1, i.e. x−1 = y and x is a unit. If xR = R then there is a
y ∈ R with xy = 1. So y is a right unit hence y is a unit. By 8.36 x is the unique inverse of
y, hence x is a unit. �
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9. Radical and Socle

Definition 9.1. (1) N ⊆M is called large (essential) iff

∀U ⊆M : N ∩ U = 0 =⇒ U = 0.

(2) N ⊆M is called small (superfluous) iff

∀U ⊆M : N + U = M =⇒ U = M.

Lemma 9.2. Let N ⊆M ⊆ P , U ⊆ P be submodules. Then the modular law holds:

N + (U ∩M) = (N + U) ∩M.

Proof. ⊆: From n+ u ∈ N + U with n ∈ N and u ∈ U ∩M ⊆M it follows that n+ u ∈M
and hence n+ u ∈ (N + U) ∩M .
⊇: From n + u = m ∈ (N + U) ∩ M it follows that u = m − n ∈ M ∩ U and hence
n+ u ∈ N + (U ∩M). �

Lemma 9.3. (1) Let N ⊆ N ′ ⊆M ′ ⊆M be submodules and let N be large in M . Then
N ′ is large in M ′.

(2) Let N ⊆ N ′ ⊆ M ′ ⊆ M be submodules and let N ′ be small in M ′. Then N is small
in M .

(3) Let N,N ′ ⊆M be large submodules in M . Then N ∩N ′ is large in M .
(4) Let N,N ′ ⊆M be small submodules in M . Then N +N ′ is small in M .

Proof. (1) Let U ⊆M ′ with N ′ ∩ U = 0. Then N ∩ U = 0 hence U = 0.
(2) Let U ⊆M with N+U = M , then N ′+U = M . From N ′+(U ∩M ′) = (N ′+U)∩M ′ =
M ∩M ′ = M ′ we get U ∩M ′ = M ′ and thus M ′ ⊆ U which implies N ⊆ U . Now from
N + U = M we get U = M .
(3) Let (N ∩N ′) ∩ U = 0. Then N ∩ (N ′ ∩ U) = 0 hence N ′ ∩ U = 0 and thus U = 0.
(4) Let (N+N ′)+U = M . Then N+(N ′+U) = M hence N ′+U = M and thus U = M . �

Lemma 9.4. Let N,U ⊆M be submodules.

(1) If N is maximal w.r.t. the condition N ∩ U = 0 then N + U ⊆ M is a large
submodule.

(2) If N is minimal w.r.t. the condition N + U = M then N ∩ U ⊆ M is a small
submodule.

(3) There is a submodule N that is maximal w.r.t. N ∩ U = 0.

Proof. (1) Let V ⊆ M with (N + U) ∩ V = 0 be given. We have N ∩ U = 0. Let
n+v = u ∈ (N+V )∩U . This implies v = u−n ∈ (N+U)∩V = 0 hence n = u ∈ N∩U = 0
and (N +V )∩U = 0. Thus N +V = N , since N is maximal w.r.t. N ∩U = 0. This implies
V ⊆ N hence V ⊆ (N + U) ∩ V = 0 and V = 0. So we get that N + U ⊆M is large.
(2) Let V ⊆ M with (N ∩ U) + V = M . We have N + U = M . Let m ∈ M with
m = n+ u ∈ N +U . Furthermore let n = n′ + v with n′ ∈ N ∩U and v ∈ V (since n ∈M).
This implies v ∈ V ∩N and m = (n′ + u) + v ∈ U + (V ∩N) and thus (N ∩ V ) + U = M .
Since N is minimal w.r.t. N + U = M we have N = N ∩ V hence N ⊆ V . From this and
from (N ∩ U) + V = M we get V = M . Thus N ∩ U ⊆M is small.
(3) The set V := {V ⊆ M |V ∩ U = 0} is inductively ordered, for let (Vi)i∈I be a chain in V
and let x ∈ (∪Vi) ∩ U . Then there is an i ∈ I with x ∈ Vi ∩ U hence x = 0. Thus ∪Vi in
V is an upper bound of the Vi. Consequently there is a submodule N of M that is maximal
w.r.t. N ∩ U = 0. �

Lemma 9.5. N ⊆M is large if and only if the following holds

∀m ∈M \ {0}∃r ∈ R : rm ∈ N \ {0}.
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Proof. N ⊆ M large ⇐⇒ [∀U ⊆ M : N ∩ U = 0 =⇒ U = 0] ⇐⇒ [∀U ⊆ M : U 6= 0 =⇒
N ∩ U 6= 0]

(∗)⇐⇒ [∀Rm ⊆ M : Rm 6= 0 =⇒ N ∩ Rm 6= 0] ⇐⇒ [∀m ∈ M \ {0}∃r ∈
R : rm ∈ N \ {0}]. Only one direction (∗) needs an additional argument. If U 6= 0 and
the right hand side of (∗) holds, then there exists an m ∈ U with Rm 6= 0. Hence we get
0 6= N ∩Rm ⊆ N ∩ U . �

Lemma 9.6. Let Rm ⊆ M be not small. Then there exists a submodule N ⊆ M that is a
maximal submodule and that does not contain m.

Proof. The set S := {U $ M |Rm + U = M} is not empty since Rm is not small in M . S
is inductively ordered. In fact let (Ui|i ∈ I) be a chain in S. Then we have m 6∈ Ui for all
i ∈ I. Hence ∪Ui $ M and obviously Rm + (∪Ui) = M . Then there is a maximal element
N in S. Let N $ N ′ ⊆ M . Then Rm+N ′ = M . Since N ′ /∈ S we get N ′ = M hence N is
a maximal submodule. Furthermore we have obviously m /∈ N . �

Definition 9.7. (1) Radical(M) = Rad(M) := ∩{U $ M |U maximal submodule},
(2) Socle(M) = Soc(M) :=

∑
{U ⊆M |U simple submodule}.

Proposition 9.8. (1) Rad(M) =
∑
{V ⊆M small}.

(2) Soc(M) = ∩{V ⊆M large}.

Proof. (1) ⊇: Let V ⊆M small. For all maximal submodules U ⊆M we have U ⊆ U +V $
M since V is small and U 6= M . This implies U = U + V and V ⊆ U . Thus V ⊆ ∩U and
thus

∑
V ⊆ ∩U .

⊆: If Rm is not small in M then by 9.6 there is a maximal submodule N in M with m /∈ N .
So we have m /∈ ∩U = Rad(M) ⊆ N . If also m ∈ Rad(M) holds then Rm is small in M .
So we get m ∈

∑
{V ⊆M small}.

(2) ⊆: Let V be large in M and let U be simple. Then we have V ∩U 6= 0 so that V ∩U = U
and thus U ⊆ V . This implies

∑
U ⊆ ∩V .

⊇: First we show that each submodule of ∩Vi is a direct summand of ∩Vi. Let N ⊆ ∩Vi be
given. Let X be maximal in M with N ∩X = 0 (Lemma 9.4 (3)). Then N +X = V ⊆ M
is large by Lemma 9.4 (1). This implies N + (X ∩ (∩Vi)) = (N +X) ∩ (∩Vi) (Lemma 9.2)
= V ∩ (∩Vi) = ∩Vi and N ∩ (X ∩ (∩Vi)) = 0. So we have N ⊕ (X ∩ (∩Vi)) = ∩Vi.
Theorem 8.16 implies that ∩Vi is a sum of simple submodules of ∩Vi. Thus ∩Vi is contained
in the sum of all simple submodules of M , i.e. in the socle of M . �

Remark 9.9. A module M is semisimple if and only if it coincides with its socle.

Corollary 9.10. m ∈ Rad(M) iff Rm ⊆M is small.

Proof. ⇐=: by Proposition 9.8.
=⇒: was explicitly noted in the proof of Proposition 9.8. �

Corollary 9.11. Each finitely generated submodule of Rad(M) is small in M .

Proof. By 9.10 the modules Rm1, . . . , Rmn ⊆M are small, if m1, . . . ,mn ∈ Rad(M). By 9.3
(4) we then get that

∑n
i=1Rmi is small in M . �

Proposition 9.12. Let M be finitely generated. Then Rad(M) is small in M .

Proof. Since M is finitely generated each proper submodule of M is contained in a maximal
submodule (8.14). Let N $ M and let U be a maximal submodule with N ⊆ U $ M . Then
Rad(M) ⊆ U thus Rad(M) +N ⊆ U $ M . So Rad(M) is small in M . �

Proposition 9.13. Let f ∈ HomR(M,N). Then we have
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(1) f(Rad(M)) ⊆ Rad(N).
(2) f(Soc(M)) ⊆ Soc(N).

Proof. (1) Let U ⊆ M be small. Let V ⊆ N with f(U) + V = N . This implies f−1(f(U) +
V ) = f−1(N) = M = U + f−1(V ), because f(x) = f(u) + v implies f(x − u) = v, x − u ∈
f−1(V ) and thus x ∈ U + f−1(V ), so f−1(f(U) + V ) ⊆ U + f−1(V ). Since U is small we get
f−1(V ) = M . This implies f(f−1(V )) = f(M) ⊆ V , hence f(U) ⊆ V and V = N . So we
have f(U) small in M . This shows f(Rad(M)) =

∑
U small f(U) ⊆

∑
V small V = Rad(N).

(2) Let U ⊆M be simple. Then f(U) ⊆ N is simple or 0. So we have f(
∑
Ui) ⊆ Soc(N). �

Corollary 9.14. Rad and Soc are covariant subfunctors of Id : R-Mod −→ R-Mod.

Corollary 9.15. (1) Let U ⊆ M be small and f ∈ HomR(M,N). Then f(U) ⊆ N is
small.

(2) Let U ⊆ N be large and f ∈ HomR(M,N). Then f−1(U) ⊆M is large.

Proof. (1) was proved in Proposition 9.13 (1).
(2) Let V ⊆ M and f−1(U) ∩ V = 0. Then f(f−1(U) ∩ V ) = 0 = ff−1(U) ∩ f(V ), because
if x ∈ ff−1(U) ∩ f(V ) with x = f(v), then f(v) ∈ U by ff−1(U) ⊆ U . This implies
v ∈ f−1(U) ∩ V , so x ∈ f(f−1(U) ∩ V ) = 0. Now this implies 0 = ff−1(U) ∩ f(V ) =
U ∩ Im(f) ∩ f(V ) = U ∩ f(V ) and thus f(V ) = 0, because U is large in N . So we have
V ⊆ Ke(f) ⊆ f−1(U). From f−1(U)∩ V = 0 we get V = 0. Thus f−1(U) is large in M . �

Corollary 9.16. (1) Rad(RR)M ⊆ Rad(M).
(2) Soc(RR)M ⊆ Soc(M).

Proof. Let m ∈ M . Then (R 3 r 7→ rm ∈ M) ∈ HomR(R,M). This implies Rad(RR)m ⊆
Rad(M), Soc(RR)m ⊆ Soc(M) and that implies the claim. �

Corollary 9.17. Rad(RR) and Soc(RR) are two sided ideals.

Proposition 9.18. Let f ∈ HomR(M,N) and Ke(f) ⊆ Rad(M). Then we have

f(Rad(M)) = Rad(f(M)).

Proof. ⊆: follows from 9.13.
⊇: Let f(m) ∈ Rad(f(M)). If Rm ⊆M is small then m ∈ Rad(M) and f(m) ∈ f(Rad(M)).
If Rm ⊆M is not small then by 9.6 there is a maximal submodule U $ M with m /∈ U . We
have Rm+U = M and thus f(U) +Rf(m) = f(M). From f(m) ∈ Rad(f(M)) we get that
Rf(m) ⊆ f(M) is small. This implies f(U) = f(M) and thus U + Ke(f) = M . From the
assumption Ke(f) ⊆ Rad(M) ⊆ U we get U = M , a contradiction. �

Corollary 9.19. Let N ⊆M be a submodule. Then the following hold

(1) (Rad(M) +N)/N ⊆ Rad(M/N).
(2) N ⊆ Rad(M) =⇒ Rad(M)/N = Rad(M/N).

Proof. (1) f : M −→M/N implies f(Rad(M)) ⊆ Rad(M/N) and f(Rad(M)) = (Rad(M) +
N)/N .
(2) From N = Ke(f) ⊆ Rad(M) the claim follows. �

Corollary 9.20. Rad(M) is the smallest submodule U ⊆M with Rad(M/U) = 0.

Proof. We have Rad(M/Rad(M)) = Rad(M)/Rad(M) = 0. If Rad(M/U) = 0 then
Rad(M) + U/U = 0 and thus Rad(M) + U = U so that Rad(M) ⊆ U . �

Lemma 9.21. If Soc(M) = M then Rad(M) = 0.
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Proof. If Soc(M) = M holds then M is semisimple. So no submodule is small and thus
Rad(M) = 0. �

Lemma 9.22. Let M be Artinian. Then we have

Rad(M) = 0⇐⇒ Soc(M) = M.

Proof. LetM be Artinian and Rad(M) = 0. Let U ⊆M and N be minimal with N+U = M .
By 9.4 (2) we have N ∩ U ⊆ M small so that N ∩ U = 0. Thus U is a direct summand of
M , M is semisimple and M = Soc(M). �

Proposition 9.23. The following are equivalent for M :

(1) M is finitely generated and semisimple.
(2) M is Artinian and Rad(M) = 0.

Proof. It suffices to show the following: If M is semisimple, then M is finitely generated iff
M is Artinian. Let M be semisimple. Then M = ⊕Ui with simple modules Ui. M is finitely
generated if and only if the direct sum has only finitely many summands (6= 0). If M is
Artinian then the direct sum has only finitely many summands. If the direct sum has only
finitely many summands, then each descending chain N1 ⊇ N2 ⊇ . . . in M can only have
finitely many direct complements by 8.17. Thus such a chain must become stationary, i.e.
M is Artinian. �

Proposition 9.24. (Lemma of Nakayama) For RI ⊆ RR the following are equivalent:

(1) I ⊆ Rad(RR).
(2) 1 + I contains only right units.
(3) 1 + I contains only units.
(4) 1 + IR contains only units.
(5) IM = M =⇒M = 0 for all finitely generated modules RM .
(6) IM + U = M =⇒ U = M for all finitely generated modules RM .
(7) IM ⊆ Rad(RM) for all finitely generated modules RM .

Proof. (1) =⇒ (2): Rad(R) ⊆ R is small. Thus I ⊆ R is small. From R(1 + i) + I = R it
follows R(1 + i) = R. Thus 1 + i is a right unit.
(2) =⇒ (3): Let k(1 + i) = 1. This implies ki = 1 − k ∈ I and thus k − 1 ∈ I. So
k = 1 + (k − 1) is a right unit. Since k is also a left unit, we get (1 + i)k = 1, so that 1 + i
is a unit.
(3) =⇒ (4): Given i ∈ I and r ∈ R. Then 1 + ri is a unit with inverse (1 + ri)−1. Since
(1 − i(1 + ri)−1r)(1 + ir) = 1 + ir − i(1 + ri)−1(r + rir) = 1 + ir − i(1 + ri)−1(1 + ri)r =
1 + ir− ir = 1 and symmetrically (1 + ir)(1− i(1 + ri)−1r) = 1 we get that 1 + ir is a unit.
If a is a unit and i ∈ I, r ∈ R then a+ ir is a unit, since a(1 + a−1ir) = (a+ ir) is a product
of two units by a−1i ∈ I.
If

∑n
k=1 ikrk ∈ IR then 1+

∑
ikrk is a unit, since 1+

∑
ikrk = (((1+ i1r1)+ i2r2) . . .+ inrn)

and each of the bracketed terms is a unit.
(4) =⇒ (5): Let M be finitely generated and IM = M . Let t be the minimal length
of a system of generators of M = Rm1 + . . . + Rmt. By IM = M each element in M
can be represented as a finite sum of the form

∑
i′jm

′
j; the m′

j can be represented as a

linear combination of the mi. So there are coefficients ikrk ∈ I with m1 =
∑t

k=1 ikrkmk.

This implies (1 − i1r1)m1 =
∑t

k=2 ikrkmk. Since also 1 − i1r1 is a unit, we get m1 =∑t
k=2(1 − i1r1)−1ikrkmk ∈ Rm2 + . . . + Rmt a contradiction to the minimality of t. So we

have M = 0.
(5) =⇒ (6): IM +U = M =⇒ I(M/U) = (IM +U)/U = M/U =⇒M/U = 0 =⇒M = U .
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(6) =⇒ (7): IM small in M =⇒ IM ⊆ Rad(M).
(7) =⇒ (1): M = R =⇒ IR ⊆ Rad(RR). �

Corollary 9.25. Rad(RR) = Rad(RR).

Proof. Let I = Rad(RR). Then 1 + I consists of units. Since I is a right ideal, we get
I ⊆ Rad(RR). By symmetry we get Rad(RR) = Rad(RR). �

Lemma 9.26. R left Artinian =⇒ R/Rad(R) semisimple.

Proof. By 8.12 R/Rad(R) is Artinian. By 9.20 Rad(R/Rad(R)) = 0 and by 9.23 R/Rad(R)
is semisimple. �

Lemma 9.27. R Artinian =⇒ Rad(R) nilpotent.

Proof. Let I := Rad(R). Since R is Artinian, the chain I ⊇ I2 ⊇ I3 ⊇ . . . ⊇ I t+1 = . . .
becomes stationary. Assume I t 6= 0. Since also I tI 6= 0 there is a minimal module K ⊆ I
w.r.t. I tK 6= 0. So there exists an x ∈ K with I tx 6= 0, i.e. we have K = Rx. Because of
I tK = I t+1K = I t(IK) 6= 0 and IK ⊆ K we get IK = K. By the Lemma of Nakayama we
get K = 0, a contradiction, so I t = 0. �

Theorem 9.28. (Hopkins) Let RR be Artinian. Then RR is Noetherian.

Proof. Let I := Rad(R) and In+1 = 0. Then I i/I i+1 is an R/I-module and it is Artinian as
an R-module. So I i/I i+1 is also Artinian as R/I-module. By 9.26 R/I is semisimple hence
I i/I i+1 is also semisimple, i.e. I i/I i+1 = ⊕k∈XEk with simple R/I-modules Ek. Since I i/I i+1

is Artinian the direct sum is finite hence I i/I i+1 are Noetherian (as R/I-module and as R-
module). With the exact sequences 0 −→ I i+1 −→ I i −→ I i/I i+1 −→ 0, with In+1 = 0, I0 = R
and with 8.25 we get by induction that R is Noetherian. �

Corollary 9.29. If RI ⊆ RR is nilpotent then I ⊆ Rad(R).

Proof. Let In = 0 and i ∈ I. Then (1 + i) · (1 − i + i2 − . . . ± in+1) = 1 hence (1 + i) is a
unit. By the Lemma of Nakayama we get I ⊆ Rad(R). �

Proposition 9.30. RM is finitely generated if and only if

(1) Rad(M) ⊆M is small, and
(2) M/Rad(M) is finitely generated.

Proof. =⇒: trivial by 9.12 .
⇐=: Let {xi = xi + Rad(M)|i = 1, . . . , n} be a set of generating elements of M/Rad(M).
Then M = Rx1 + . . .+Rxn + Rad(M) which implies by (1) that M = Rx1 + . . .+Rxn. �

Corollary 9.31. M is Noetherian if and only if for all submodules U ⊆ M the following
hold:

(1) Rad(U) ⊆ U is small.
(2) U/Rad(U) is finitely generated
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10. Localization

10.1. Local rings.

Definition 10.1. Let R be a ring. An element r ∈ R is called a non unit, if r is not a unit.
The element r is called invertible, if r is a left or a right unit.
R is called a local ring, if the sum of any two non invertible elements is a non unit.

Lemma 10.2. Let r be an idempotent (r2 = r) in a local ring R. Then r = 0 or r = 1.

Proof. We have (1 − r)2 = 1 − 2r + r2 = 1 − r. Since 1 = (1 − r) + r is a unit, r or 1 − r
is invertible. If r is invertible, e.g. by sr = 1, then we have r = sr2 = sr = 1. If 1 − r is
invertible e.g. by s(1− r) = 1, then we have 1− r = 1, thus r = 0. �

Lemma 10.3. Let R be a ring with the unique idempotents 0 and 1. Then each invertible
element in R is a unit.

Proof. Let r be invertible e.g. by sr = 1. Then (rs)2 = rsrs = rs, so rs ∈ {0, 1}. If rs = 0,
then we have 1 = (sr)2 = srsr = 0, a contradiction. So we have rs = 1, i.e. r is a unit. �

Corollary 10.4. In a local ring R all non units are not invertible.

Proposition 10.5. Let R be a local ring. Then the following hold:

(1) All non units are not invertible and form a two sided ideal N .
(2) N is the only maximal (one sided and two sided) and largest ideal of R.

Proof. (1) Let N be the set of the non units of R. Since R is local, so non units are not
invertible, N is closed w.r.t. to the addition. Given s ∈ N and r ∈ R. We show that also
rs ∈ N holds. In fact if rs /∈ N then rs is a unit, so there is a t ∈ R with trs = 1. Because
of 10.3 s is also a unit in contradiction to s ∈ N . Thus N is a two sided ideal.
(2) Obviously we have N $ R. If I $ R and s ∈ I, then Rs $ R, so s is a non unit and
thus s ∈ N . So I ⊆ N holds. �

Proposition 10.6. R is local, if and only if R possesses a unique maximal (largest) left
ideal.

Proof. =⇒: follows from 10.5.
⇐=: Let N be the only maximal ideal of R. Then N = Rad(R) is a two sided ideal. Let
r ∈ R \N . Then N + Rr = R. Since N = Rad(R) is small in R, we have Rr = R, so there
is a t with tr = 1. If t is a right unit, then also r is a unit by Lemma 8.35. But if t is not a
right unit, then Rt 6= R, so Rt ⊆ N and thus t ∈ N . Since N is a two sided ideal we have
also 1 = tr ∈ N , a contradiction. Thus each r ∈ R \N is a unit. So each non unit lies in N .
If x, y are non units, then it follows from x, y ∈ N that x+ y ∈ N hence x+ y is a non unit
and thus R is local. �

Lemma 10.7. Let R be a local ring with maximal ideal m $ R. Let M be a finitely generated
module. If M/mM = 0 then M = 0.

Proof. From m = Rad(R) and mM = M it follows that M = 0 by the Lemma of Nakayama.
�

10.2. Localization. In this section let R be always a commutative ring.
Recall from Basic Algebra: A set S with ∅ $ S ⊂ R is called multiplicatively closed, if

∀s, s′ ∈ S : ss′ ∈ S and 0 /∈ S.
On R× S define an equivalence relation by

(r, s) ∼ (r′, s′) :⇐⇒ ∃t ∈ S : tsr′ = ts′r.
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R[S−1] = S−1R := R × S/ ∼ is a commutative ring with unit element. The elements are
denoted by

r

s
:= (r, s).

The map

ϕ : R 3 r 7→ sr

s
∈ R[S−1]

is a homomorphism of rings. It is independent of the choice of s ∈ S. If R has no zero
divisors, then ϕ is injective.

Proposition 10.8. Let S ⊆ R be a multiplicatively closed set. Let RM be an R-module.
Then the relation

(m, s) ∼ (m′, s′) :⇐⇒ ∃t ∈ S : tsm′ = ts′m

on M × S is an equivalence relation. Furthermore

S−1M := M × S/ ∼ with the elements
m

s
:= (m, s)

is an S−1R-module with the operations

m

s
+
m′

s′
=
s′m+ sm′

ss′
and

r

s

m

s

′
=
rm

ss′
.

Proof. as in Basic Algebra for S−1R. �

Problem 10.1. Give a complete proof of Proposition 10.8.

Lemma 10.9. m
s

= 0 holds in S−1M if and only if there is a t ∈ S with tm = 0.

Proof. (m, s) ∼ (0, s′) ⇐⇒ ∃t′ ∈ S : t′s′m = 0 ⇐⇒ ∃t′s′ ∈ S : t′s′m = 0. �

Lemma 10.10. (1) ϕM : M 3 m 7→ sm
s
∈ S−1M is a homomorphism of groups indepen-

dent of s ∈ S.
(2) ϕM is injective if and only if S contains no zero divisors for M , i.e. sm = 0 =⇒

m = 0.
(3) ϕM is bijective if and only if the map M 3 m 7→ sm ∈M is bijective for all s ∈ S.
(4) ϕR is a homomorphism of rings.
(5) ϕM : M −→ S−1M is ϕR-semilinear, i.e. ϕM(rm) = ϕR(r)ϕM(m).

Proof. (1) t′(tsm− stm) = 0 implies sm
s

= tm
t

.
(2) ϕM(m) = 0 ⇐⇒ sm

s
= 0 ⇐⇒ ∃t ∈ S : tm = 0 by 10.9.

(3) ϕM surjective ⇐⇒ ∀m
s
∈ S−1M ∃m′ ∈ M : sm′

s
= m

s
⇐⇒ ∀m ∈ M, s ∈ S ∃m′ ∈ M :

sm′ = m ⇐⇒ ∀s ∈ S : (s· : M −→M) surjective.

(4) + (5) ϕM(rm) = s2rm
s2

= sr
s
sm
s

= ϕR(r)ϕM(m). �

Corollary 10.11. S−1 : R-Mod −→ S−1R-Mod is an additive functor.

Proof. For f ∈ HomR(M,N) we form S−1f ∈ HomS−1R(S−1M,S−1N) by S−1f(m
s
) := f(m)

s
.

In order to show that S−1f is a well defined map assume (m, s) ∼ (m′, s′). Then ts′m = tsm′

for a t ∈ S and thus ts′f(m) = tsf(m′). This implies f(m)
s

= f(m′)
s′

.
With the usual rules for calculations with fractions one proves that S−1f is an S−1R-
homomorphism and that S−1 idM = idS−1M , S−1(fg) = S−1(f)S−1(g) and S−1(f + g) =
S−1(f) + S−1(g) hold. �
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Proposition 10.12. The map

α(M) : S−1R⊗RM 3
r

s
⊗m 7→ rm

s
∈ S−1M

defines a functorial isomorphism

α : S−1R⊗RM ∼= S−1M

of functors S−1R⊗R -, S−1- : R-Mod −→ S−1R-Mod.

Proof. α(M) is a well defined map, for α̃(M) : S−1R × M 3 ( r
s
,m) 7→ rm

s
∈ S−1M is

well defined: ( r
s
,m) = ( r

′

s′
,m) =⇒ ∃t ∈ S : ts′r = tsr′ =⇒ ts′rm = tsr′m =⇒ rm

s
= r′m

s′
.

Furthermore α̃(M) is obviously additive in both arguments. Finally we have α̃(M)( r
s
t,m) =

rtm
s

= α̃(M)( r
s
, tm), i.e. α̃(M) is R-bilinear.

We define an inverse map β(M) : S−1M 3 m
s
7→ t

st
⊗m ∈ S−1R⊗RM . The map β(M) is well

defined, since m
s

= m′

s′
=⇒ ∃t′ ∈ S : t′s′m = t′sm′ =⇒ t

st
⊗m = ts′t′

sts′t′
⊗m = t

sts′t′
⊗ s′t′m =

t
sts′t′
⊗ st′m = tst′

sts′t′
⊗m′ = t

s′t
⊗m′.

We have βα = id, since β(M)α(M)( r
s
⊗m) = β(M)( rm

s
) = t

st
⊗ rm = rt

st
⊗m = r

s
⊗m.

Similarly we have αβ = id, since α(M)β(M)(m
s
) = α(M)( t

st
⊗m) = tm

st
= m

s
.

α is an S−1R-homomorphism, since α(M)( r
′

s′
r
s
⊗ m) = α(M)( r

′r
s′s
⊗ m) = r′rm

s′s
= r′

s′
rm
s

=
r′

s′
α(M)( r

s
⊗m).

α is a functorial homomorphism. In fact the diagram

S−1R⊗R N S−1N-
α(N)

S−1R⊗RM S−1M-
α(M)

?

S−1R⊗R f
?

S−1f

commutes since we have S−1f ◦ α(M)( r
s
⊗ m) = S−1f( rm

s
) = f(rm)

s
= rf(m)

s
= α(N)( r

s
⊗

f(m)) = α(N) ◦ S−1R⊗R f( r
s
⊗m). �

Definition 10.13. An additive functor T : R-Mod −→ S-Mod is called exact, if for each
exact sequence

. . . −→Mi−1
fi−1−→ Mi

fi−→Mi+1 −→ . . .

the sequence

. . . −→ T (Mi−1)
T (fi−1)−→ T (Mi)

T (fi)−→ T (Mi+1) −→ . . .

is also exact.

Lemma 10.14. Let P ∈ Mod-R. Then the functor P ⊗R - : R-Mod −→ Ab preserves exact
sequences of the form

M1 −→M2 −→M3 −→ 0,

i.e. the sequences

P ⊗RM1 −→ P ⊗RM2 −→ P ⊗RM3 −→ 0

are exact. (The functor P ⊗R - is right exact.)

Proof. This follows from Corollary 6.13, Exercise 5.2 (1) and Exercise 6.2. We give a direct
proof. Let

M1
f−→M2

g−→M3 −→ 0
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be exact. This is equivalent to g surjective, gf = 0 and Ke(g) ⊆ Im(f). The map P ⊗R g is
surjective, for

∑
pi ⊗mi3 =

∑
pi ⊗ g(mi2) for arbitrary mi3 ∈ M3 and suitable mi2 ∈ M2.

Furthermore (P⊗Rg)(P⊗Rf) = P⊗Rgf = 0. It remains to show Ke(P⊗Rg) ⊆ Im(P⊗Rf).
Since Im(P⊗Rf) ⊆ Ke(P⊗Rg), we obtain a homomorphism by the homomorphism theorem

ψ : (P ⊗RM2)/ Im(P ⊗R f) −→ P ⊗RM3

with ψ(p⊗m2) = p⊗ g(m2). Furthermore we define a homomorphism

ϕ : P ⊗RM3 −→ (P ⊗RM2)/ Im(P ⊗R f)

with ϕ(p⊗m3) := p⊗m2 for an m2 ∈M2 with g(m2) = m3. For this purpose we first define
ϕ̃ : P×M3 −→ P⊗RM2/ Im(P⊗Rf) by ϕ̃(p,m3) := p⊗m2 for anm2 ∈M2 with g(m2) = m3.
If also g(m′

2) = m3 holds then we have g(m2 − m′
2) = 0, so there is an m1 ∈ M1 with

m2−m′
2 = f(m1). This implies p⊗m2 = p⊗ (m′

2 + f(m1)) = p⊗m′
2+p⊗ f(m1) = p⊗m′

2,
i.e. ϕ̃ is well defined. It is easy to verify that ϕ̃ is R-bilinear and thus ϕ is a well defined
homomorphism.
Now ϕψ = id and ψϕ = id hold since ϕψ(p⊗m2) = ϕ(p⊗g(m2)) = p⊗m2 and ψϕ(p⊗m3) =
ψ(p⊗m2) = p⊗g(m2) = p⊗m3. So we get Ke(P ⊗R g) = Ke(ϕ(P ⊗R g)) = Ke(ν : P ⊗RM2

−→ P ⊗RM2/ Im(P ⊗R f)) = Im(P ⊗R f). Thus P ⊗RM1 −→ P ⊗RM2 −→ P ⊗RM3 −→ 0 is
exact. �

Definition 10.15. A module PR is called R-flat, if P ⊗R - is an exact functor.

Proposition 10.16. A module PR is flat if and only if P ⊗R - preserves monomorphisms,
i.e. if for each monomorphism f : M −→ N the map P ⊗R f : P ⊗R M −→ P ⊗R N is a
monomorphism.

Proof. If PR is flat and if f : M −→ N is a monomorphism then 0 −→ M
f−→ N is exact.

Consequently 0 −→ P ⊗R M
P⊗Rf−→ P ⊗R N is exact and thus P ⊗R f : P ⊗R M −→ P ⊗R N

is a monomorphism.
Assume that P ⊗R - preserves monomorphisms and that the sequence

. . . −→Mi−1
fi−1−→ Mi

fi−→Mi+1 −→ . . .

is exact. Then the sequences

0 −→ Im(fi−1) −→Mi −→ Im(fi) −→ 0

are exact. Since P ⊗R - preserves monomorphisms, the sequences

0 −→ P ⊗R Im(fi−1) −→ P ⊗RMi −→ P ⊗R Im(fi) −→ 0

are exact. The canonical map P ⊗R Im(f) −→ Im(P ⊗R f) is surjective, since each element∑
pi ⊗ f(mi) ∈ Im(P ⊗R f) is in the image of this map. Observe, however, that this map

is in general not injective. The maps Im(f) −→ N and thus also P ⊗R Im(f) −→ P ⊗R N
are, however, by hypothesis injective hence P ⊗R Im(f) −→ Im(P ⊗R f) is injective and thus
bijective.
From the isomorphism P ⊗R Im(f) ∼= Im(P ⊗R f) we thus get the exactness of

0 −→ Im(P ⊗R fi−1) −→ P ⊗RMi −→ Im(P ⊗R fi) −→ 0.

So the sequence

. . . −→ P ⊗RMi−1
P⊗Rfi−1−→ P ⊗RMi

P⊗Rfi−→ P ⊗RMi+1 −→ . . .

is also exact. �

Proposition 10.17. S−1R is a flat R-module.
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Proof. Let f : M −→ N be a monomorphism and let S−1f(m
s
) = 0 = f(m)

s
. Then there

is a t ∈ S with tf(m) = 0 = f(tm), so with tm = 0. Then m
s

= 0, hence S−1f is a
monomorphism. �

Recall from Basic Algebra:

(1) An ideal p ⊆ R is called a prime ideal if and only if p 6= R and (rs ∈ p =⇒ r ∈
p ∨ s ∈ p).

(2) If m ⊆ R is a maximal ideal, then m is a prime ideal.
(3) p ∈ R is a prime ideal if and only if the residue class ring R/p is an integral domain.

Lemma 10.18. Let p ⊆ R be an ideal. The following are equivalent

(1) p is a prime ideal.
(2) R \ p is a multiplicatively closed set.

Proof. follows immediately from the definition. �

Definition 10.19. Let p ⊆ R be a prime ideal and M be an R-module. Then Mp := S−1M
with S = R \ p is called the localization of the module M at p.
The set Spec(R) := {p ⊆ R|p prime ideal} is called the spectrum of the ring R. The set
Specm(R) := {m ⊆ R|m maximal ideal} is called the maximal spectrum of the ring R.

Proposition 10.20. Let M be an R-module, such that Mm = 0 for all m ∈ Spec(R). Then
M = 0.

Proof. Assume there is an m ∈ M with m 6= 0. Then I := Ke(R 3 r 7→ rm ∈ M) $ R is
an ideal. Since R is finitely generated there is a maximal ideal m with I ⊆ m $ R. Since
Mm = 0, we have m

s
= 0 in Mm, hence there is a t ∈ R \m with tm = 0. This, however, gives

t ∈ I ⊆ m, a contradiction. �

Corollary 10.21. Let f : M −→ N be given. The following are equivalent

(1) f is a mono-(epi- resp. iso-)morphism.
(2) For all m ∈ Spec(R) the localization fm is a mono-(epi- resp. iso-)morphism.

Proof. (1) =⇒ (2): follows from 10.17 and 10.12.

(2) =⇒ (1): The sequence 0 −→ Ke(f) −→M
f−→ N −→ Cok(f) −→ 0 is exact. Consequently

0 −→ Ke(f)m −→Mm
fm−→ Nm −→ Cok(f)m −→ 0

is exact. Thus we get in particular Ke(f)m
∼= Ke(fm) and Cok(f)m

∼= Cok(fm). Now if
fm is a monomorphism for all m ∈ Specm(R), then we have Ke(f)m = 0 for all m, hence
Ke(f) = 0 and f is a monomorphism. An analogous argument can be used for epimorphisms
with Cok(f). Taken together these two results give the claim for isomorphisms. �

Proposition 10.22. Let R be a commutative ring and p ⊆ R be a prime ideal. Then Rp is
a local ring.

Proof. Since 0 −→ p −→ R −→ R/p −→ 0 is exact and R/p 6= 0, the sequence 0 −→ pp −→ Rp

−→ (R/p)p −→ 0 is exact and (R/p)p 6= 0 since there is no t ∈ R \ p with t · r = 0 for any
r 6= 0 (10.9). So pp $ Rp is a proper ideal. If r

s
/∈ pp, then r /∈ p and s /∈ p hence s

r
r
s

= 1
and thus r

s
is a unit. So the non units of Rp form an ideal pp, i.e. Rp is local and pp is the

maximal ideal. �

Corollary 10.23. Let p ⊆ R be a prime ideal. Then the quotient field Q(R/p) is isomorphic
to Rp/pp.
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Proof. As in the preceding proof (R/p)p
∼= Rp/pp. Furthermore Rp/pp is a field, because pp

is the maximal ideal of Rp. Furthermore we have

(R/p)p = S−1(R/p) = {r
s
|r ∈ R/p, s /∈ p} ∼= {

r

s
|r ∈ R/p, s ∈ R/p, s 6= 0} = Q(R/p).

�

Proposition 10.24. Let RM be a finitely generated module. Let M/mM = 0 for all maximal
ideals m ⊆ R. Then M = 0.

Proof. M/mM ∼= R/m⊗RM ∼= Rm/mm⊗Rm Rm⊗RM ∼= Mm/mmMm. Since Rm is local and
Mm is finitely generated, it follows that Mm = 0 for all maximal ideals m ⊆ R. So we get
M = 0. �

Corollary 10.25. Let f : M −→ N be an R-homomorphism and let N be finitely generated.
Let f/mf : M/mM −→ N/mN be an epimorphism for all maximal ideals m ⊆ R. Then f is
an epimorphism.

Proof. M
f−→ N −→ Q −→ 0 is exact and thus Q is finitely generated. We apply the functor

R/m⊗R - and get the exact sequence M/mM −→ N/mN −→ Q/mQ −→ 0. Since f/mf is an
epimorphism, we get Q/mQ = 0, hence Q = 0. So f is an epimorphism. �
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11. Monoidal Categories

For our further investigations it is useful to introduce a generalized version of a tensor
product. This shall be done in this section. With this generalized notion of a tensor product
we also obtain generalizations of the notion of an algebra and of a representation.

Definition 11.1. A monoidal category (or tensor category) consists of
a category C,
a functor ⊗ : C × C −→ C, called tensor product,
an object I ∈ C, called unit,
natural isomorphisms

α(A,B,C) : (A⊗B)⊗ C −→ A⊗ (B ⊗ C),
λ(A) : I ⊗ A −→ A,
ρ(A) : A⊗ I −→ A,

called associativity, left unit and right unit, such that the following diagrams, called coherence
diagrams or constraints, commute:

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D-α(A,B,C)⊗1
A⊗ ((B ⊗ C)⊗D)-α(A,B⊗C,D)

?

α(A⊗B,C,D)

?

1⊗α(B,C,D)

(A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))-α(A,B,C⊗D)

(A⊗ I)⊗B A⊗ (I ⊗B)-α(A,I,B)

A⊗B

ρ(A)⊗1

Q
Q

Q
QQs

1⊗λ(B)

�
�

�
��+

A monoidal category is called strict, if the morphisms α, λ, ρ are identities.

Remark 11.2. We define A1 ⊗ . . .⊗ An := (. . . (A1 ⊗ A2)⊗ . . .)⊗ An.
The coherence theorem of S. MacLane says that all diagrams whose morphisms are formed
using α, λ, ρ, identities, inverses, tensor products, and compositions thereof commute. We
will not prove this theorem. It implies that each monoidal category can be replaced by (is
monoidally equivalent to) a strict monoidal category, that is in all diagrams we may omit
the morphisms α, λ, ρ, i. e. replace them by identities. In particular on A1 ⊗ . . .⊗ An there
is only one automorphism formed with coherence morphisms, the identity.

Remark 11.3. For each monoidal category C one can construct the monoidal category
Csymm symmetric to C which coincides with C as a category, which has the tensor product
A�B := B ⊗ A, and coherence morphisms

α(C,B,A)−1 : (A�B) � C −→ A� (B � C),
ρ(A) : I � A −→ A,
λ(A) : A� I −→ A.

Then the coherence diagrams commute again, so that Csymm becomes a monoidal category.

Example 11.4. (1) Let R be an arbitrary ring. The category RMR of R-R- bimodules with
the tensor product M ⊗R N is a monoidal category. In particular the K-modules form a
monoidal category.
(2a) Let G be a monoid. A vector space V together with a family of subspaces (Vg|g ∈ G)
is called G-graded, if V = ⊕g∈GVg holds.
Let V and W be G-graded vector spaces. A linear map f : V −→ W is called of degree e ∈ G,
if for all g ∈ G f(Vg) ⊆ Wg holds.
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The G-graded vector spaces and linear maps of degree e ∈ G form the category MG of
G-graded vector spaces.
MG carries a monoidal structure with the tensor product V ⊗ W where the subspaces
(V ⊗W )g are defined by

(V ⊗W )g := ⊕h,k∈G,hk=gVh ⊗Wk.

If G is a group, this can also be written as (V ⊗W )g := ⊕h∈GVh ⊗Wh−1g.
(2b) Let G be a monoid. A family of vector spaces (Vg|g ∈ G) is called a G-family of vector
spaces.
Let (Vg) and (Wg) be G-families of vector spaces. A family of linear maps (fg : Vg −→ Wg is
called a G-family of linear maps.
The G-families of vector spaces and G-families of linear maps form the category (M)G of
G-families of vector spaces.
(M)G carries a monoidal structure with the tensor product (Vg)⊗ (Wg) where the subspaces
(V ⊗W )g are defined by

(Vg)⊗ (Wg) := ((⊕h,k∈G,hk=gVh ⊗Wk)g).

(3) A (chain) complex of R-modules over a ring R

M = (. . .
∂3−→M2

∂2−→M1
∂1−→M0)

consists of a family of R-modules Mi and a family of homomorphisms ∂n : Mn −→Mn−1 with
∂n−1∂n = 0. (This chain complex is indexed with N0. One can also consider chain complexes,
that are indexed with Z. See also Section 1.6.)
Let M and N be two chain complexes. A homomorphism f : M −→ N of chain complexes
consists of a family of homomorphisms of R-modules fn : Mn −→ Nn, such that fn∂n+1 =
∂n+1fn+1 for all n ∈ N0.
The chain complexes of R-modules with these homomorphisms form the category Comp-R
of chain complexes.

Lemma 11.5. The following diagrams in a monoidal category commute

(I ⊗ A)⊗B I ⊗ (A⊗B)-α

A⊗B

λ(A)⊗1B

@
@

@@R

λ(A⊗B)
�

�
��	

(A⊗B)⊗ I A⊗ (B ⊗ I)-α

A⊗B

ρ(A⊗B)
@

@
@@R

1A⊗ρ(B)
�

�
��	

and λ(I) = ρ(I) holds.

Proof. We first observe that the identity functor IdC and the functor I⊗ - are isomorphic by
the natural isomorphism λ. In particular we have I ⊗ f = I ⊗ g =⇒ f = g. In the diagram

((I ⊗ I)⊗ A)⊗B (I ⊗ (I ⊗ A))⊗B-α⊗1
I ⊗ ((I ⊗ A)⊗B)-α

(ρ⊗1)⊗1

Q
Q

Q
QQs

(1⊗λ)⊗1

�
�

�
��+

1⊗(λ⊗1)

�
�

�
��+

(I ⊗ A)⊗B I ⊗ (A⊗B)-α

?

α

?

1⊗α
?

α

?

1

I ⊗ (A⊗B) I ⊗ (A⊗B)-1

(I ⊗ I)⊗ (A⊗B) I ⊗ (I ⊗ (A⊗B))-α

ρ⊗(1⊗1)

�
�

�
��3

1⊗λ
Q

Q
Q

QQs
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all subdiagrams commute, except for the right hand trapezoid. Since the morphisms are
isomorphisms, also the right hand trapezoid commutes, hence the whole diagram commutes.
The commutativity of the second diagram follows by analogous conclusions.
Furthermore the following diagram commutes

I ⊗ (I ⊗ I) (I ⊗ I)⊗ I� α I ⊗ (I ⊗ I)-α

I ⊗ I

1⊗ρ
@

@
@@R

ρ
�

�
��	

I ⊗ I

ρ⊗1
@

@
@@R

1⊗λ
�

�
��	

I

ρ
@

@
@@R

ρ
�

�
��	

Here the left hand triangle commutes because of the property shown before, the right hand
triangle is given through the axiom. Finally the lower square commutes, since ρ is a natural
transformation. In particular we get ρ(1 ⊗ ρ) = ρ(1 ⊗ λ). Since ρ is an isomorphism and
I ⊗ - ∼= IdC, it follows ρ = λ. �

Problem 11.1. For morphisms f : I −→ M and g : I −→ N in a monoidal category C we
define (f ⊗ 1 : N −→M ⊗N) := (f ⊗ 1I)ρ(I)

−1 and (1⊗ g : M −→M ⊗N) := (1⊗ g)λ(I)−1.
Show that the diagram

N M ⊗N-
f ⊗ 1

I I-f

?

g

?

1⊗ g

commutes.

Definition 11.6. Let (C,⊗) and (D,⊗) be monoidal categories. A functor

F : C −→ D

together with a natural transformation

ξ(M,N) : F(M)⊗F(N) −→ F(M ⊗N)

and a morphism

ξ0 : ID −→ F(IC)

is called weakly monoidal, if the following diagrams commute:

(F(M)⊗F(N))⊗F(P ) F(M ⊗N)⊗F(P )-ξ⊗1 F((M ⊗N)⊗ P )-ξ

?

α

?

F(α)

F(M)⊗ (F(N)⊗F(P )) F(M)⊗F(N ⊗ P )-1⊗ξ F(M ⊗ (N ⊗ P ))-ξ

I ⊗F(M) F(I)⊗F(M)-ξ0⊗1 F(I ⊗M)-ξ

F(M)

F(λ)

H
HHH

HHHj
λ

�
���

����
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F(M)⊗ I F(M)⊗F(I)-1⊗ξ0 F(M ⊗ I)-ξ

F(M).

F(ρ)

HHH
HHHHj

ρ

��
������

In addition if ξ and ξ0 are isomorphisms then the functor is called monoidal. The functor is
called strict monoidal, if ξ and ξ0 are identity morphisms.
A natural transformation ζ : F −→ F ′ between weakly monoidal functors is called monoidal,
if the diagrams

F(I)
ξ0���*

I

F ′(I)
ξ′0
HHHj ?

ζ

F(M)⊗F(N) F(M ⊗N)-ξ

?

ζ

?

ζ⊗ζ

F ′(M)⊗F ′(N) F ′(M ⊗N)-
ξ′

commute.

In monoidal categories one can generalize notions like algebra and coalgebra. For this purpose
we define

Definition 11.7. Let C be a monoidal category. An algebra or a monoid in C is an object
A together with a multiplication ∇ : A⊗ A −→ A, that is associative:

A⊗ A⊗ A A⊗ A-id⊗∇

?

∇⊗id

?

∇

A⊗ A A-
∇

and a unit element η : I −→ A, for which the following diagram commutes

I ⊗ A ∼= A ∼= A⊗ I A⊗ A-id⊗η

?

η⊗id

?

∇

A⊗ A A.-
∇

id

HH
HHH

HHHHj

Let A and B algebras in C. A morphism of algebras f : A −→ B is a morphism in C, such
that the following diagrams commute:

A⊗ A B ⊗B-f⊗f

?

∇A

?

∇B

A B-
f

and
I

A

ηA

�
�

�
���

B

ηB

A
A
A
AAU
-f
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Remark 11.8. Obviously the composition of two morphisms of algebras is again a morphism
of algebras. Also the identity morphism is a morphism of algebras. Thus we obtain the
category Alg(C) of algebras in C.

Definition 11.9. A coalgebra or a comonoid in a monoidal category C is an object C together
with a comultiplication ∆ : C −→ C ⊗ C, that is coassociative:

C C ⊗ C-∆

?

∆

?

∆⊗id

C ⊗ C C ⊗ C ⊗ C-
id⊗∆

and a counit ε : C −→ I, for which the diagram

C C ⊗ C-∆

?

∆

?

id⊗ε

C ⊗ C I ⊗ C ∼= C ∼= C ⊗ I-
ε⊗id

id

HHH
HHH

HHHj

commutes.
Let C and D be coalgebras. A morphism of coalgebras f : C −→ D is a morphism in C, such
that

C D-f

?

∆C

?

∆D

C ⊗ C D ⊗D-
f⊗f

and
C D-f

I

εC

A
A
A
AAU

εD

�
�

�
���

commute.

Remark 11.10. Obviously the composition of two morphisms of coalgebras is again a mor-
phism of coalgebras. Also the identity morphism is a morphism of coalgebras. Thus we
obtain the category Coalg(C) of coalgebras in C.
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12. Bialgebras and Hopf Algebras

12.1. Bialgebras.

Definition 12.1. (1) A bialgebra (B,∇, η,∆, ε) consists of an algebra (B,∇, η) and a coal-
gebra (B,∆, ε) such that the diagrams

B ⊗B B ⊗B ⊗B ⊗B-∆⊗∆

1⊗τ⊗1

H
HHH

HHHj

?

∇

B B ⊗B-∆

B ⊗B ⊗B ⊗B

?

∇⊗∇

and

K

B

η

�
�

�
���

η⊗η
A
A
A
AAU

B B ⊗B-∆

B ⊗B B-∇

K

ε⊗ε
A
A
A
AAU

ε

�
�

�
���

K K-id

B

η

A
A
A
AAU

ε

�
�
�
���

commute, i.e. ∆ and ε are homomorphisms of algebras resp. ∇ and η are homomorphisms
of coalgebras.
(2) Given bialgebras A and B. A map f : A −→ B is called a homomorphism of bialgebras if
it is a homomorphism of algebras and a homomorphism of coalgebras.
(3) The category of bialgebras is denoted by K- Bialg.

Problem 12.1. (1) Let (B,∇, η) be an algebra and (B,∆, ε) be a coalgebra. The following
are equivalent:

a) (B,∇, η,∆, ε) is a bialgebra.
b) ∆ : B −→ B ⊗B and ε : B −→ K are homomorphisms of K-algebras.
c) ∇ : B ⊗B −→ B and η : K −→ B are homomorphisms of K-coalgebras.

(2) Let B be a finite dimensional bialgebra over field K. Show that the dual space B∗ is a
bialgebra.

One of the most important properties of bialgebras B is that the tensor product over K of
two B-modules or two B-comodules is again a B-module.

Proposition 12.2. (1) Let B be a bialgebra. Let M and N be left B-modules. Then
M ⊗K N is a B-module by the map

B ⊗M ⊗N ∆⊗1−→ B ⊗B ⊗M ⊗N 1⊗τ⊗1−→ B ⊗M ⊗B ⊗N µ⊗µ−→M ⊗N.

(2) Let B be a bialgebra. Let M and N be left B-comodules. Then M ⊗K N is a B-
comodule by the map

M ⊗N δ⊗δ−→ B ⊗M ⊗B ⊗N 1⊗τ⊗1−→ B ⊗B ⊗M ⊗N ∇⊗1−→ B ⊗M ⊗N.

(3) K is a B-module by the map B ⊗K ∼= B
ε−→ K.

(4) K is a B-comodule by the map K η−→ B ∼= B ⊗K.
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Proof. We give a diagrammatic proof for (1). The associativity law is given by

B ⊗B ⊗M ⊗N B ⊗B ⊗B ⊗M ⊗N-1⊗∆⊗1⊗1
B ⊗B ⊗M ⊗B ⊗N-1⊗1⊗τ⊗1

B ⊗M ⊗N-1⊗µ⊗µ

B ⊗B ⊗B ⊗B ⊗M ⊗N B ⊗B ⊗B ⊗M ⊗B ⊗N-1⊗1⊗1⊗τ⊗1
B ⊗B ⊗M ⊗N-1⊗1⊗µ⊗µ

B ⊗B ⊗B ⊗B ⊗M ⊗N B ⊗B ⊗M ⊗B ⊗B ⊗N-
1⊗1⊗τ(B⊗B,M)⊗1

B ⊗M ⊗B ⊗N-1⊗µ⊗1⊗µ

B ⊗M ⊗N B ⊗B ⊗M ⊗N-∆⊗1⊗1
B ⊗M ⊗B ⊗N-1⊗τ⊗1

M ⊗N-µ⊗µ?

∇⊗1⊗1

?

∆⊗1⊗1⊗1⊗1

?

∆⊗1⊗1⊗1⊗1

?

∆⊗1⊗1

?

1⊗τ⊗1⊗1⊗1

?

1⊗τ(B,B⊗M)⊗1⊗1

?

1⊗τ⊗1

?

∇⊗∇⊗1⊗1

?

∇⊗1⊗∇⊗1

?

µ⊗µ

The unit law is the commutativity of

M ⊗N ∼= K⊗M ⊗N B ⊗M ⊗N-η⊗1⊗1

K⊗K⊗M ⊗N B ⊗B ⊗M ⊗N-η⊗η⊗1⊗1

M ⊗N ∼= K⊗M ⊗K⊗N B ⊗M ⊗B ⊗N-η⊗1⊗η⊗1

?

∼=

?

1⊗τ⊗1

?

∆⊗1⊗1

?

1⊗τ⊗1

?

µ⊗µ

?

=

M ⊗N

1

XXXXXXXXXXXXXz

The corresponding properties for comodules follows from the dualized diagrams. The module
and comodule properties of K are easily checked. �

Problem 12.2. (1) Let B be a bialgebra and MB be the category of right B- modules.
Show thatMB is a monoidal category.
(2) Let B a bialgebra and MB be the category of right B- comodules. Show that MB is a
monoidal category.

Definition 12.3. (1) Let (B,∇, η,∆, ε) be a bialgebra. Let A be a left B-module with
structure map µ : B⊗A −→ A. Let furthermore (A,∇A, ηA) be an algebra such that ∇A and
ηA are homomorphisms of B-modules. Then (A,∇A, ηA, µ) is called a B-module algebra.
(2) Let (B,∇, η,∆, ε) be a bialgebra. Let C be a left B-module with structure map µ : B⊗C
−→ C. Let furthermore (C,∆C , εC) be a coalgebra such that ∆C and εC are homomorphisms
of B-modules. Then (C,∆C , εC , µ) is called a B-module coalgebra.
(3) Let (B,∇, η,∆, ε) be a bialgebra. Let A be a left B-comodule with structure map
δ : A −→ B ⊗ A. Let furthermore (A,∇A, ηA) be an algebra such that ∇A and ηA are
homomorphisms of B-comodules. Then (A,∇A, ηA, δ) is called a B-comodule algebra.
(4) Let (B,∇, η,∆, ε) be a bialgebra. Let C be a left B-comodule with structure map
δ : C −→ B ⊗ C. Let furthermore (C,∆C , εC) be a coalgebra such that ∆C and εC are
homomorphisms of B-comodules. Then (C,∆C , εC , δ) is called a B-comodule coalgebra.

Remark 12.4. If (C,∆C , εC) is a K-coalgebra and (C, µ) is a B-module, then (C,∆C , εC , µ)
is a B-module coalgebra iff µ is a homomorphism of K-coalgebras.
If (A,∇A, ηA) is a K-algebra and (A, δ) is a B-comodule, then (A,∇A, ηA, δ) is a B-comodule
algebra iff δ is a homomorphism of K-algebras.



94 Advanced Algebra – Pareigis

Similar statements for module algebras or comodule coalgebras do not hold.

Problem 12.3. (1) Let B be a bialgebra. Describe what an algebra A and a coalgebra C
are in the monoidal categoryMB (in the sense of section 11).
(2) Let B be a bialgebra. Describe what an algebra A and a coalgebra C are in the monoidal
categoryMB (in the sense of section 11).

Remark 12.5. The notions of a bialgebra, a comodule algebra, and a Hopf algebra cannot
be generalized in the usual way to an arbitrary monoidal category, since we need the mul-
tiplication on the tensor product of two algebras. To define this we need the commutation,
exchange morphism, or flip of two tensor factors. Such exchange morphisms are known under
the name of symmetry or quasisymmetry (braiding). They will be discussed later on.

12.2. Hopf Algebras. The difference between a monoid and a group lies in the existence
of an additional map S : G 3 g 7→ g−1 ∈ G for a group G that allows forming inverses. This
map satisfies the equation S(g)g = 1 or in a diagrammatic form

G {1}-ε G-1

?

∆

G×G G×G-S×id

6
mult

We want to carry this property over to bialgebras B instead of monoids. An “inverse map”
shall be a morphism S : B −→ B with a similar property. This will be called a Hopf algebra.

Definition 12.6. A left Hopf algebra H is a bialgebra H together with a left antipode S : H
−→ H, i.e. a K-module homomorphism S such that the following diagram commutes:

H K-ε
H-η

?

∆

H ⊗H H ⊗H-S⊗id

6
∇

Symmetrically we define a right Hopf algebra H. A Hopf algebra is a left and right Hopf
algebra. The map S is called a (left, right, two-sided) antipode.

Using the Sweedler notation (2.20) the commutative diagram above can also be expressed
by the equation ∑

S(a(1))a(2) = ηε(a)

for all a ∈ H. Observe that we do not require that S : H −→ H is an algebra homomorphism.

Problem 12.4. (1) Let H be a bialgebra and S ∈ Hom(H,H). Then S is an antipode for H
(and H is a Hopf algebra) iff S is a two sided inverse for id in the algebra (Hom(H,H), ∗, ηε)
(see 2.21). In particular S is uniquely determined.
(2) Let H be a Hopf algebra. Then S is an antihomomorphism of algebras and coalgebras
i.e. S “inverts the order of the multiplication and the comultiplication”.
(3) Let H and K be Hopf algebras and let f : H −→ K be a homomorphism of bialgebras.
Then fSH = SKf , i.e. f is compatible with the antipode.

Definition 12.7. Because of Problem 12.4 (3) every homomorphism of bialgebras between
Hopf algebras is compatible with the antipodes. So we define a homomorphism of Hopf
algebras to be a homomorphism of bialgebras. The category of Hopf algebras will be denoted
by K- Hopf.
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Proposition 12.8. Let H be a bialgebra with an algebra generating set X. Let S : H −→ Hop

be an algebra homomorphism such that
∑
S(x(1))x(2) = ηε(x) for all x ∈ X. Then S is a

left antipode of H.

Proof. Assume a, b ∈ H such that
∑
S(a(1))a(2) = ηε(a) and

∑
S(b(1))b(2) = ηε(b). Then∑

S((ab)(1))(ab)(2) =
∑
S(a(1)b(1))a(2)b(2) =

∑
S(b(1))S(a(1))a(2)b(2)

=
∑
S(b(1))ηε(a)b(2) = ηε(a)ηε(b) = ηε(ab).

Since every element of H is a finite sum of finite products of elements in X, for which the
equality holds, this equality extends to all of H by induction. �

Example 12.9. (1) Let V be a vector space and T (V ) the tensor algebra over V . We have
seen in Problem 2.2 that T (V ) is a bialgebra and that V generates T (V ) as an algebra.
Define S : V −→ T (V )op by S(v) := −v for all v ∈ V . By the universal property of the
tensor algebra this map extends to an algebra homomorphism S : T (V ) −→ T (V )op. Since
∆(v) = v ⊗ 1 + 1 ⊗ v we have

∑
S(v(1))v(2) = ∇(S ⊗ 1)∆(v) = −v + v = 0 = ηε(v) for all

v ∈ V , hence T (V ) is a Hopf algebra by the preceding proposition.
(2) Let V be a vector space and S(V ) the symmetric algebra over V (that is commutative).
We have seen in Problem 2.3 that S(V ) is a bialgebra and that V generates S(V ) as an
algebra. Define S : V −→ S(V ) by S(v) := −v for all v ∈ V . S extends to an algebra
homomorphism S : S(V ) −→ S(V ). Since ∆(v) = v ⊗ 1 + 1 ⊗ v we have

∑
S(v(1))v(2) =

∇(S ⊗ 1)∆(v) = −v + v = 0 = ηε(v) for all v ∈ V , hence S(V ) is a Hopf algebra by the
preceding proposition.

Example 12.10. (Group Algebras) For each algebra A we can form the group of units
U(A) := {a ∈ A|∃a−1 ∈ A} with the multiplication of A as composition of the group. Then
U is a covariant functor U : K-Alg −→ Gr. This functor leads to the following universal
problem.
Let G be a group. An algebra KG together with a group homomorphism ι : G −→ U(KG) is
called a (the) group algebra of G, if for every algebra A and for every group homomorphism
f : G −→ U(A) there exists a unique homomorphism of algebras g : KG −→ A such that the
following diagram commutes

G U(KG)-ι

f
@

@
@

@@R
U(A).

?

g

The group algebra KG is (if it exists) unique up to isomorphism. It is generated as an
algebra by the image of G. The map ι : G −→ U(KG) ⊆ KG is injective and the image of G
in KG is a basis.
The group algebra can be constructed as the free vector space KG with basis G and the
algebra structure of KG is given by KG ⊗ KG 3 g ⊗ h 7→ gh ∈ KG and the unit η : K 3
α 7→ αe ∈ KG.
The group algebra KG is a Hopf algebra. The comultiplication is given by the diagram

G KG-ι

f

@
@

@
@@R

KG⊗KG
?

∆
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with f(g) := g⊗g which defines a group homomorphism f : G −→ U(KG⊗KG). The counit
is given by

G KG-ι

f

@
@

@
@@R

K
?

ε

where f(g) = 1 for all g ∈ G. One shows easily by using the universal property, that ∆ is
coassociative and has counit ε. Define an algebra homomorphism S : KG −→ (KG)op by

G KG-ι

f

@
@

@
@@R
(KG)op

?

S

with f(g) := g−1 which is a group homomorphism f : G −→ U((KG)op). Then one shows
with Proposition 12.8 that KG is a Hopf algebra.

Proposition 12.11. The following three monoidal categories are monoidally equivalent

(1) the category MG of G-graded vector spaces MG,
(2) the category of G-families of vector spaces (M)G,
(3) the monoidal category of KG-comodules MKG.

Proof. We only indicate the construction for the equvalence between (1) and (3).
For a G-graded vector space V one constructs the KG-comodule V with the structure map
δ : V −→ V ⊗ KG, δ(v) := v ⊗ g for all v ∈ Vg and for all g ∈ G. Conversely let V, δ : V
−→ V ⊗KG be a KG-comodule. Then one constructs the graded vector space V with graded
(homogenous) components Vg := {v ∈ V |δ(v) = v ⊗ g}. It is easy to verify, that this is an
equivalence of categories.
Since KG is a bialgebra, the category of KG-comodules is a monoidal category by Exercise
12.2 (2). One checks that under the equivalence betweenMG andMKG tensor products are
mapped into corresponding tensor products so that we have a monoidal equivalence. �

Example 12.12. The following is a bialgebra B = K〈x, y〉/I, where I is generated by
x2, xy + yx. The diagonal is ∆(y) = y ⊗ y, ∆(x) = x ⊗ y + 1 ⊗ x and the counit is
ε(y) = 1, ε(x) = 0.

Proposition 12.13. The monoidal category Comp-K of chain complexes over K is monoidally
equivalent to the category of B-comodules MB with B as in the preceding example.

Proof. We use the following construction. A chain complex M is mapped to the B-comodule
M = ⊕i∈NMi with the structure map δ : M −→ M ⊗ B, δ(m) :=

∑
m⊗ yi + ∂i(m)⊗ xyi−1

for all m ∈ Mi and for all i ∈ N resp. δ(m) := m ⊗ 1 for m ∈ M0. Conversely if M, δ : M
−→ M ⊗ B is a B-comodule, then one associates with it the vector spaces Mi := {m ∈
M |∃m′ ∈ M [δ(m) = m ⊗ yi + m′ ⊗ xyi−1} and the linear maps ∂i : Mi −→ Mi−1 with
∂i(m) := m′ for δ(m) = m ⊗ yi + m′ ⊗ xyi−1. One checks that this is an equivalence of
categories. By Exercise 12.5 this is a monoidal equivalence. �

Problem 12.5. (1) Give a detailed proof that MG and MKG are equivalent as monoidal
categories.
(2) Give a detailed proof that Comp-K and MB with B as in the preceding Proposition
12.13 are equivalent categories. Since MB is a monoidal category, the tensor product can
be transported to Comp-K. Describe the tensor product in the category Comp-B.
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You may use the following arguments:
Let m ∈M ∈MB. Since yi, xyi form a basis of B we have δ(m) =

∑
imi⊗yi+

∑
im

′
i⊗xyi.

Apply (δ⊗ 1)δ = (1⊗∆)δ to this equation and compare coefficients then δ(mi) = mi⊗ yi +
m′
i−1⊗xyi−1, δ(m′

i) = m′
i⊗ yi. Hence for each mi ∈Mi there is exactly one ∂(mi) ∈Mi−1,

so that
δ(mi) = mi ⊗ yi + ∂(mi)⊗ xyi−1, δ(m′

i) = m′
i ⊗ yi.

Apply furthermore (ε⊗1)δ(m) = m then you getm =
∑
mi withmi ∈Mi, soM =

⊕
i∈NMi.

Thus define ∂ : Mi −→ Mi−1 by the above equation. Furthermore one has ∂2 = 0. The
converse construction can be found in the proof of the proposition.
(3) A cochain complex over K has the form

M = (M0 ∂0−→M1 ∂1−→M2 ∂2−→ . . .)

with ∂i+1∂i = 0. Show that the category K-Cocomp of cochain complexes is equivalent to
BM, where B is chosen as in Example 12.12.
(4) Show that the bialgebra B from Example 12.12 is not a Hopf algebra.
(5) Find a bialgebra B′ such that the category of complexes . . . −→M1 −→M0 −→M1 −→M2

−→ . . . andMB′ are monoidally equivalent. Show that B′ is a Hopf algebra.

The example KG of a Hopf algebra gives rise to the definition of particular elements in
arbitrary Hopf algebras, that share certain properties with elements of a group. We will
use and study these elements later on in the course on Non Commutative Geometry and
Quantum Groups.

Definition 12.14. Let H be a Hopf algebra. An element g ∈ H, g 6= 0 is called a group-like
element if

∆(g) = g ⊗ g.

Observe that ε(g) = 1 for each group-like element g in a Hopf algebra H. In fact we have
g = ∇(ε⊗ 1)∆(g) = ε(g)g 6= 0 hence ε(g) = 1. If the base ring is not a field then one adds
this property to the definition of a group-like element.

Problem 12.6. (1) Let K be a field. Show that an element x ∈ KG satisfies ∆(x) = x⊗ x
and ε(x) = 1 if and only if x = g ∈ G.
(2) Show that the group-like elements of a Hopf algebra form a group under multiplication
of the Hopf algebra.

Example 12.15. (Universal Enveloping Algebras) A Lie algebra consists of a vector
space g together with a (linear) multiplication g ⊗ g 3 x ⊗ y 7→ [x, y] ∈ g such that the
following laws hold:

[x, y] = −[y, x],
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

A homomorphism of Lie algebras f : g −→ h is a linear map f such that f([x, y]) =
[f(x), f(y)]. Thus Lie algebras form a category K- Lie.
An important example is the Lie algebra associated with an associative algebra (with unit).
If A is an algebra then the vector space A with the Lie multiplication

[x, y] := xy − yx
is a Lie algebra denoted by AL. This construction of a Lie algebra defines a covariant functor
-L : K-Alg −→ K- Lie. This functor leads to the following universal problem.
Let g be a Lie algebra. An algebra U(g) together with a Lie algebra homomorphism ι : g
−→ U(g)L is called a (the) universal enveloping algebra of g, if for every algebra A and
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for every Lie algebra homomorphism f : g −→ AL there exists a unique homomorphism of
algebras g : U(g) −→ A such that the following diagram commutes

g U(g)L-ι

f
@

@
@

@@R

AL.
?

g

The universal enveloping algebra U(g) is (if it exists) unique up to isomorphism. It is
generated as an algebra by the image of g.
The universal enveloping algebra can be constructed as U(g) = T (g)/(x⊗ y− y⊗ x− [x, y])
where T (g) = K⊕ g⊕ g⊗ g . . . is the tensor algebra. The map ι : g −→ U(g)L is injective.
The universal enveloping algebra U(g) is a Hopf algebra. The comultiplication is given by
the diagram

g U(g)-ι

f

@
@

@
@@R

U(g)⊗ U(g)
?

∆

with f(x) := x⊗1+1⊗x which defines a Lie algebra homomorphism f : g −→ (U(g)⊗U(g))L.
The counit is given by

g U(g)-ι

f

@
@

@
@@R

K
?

ε

with f(x) = 0 for all x ∈ g. One shows easily by using the universal property, that ∆ is
coassociative and has counit ε. Define an algebra homomorphism S : U(g) −→ (U(g))op by

g U(g)-ι

f

@
@

@
@@R
(U(g))op

?

S

with f(x) := −x which is a Lie algebra homomorphism f : g −→ (U(g)op)L. Then one shows
with Proposition 12.8 that U(g) is a Hopf algebra.
(Observe, that the meaning of U in this example and the previous example (group of units,
universal enveloping algebra) is totally different, in the first case U can be applied to an
algebra and gives a group, in the second case U can be applied to a Lie algebra and gives an
algebra.)

The preceding example of a Hopf algebra gives rise to the definition of particular elements
in arbitrary Hopf algebras, that share certain properties with elements of a Lie algebra.
We will use and study these elements later on in the course on Non Commutative Geometry
and Quantum Groups.

Definition 12.16. Let H be a Hopf algebra. An element x ∈ H is called a primitive element
if

∆(x) = x⊗ 1 + 1⊗ x.
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Let g ∈ H be a group-like element. An element x ∈ H is called a skew primitive or g-
primitive element if

∆(x) = x⊗ 1 + g ⊗ x.
Problem 12.7. Show that the set of primitive elements P (H) = {x ∈ H|∆(x) = x⊗1+1⊗x}
of a Hopf algebra H is a Lie subalgebra of HL.

Proposition 12.17. Let H be a Hopf algebra with antipode S. The following are equivalent:
(1) S2 =id.
(2)

∑
S(a(2))a(1) = ηε(a) for all a ∈ H.

(3)
∑
a(2)S(a(1)) = ηε(a) for all a ∈ H.

Proof. Let S2 =id. Then∑
S(a(2))a(1) = S2(

∑
S(a(2))a(1)) = S(

∑
S(a(1))S

2(a(2)))
= S(

∑
S(a(1))a(2)) = S(ηε(a)) = ηε(a)

by using Problem 12.4.
Conversely assume that (2) holds. Then

S ∗ S2(a) =
∑
S(a(1)S

2(a(2)) = S(
∑
S(a(2))a(1)

= S(ηε(a)) = ηε(a).

Thus S2 and id are inverses of S in the convolution algebra Hom(H,H), hence S2 = id.
Analogously one shows that (1) and (3) are equivalent. �

Corollary 12.18. If H is a commutative Hopf algebra or a cocommutative Hopf algebra with
antipode S, then S2 =id.

Remark 12.19. Kaplansky: Ten conjectures on Hopf algebras
In a set of lecture notes on bialgebras based on a course given at Chicago university in 1973,
made public in 1975, I. Kaplansky formulated ten conjectures on Hopf algebras that have
been the aim of intensive research.

(1) If C is a Hopf subalgebra of the Hopf algebra B then B is a free left C-module.
(Yes, if H is finite dimensional [Nichols-Zoeller]; No for infinite dimensional Hopf

algebras [Oberst-Schneider]; B : C is not necessarily faithfully flat [Schauenburg])
(2) Call a coalgebra C admissible if it admits an algebra structure making it a Hopf

algebra. The conjecture states that C is admissible if and only if every finite subset
of C lies in a finite-dimensional admissible subcoalgebra.

(Remarks.
(a) Both implications seem hard.
(b) There is a corresponding conjecture where “Hopf algebra” is replaced by “bial-

gebra”.
(c) There is a dual conjecture for locally finite algebras.)
(No results known.)

(3) A Hopf algebra of characteristic 0 has no non-zero central nilpotent elements.
(First counter example given by [Schmidt-Samoa]. If H is unimodular and not

semisimple, e.g. a Drinfel’d double of a not semisimple finite dimensional Hopf alge-
bra, then the integral Λ satisfies Λ 6= 0, Λ2 = ε(Λ)Λ = 0 sinceD(H) is not semisimple,
and aΛ = ε(a)Λ = Λε(a) = Λa since D(H) is unimodular [Sommerhäuser].)

(4) (Nichols). Let x be an element in a Hopf algebra H with antipode S. Assume that
for any a in H we have ∑

bixS(ci) = ε(a)x

where ∆a =
∑
bi ⊗ ci. Conjecture: x is in the center of H.
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(Yes, since ax =
∑
a(1)xε(a(2)) =

∑
a(1)xS(a(2))a(3)) =

∑
ε(a(1))xa(2) = xa.)

In the remaining six conjectures H is a finite-dimensional Hopf algebra over an
algebraically closed field.

(5) If H is semisimple on either side (i.e. either H or the dual H∗ is semisimple as an
algebra) the square of the antipode is the identity.

(Yes if char(K) = 0 [Larson-Radford], yes if char(K) is large [Sommerhäuser])
(6) The size of the matrices occurring in any full matrix constituent of H divides the

dimension of H.
(Yes if Hopf algebra is defined over Z [Larson]; in general not known; work by

[Montgomery-Witherspoon], [Zhu], [Gelaki])
(7) If H is semisimple on both sides the characteristic does not divide the dimension.

(Larson-Radford)
(8) If the dimension of H is prime then H is commutative and cocommutative.

(Yes in characteristic 0 [Zhu: 1994])
Remark. Kac, Larson, and Sweedler have partial results on 5 – 8.
(Was also proved by [Kac])
In the two final conjectures assume that the characteristic does not divide the

dimension of H.
(9) The dimension of the radical is the same on both sides.

(Counterexample by [Nichols]; counterexample in Frobenius-Lusztig kernel of
Uq(sl(2)) [Schneider])

(10) There are only a finite number (up to isomorphism) of Hopf algebras of a given
dimension.

(Yes for semisimple, cosemisimple Hopf algebras: Stefan 1997)
(Counterexamples: [Andruskiewitsch, Schneider], [Beattie, others] 1997)
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13. Quickies in Advanced Algebra

I. Allgemeine Modultheorie.

(1) Sei R ein Ring. Dann ist RR ein R-Links-Modul.

(2) Sei M eine abelsche Gruppe und End(M) der Endomorphismenring von M .
Dann ist M ein End(M)-Modul.

(3) {(1̄, 0̄), (0̄, 1̄)} ist eine Erzeugendenmenge für den Z-Modul Z/(2)× Z/(3).
(4) {(1̄, 1̄)} ist eine Erzeugendenmenge für den Z-Modul Z/(2)× Z/(3).
(5) ZZ/(n) besitzt als Modul keine Basis, d.h. dieser Modul ist nicht frei.

(6) Sei V =
⊕∞

i=0Kbi ein abzählbar unendlich dimensionaler Vektorraum über dem
Körper K. Seien p, q, a, b ∈ Hom(V, V ) definiert durch

p(bi) := b2i,
q(bi) := b2i+1,

a(bi) :=

{
bi/2, wenn i gerade ist, und

0, wenn i ungerade ist.

b(bi) :=

{
bi−1/2, wenn i ungerade ist, und

0, wenn i gerade ist.

Zeige pa+ qb = idV , ap = bq = id, aq = bp = 0.
Zeige, daß für R = EndK(V ) gilt RR = Ra⊕Rb und RR = pR⊕ qR.

(7) Sind {(0, . . . , a, . . . , 0)|a ∈ Kn} und {(a, 0, . . . , 0)|a ∈ Kn} isomorph als Mn(K)-
Moduln?

(8) Zu jedem Modul P gibt es einen Modul Q mit P ⊕Q ∼= Q.

(9) Welche der folgenden Aussagen ist wahr?
(a) P1 ⊕Q = P2 ⊕Q =⇒ P1 = P2?

(b) P1 ⊕Q = P2 ⊕Q =⇒ P1
∼= P2?

(c) P1 ⊕Q ∼= P2 ⊕Q =⇒ P1
∼= P2?

(10) Z/(2)⊕ Z/(6)⊕ Z/(6)⊕ . . . ∼= Z/(6)⊕ Z/(6)⊕ Z/(6)⊕ . . ..
(11) Z/(2)⊕ Z/(4)⊕ Z/(4)⊕ . . . 6∼= Z/(4)⊕ Z/(4)⊕ Z/(4)⊕ . . ..
(12) Man finde zwei abelsche Gruppen P und Q, so daß P isomorph zu einer Unter-

gruppe von Q ist und Q isomorph zu einer Untergruppe von P ist und P 6∼= Q
gilt.

II. Tensorprodukte

(1) In C⊗C C gilt 1⊗ i− i⊗ 1 = 0.
In C⊗R C gilt 1⊗ i− i⊗ 1 6= 0.

(2) Für jeden R-Modul gilt R⊗RM ∼= M .

(3) Sei der Q-Vektorraum V = Qn gegeben.
(a) Bestimme dimR(R⊗Q V ).

(b) Gib explizit einen Isomorphismus R⊗Q V ∼= Rn an.

(4) Sei V ein Q-Vektorraum und W ein R-Vektorraum.
(a) HomR(.RQ, .W ) ∼= W in Q-Mod.

(b) HomQ(.V, .W ) ∼= HomR(.R⊗Q V, .W ).

(c) Sei dimQV < ∞ und dimRW < ∞. Wie kann man verstehen, daß in 4b
links unendliche Matrizen und rechts endliche Matrizen stehen?
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(d) HomQ(.V,HomR(.R, .W ) ∼= HomR(.R⊗Q V, .W ).

(5) Z/(18)⊗Z Z/(30) 6= 0.

(6) m : Z/(18)⊗Z Z/(30) 3 x⊗ y 7→ xy ∈ Z/(6) ist ein Homomorphismus und m ist
bijektiv.

(7) Für Q-Vektorräume V und W gilt V ⊗Z W ∼= V ⊗Q W .

(8) Für jede endliche abelsche Gruppe M gilt Q⊗Z M = 0.

(9) Z/(m)⊗Z Z/(n) ∼= Z/(ggT(m,n)).

(10) Q⊗Z Z/(n) = 0.

(11) HomZ(Q,Z/(n)) = 0.

(12) Gib explizit Isomorphismen an für

Z⊗Z Q ∼= Q,
3Z⊗Z Q ∼= Q.

Zeige, daß das Diagramm kommutiert:

Q Q-
3·

3Z⊗Z Q Z⊗Z Q-

?

∼=
?

∼=

(13) Der Homomorphismus 2Z⊗Z Z/(2) −→ Z⊗Z Z/(2) ist der Nullhomomorphismus,
beide Moduln sind aber von Null verschieden.

III. Projektive Moduln

(1) Bestimme die Dual-Basis von R2 im Sinne der Vorlesung.

(2) Zeige, daß die Spur eines Homomorphismus f : V −→ V gegeben ist durch

EndK(V ) ∼= V ⊗ V ∗ ev−→ K.

(3) Bestimme die Dual-Basis von R×SR× 0 ⊆ R× S.

(4) Kn ist ein projektiver Mn(K)-Modul.

(5) Sei R := K ×K mit einem Körper K.
(a) Zeige: P := {(a, 0)|a ∈ K} ist ein endlich erzeugter projektiver R-Modul.

(b) Sind die R-Moduln P und Q := {(0, a)|a ∈ K} isomorph?

(c) Man finde eine Dual-Basis für P .

(6) Zeige für R := Mn(K), daß P = Kn endlich erzeugt projektiv ist, und finde eine
Dual-Basis.

(7) Zu jedem projektiven Modul P gibt es einen freien Modul F mit P ⊕ F ∼= F .

IV. Kategorien und Funktoren

(1) In R-Mod gilt:
f : M −→ N Monomorphismus ⇐⇒ f injektiver Homomorphismus.

(2) (a) Wenn f : M −→ N surjektiv ist, dann ist HomR(f, P ) : HomR(N,P )
−→ HomR(M,P ) injektiv.

(b) Z −→ Z/(n) induziert eine injektive Abbildung

HomZ(Z/(n),M) −→ HomZ(Z.M) ∼= M.

Warum kann man HomZ(Z/(n),M) mit {x ∈ M |nx = 0} ⊆ M identi-
fizieren?
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(c) Tn(M) := {x ∈M |nx = 0} ist ein Funktor Ab −→ Ab.

(d) Die Einbettung Tn(M) −→M ist ein funktorieller Homomorphismus.

(3) In R-Mod gilt:
f : M −→ N Epimorphismus ⇐⇒ f surjektiv.

(4) Wenn F ein kovarianter darstellbarer Funktor ist und f : M −→ N ein Monomor-
phismus ist, dann ist F(f) : F(M) −→ F(N) ebenfalls ein Monomorphismus.

(5) Der Funktor F : M 7→ Z/(n)⊗Z M ist nicht darstellbar.

(6) Der Funktor F : V 7→ Qn ⊗Q V ist darstellbar.

(7) Der Funktor Tn : Ab −→ Ab mit Tn(M) := {x ∈M |nx = 0} ist darstellbar.

(8) Jeder additive Funktor F : R-Mod −→ S-Mod erhält endliche direkte Summen,
d.h. F (M ⊕N) ∼= F (M)⊕ F (N).

V. Morita-Äquivalenz

(1) Zeige, daß (K ×K)-Mod nicht äquivalent zu K-Mod ist.

(2) Sei K ein Körper, B := Mn(K), KPB := Kn die Menge der Zeilenvektoren, BQK

die Menge der Spaltenvektoren. Finde f : P ⊗B Q −→ K und g : Q⊗K P −→ B,
so daß (K,B, P,Q, f, g) einen Morita- Kontext bildet. Ist dieser Morita-Kontext
strikt?

(3) Zeige R-Mod 6∼= C-Mod.

(4) Bestimme das Bild der Abbildungen f und g im kanonischen Morita-Kontext
(A,B, P,Q, f, g) für

(a) A := Z/(6) und P := Z/(2),
(b) A := Z/(4) und P := Z/(4)⊕ Z/(2),
(c) A := Z/(6) und P := Z/(6)⊕ Z/(2).

VI. Halbeinfache Moduln

(1) Finde alle einfachen Moduln über K, Z, K[x].

(2) Finde alle einfachen Moduln über C[x], M2(K), Q[x]/(x2).

(3) Finde alle einfachen Moduln über(
K K
0 K

)
.

(4) Stelle EndK[x](K[x]/(x)⊕K[x]/(x− 1)) als Ring von Matrizen dar.

VII. Radikal und Sockel

(1) Radikal und Sockel endlich erzeugter abelscher Gruppen. Bestimme
(a) Rad(ZZ/(p)), Soc(ZZ/(p)).
(b) Rad(Z/(pn)), Soc(Z/(pn)).
(c) Rad(Z/(pn)⊕ Z/(pm)), Soc(Z/(pn)⊕ Z/(pm)).

(d) Für welche n ∈ N ist Rad(ZZ/(n)) = 0?

(2) Bestimme Radikal und Sockel der abelschen Gruppen
(a) Z,

(b) Q,

(c) Q/Z.

VIII. Lokale Ringe

(1) Sei R ein lokaler Ring. Dann ist R/m ein Schiefkörper.
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(2) Der Ring der formalen Potenzreihen K[[x]] ist ein lokaler Ring.

(3) Der Polynomring K[x] ist kein lokaler Ring.

IX. Lokalization

(1) S := 2Z \ {0} ist multiplikativ abgeschlossen. S−1Z $ Q.

(2) (a) Wenn S ⊆ T multiplikativ abgeschlossene Mengen sind, dann wird dadurch
ein Homomorphismus ψ : S−1M −→ T−1M induziert.

(b) Finde eine hinreichende Bedingung dafür, daß ψ injektiv ist.

(c) Für S := Z \ (p) und T := Z \ {0} beschreibe man den Homomorphismus
ψ.

(d) Für S ⊂ T zeige man S−1T−1M = T−1S−1M = T−1M .

(e) Wenn S, T multiplikativ abgeschlossen sind, dann ist auch S ∩ T multip-
likativ abgeschlossen. Wie drückt sich das für (S ∩ T )−1M aus?

(f) Sei T := (Z \ (2)) ∩ (Z \ (3)). Bestimme T−1Z.

(g) Ist Z/(6) −→ T−1(Z/(6)) injektiv? surjektiv?

XII. Bialgebras and Hopf algebras

(1) Let H be a bialgebra and A be an H-left-module algebra. On A ⊗ H define a
multiplication

(a⊗ h)(a′ ⊗ h′) := a(h(1) · a′)⊗ h(2)h
′.

Show that this defines a structure of an algebra on A⊗H. This algebra is usually
denoted by A#H and the elements are denoted by a#h := a⊗ h.

(2) Let A be a G-Galois extension field of the base field K. Define an homomorphism
ϕ : A#KG −→ EndK(A) by ϕ(a#g)(b) := ag(b). Show that ϕ is a homomorphism
of algebras.

(3) Let G := C2 be the cyclic group with two elements., A := C, and K := R. Show
that ϕ : C#RC2 −→ EndR(C) is an isomorphism of algebras.


