DECOMPOSITION AND SIMULATION OF SEQUENTIAL DYNAMICAL
SYSTEMS

REINHARD LAUBENBACHER AND BODO PAREIGIS

ABSTRACT. Sequential dynamical systems have been developed as a basis for a theory of
computer simulation. This paper contains a generalization of this concept. The notion of
morphism of sequential dynamical systems is introduced, formalizing the concept of simulat-
ing one system by another. Several examples of morphisms are given. Using the morphism
concept, it is shown that every sequential dynamical system decomposes uniquely into a
product of indecomposable systems.

INTRODUCTION

Computer simulation has become an important tool in the study of complex natural and
human-made systems, from the biochemical network underlying cell metabolism to road
traffic systems in our cities. A variety of simulation tools are available, ranging from discrete
event simulations and differential-equations-based simulations, to stochastic simulations, and
various hybrids of these.

Much insight has been gained into the structure as well as the dynamic behavior of complex
systems through the use of simulations, and they provide an important basis for hypothesis
generation, which may determine experimental setups. But simulation is by and large still
an art form, with little theoretical guidance to its design, and mostly ad hoc methods for
the analysis of the resulting output. Comparison of different simulations of the same system
is difficult, as is the comparison of implementations of the same simulation on different plat-
forms, especially of large-scale simulations. Many of the problems associated with simulation
approaches require powerful scientific tools, however, as well as a rigorous methodology.

There exists a scattered collection of results and techniques that can be considered part of
a newly emerging simulation science. An important contribution is the theory of sequential
dynamical systems (SDS), a mathematical abstraction of a large class of computer simulations
[2, 3, 4]. SDS theory is intended as a mathematical foundation for computer simulations that
are representable as discrete dynamical systems. Theorems about SDS provide analysis tools
for existing simulations and guidance for the design of new ones. Simulation practice has
provided the inspiration for the definition of SDS and for the search for theorems about them.
A fully developed SDS theory promises to provide answers to many theoretical questions

Date: June 20, 2002.

2000 Mathematics Subject Classification. Primary: 37B99, 68Q65, 93A30; Secondary: 18B20, 37B19,
68RO1.

This paper was written while the second author was visiting the Physical Science Laboratory of New
Mexico State University (NMSU), Las Cruces, in 2001. He wishes to thank the Laboratory and all colleagues
for their support and hospitality. The work of the first author was partially supported by funds from a
partnership initiative between NMSU and Los Alamos National Laboratory.

1



2 REINHARD LAUBENBACHER AND BODO PAREIGIS

about simulations. To the extent that the theory has been used in practice this promise has
been fulfilled. In developing simulation science it is important, however, that the theory be
guided by a close connection to and intimate knowledge of simulation practice, just as good
simulations require intimate knowledge of the systems to be simulated.

Most systems of interest, whether biological, social, or technical, are too large to be simulated
accurately. Even if such simulations can be run on a computer, the output is very difficult
to analyze. Thus, the question arises how to replace a large system, or large simulation,
by a smaller one, and how to relate their dynamics and properties. Such a replacement
should come in the form of a “mapping” of some sort between SDS, which carries structural
information. We will provide a theoretical framework for this question by defining the notion
of a morphism of SDS. Morphisms will be closed under composition, and lead therefore to a
category of SDS. Based on this framework we will investigate the notion of a morphism in this
SDS category as a suitable tool for the simulation of one SDS by another. If such morphisms
are indeed the correct way of relating SDS simulations, then a variety of modifications of
simulations can be expressed as mathematical constructions, an important step toward the
development of mathematical principles for simulation design.

As to the mathematical side of this theory we want to study the dynamical behavior of certain
discrete dynamical systems encoded in the structure of the state space of the associated global
update function of an SDS. The introduction of permissible maps or morphisms between SDS
allows us to observe the effect of structural changes of an SDS on its dynamical behavior.
The concept of morphism and category of SDS and other tools used in different categories
will help us to eventually develop a mathematical structure theory of SDS and be able to
fine tune the dynamic behavior of an SDS. Our approach uses tools from and brings new
results to graph theory, discrete mathematics, and discrete dynamical systems theory. The
categorical tools used in our approach help us to ask the right questions to understand the
relationship between structure and behavior of SDS.

In this paper we describe a more general concept of SDS, and will call the “classical” concept
a permutation SDS (PSDS). For the convenience of the reader we recall the PSDS concept.

Let k= {0,1}. A permutation sequential dynamical system F on the set k™ of binary strings
of length n can be thought of as a function

f k" — k",
constructed from the following data:

(1) a finite graph F on n vertices,

(2) a family of “local” update functions f, : k" — k™, one for each vertex a of F, which
changes only the coordinate corresponding to a, and computes the binary state of
vertex a. They are furthermore assumed to be symmetric in their inputs. These
functions are local in the sense that they only depend on those variables which are
connected to a in F'.

(3) an “update schedule” 7, which specifies an order on the vertices of F', represented by
a permutation w € .S,,.

The function f is then constructed by composing the local functions according to the update
schedule 7, that is,

f:fw(n)o"'ofﬂ(l):kn%kn.
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The study of these systems leads to very interesting mathematical questions, independent
of applications, and motivated [6], in which we began the development of a more general
framework for PSDS. This framework is used in [5] to explore a setup for SDS in which the
graph F'is not explicit in the data. It naturally suggests a definition for the linearization of
a finite system, such as certain types of SDS.

In this paper we generalize the notion of a permutation dynamical system to that of an
SDS. To begin with, we allow the set k of states to be arbitrary, rather than just {0,1}. In
particular, k£ could be a subset of R, e.g. the interval [0,1]. This could lead to the notions
of fuzzy and stochastic SDS. Secondly, we make no restrictions on the local functions f,,
with respect to symmetry. Most importantly, we use more general update schedules which
allow the use of only a subset of all local functions in the construction of the global update
function, as well as arbitrary repetitions of local update functions. This is very useful from
the point of view of applications. For instance, SDS include global functions that simply
permute the entries of a binary string. Such a function cannot be the global update function
of a PSDS. This notion of SDS includes in particular PSDS.

The bulk of the paper is devoted to the study of special simulations of SDS by other SDS
given by certain reasonable maps between these systems which will lead to the construction
of morphisms of SDS, thereby eventually constructing a category SDS. From the point of
view of applications a morphism from an SDS F to another SDS G should be thought of as
a simulation of one system by the other. Two interpretations are of particular interest. A
monomorphism should represent a simulation of G by F, then F is the smaller and more
manageable system, F is a subsystem of G. An epimorphism should represent a simulation
of F by G. Here G is the smaller system, G is a quotient system of F.

In our definition of morphisms we are guided by the desire to have sufficiently many mor-
phisms available so that the category would possess finite products, and so that there should
be sufficiently many isomorphisms to identify systems that should be considered isomorphic.
To determine if two SDS F and G are isomorphic is not trivial in view of the very simple
Example 2.5 (2). But if we know that F and G are isomorphic, then we can pick the easier
looking model to study its dynamic behavior.

Furthermore morphisms should help us to find simpler models of SDS as explained below. A
morphism ¢ : F — G of sequential dynamical systems should have the following properties
in special cases. F should mimic to a certain extent the dynamical structure of G, but it
should be simpler. For a given sequential dynamical system G we look for a simple sequential
dynamical system F and a morphism ¢, that maps a certain state of F into a start state of
G, so that F has the “same” dynamical behavior as G starting at the given state. It would
be nice if we could even give a freely generated sequential dynamical system F with this
property. But that seems to be too complicated at present.

One could also consider the dual situation: for a given sequential dynamical system F
together with a start state find a simple sequential dynamical system G that has the “same”
dynamical behavior as F and find a morphism ¢ : F — G that maps the start state of F
into G and that preserves the dynamical behavior.

Thus we want that a morphism of SDS should induce a morphism between their state spaces
(phase spaces). That is, there should be a functor from this category to the category of
directed graphs. This setup will then help to identify functorially dependent invariants of
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SDS, such as its associated global update function or its state space derived from the update
function. Certain things may not be invariants of SDS such as the occurrence of certain
states e.g. “diagonal states” (z,...,x) in limit cycles of its state space. The result is a
rather complex definition of morphism, and we provide a list of examples motivating each of
the ingredients.

This categorical setting allows a rigorous study of relations between SDS (and, in particular,
of PSDS), in the form of morphisms between them. We show that SDS has products, and
that every SDS can be decomposed uniquely into a finite product of indecomposable SDS.

1. SEQUENTIAL DYNAMICAL SYSTEMS

We first recall a few facts about graphs and permutation sequential dynamical systems.
Let X be a set and let P(X) be its power set. Let Py(X) C P(X) be the subset of all
two-element subsets of X.

Definition 1.1. A (loop free, undirected, finite) graph G = (Vi, Eg) consists of a finite set
Vi of vertices and a subset Eg C Py(X) of edges.

Definition 1.2. Let F' and G be graphs. A graph morphism ¢ : F — G consists of a map
¢ : Vp — Vi such that

V{a,b} € Er : {¢(a), p(b)} € Eg or p(a) = ¢(b),
i.e. edges are either mapped to edges or they are ’collapsed’ to a vertex.
A subgraph F' of a graph G consists of subsets Vr C Vi and Er C Eg. The image of a
graph morphism is a subgraph. A disjoint union of graphs is a graph. Every graph G can be
decomposed into a disjoint union of connected components G';. A connected subgraph of

a graph is always contained in exactly one connected component of the graph. Every graph
morphism maps connected components into connected subgraphs.

Let G be a graph. A I-neighborhood N (a) of a vertex a € Vi is the set
N(a) := {b € Vg|{a,b} € Eg or a = b}.

Throughout the paper we fix a subcategory Z of the category of sets. Let Vg = {aq,...,a,}.
Let (k[a]la € Vi) be a family of sets (objects or “zets”) in Z. The set k[a] will be called the
set of local states at a. Define

"= klay) x ... x kla,) = ] Klal,

the set of (global) states of G. We use the following notation. For a state x € k™ and a
vertex a € Vi we write z[a| for the state of the vertex a or the a-th component of z so that

r = (zf[a1], ..., z[a,)).
In case that all k[a] are equal to a set k, this definition reduces to the usual definition of k™.
A function f: k™ — k™ is called local at a; € Vg if

f(zlal], ..., z[a,]) = (z[a1], ..., z[a;iy], Fi(@[ar],. .., 2[an]), z[air], - - ., 2[an)),

where fi(z[ay],...,z[a,]) € k[a;] depends only on the variables in the 1-neighborhood N (a;)
of the vertex q;.
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Definition 1.3. A permutation sequential dynamical system over the set of states k = {0, 1},
ora PSDS F = (F, (fa), a) consists of

(1) a finite graph F' with n vertices,

(2) a family of local functions (f, : k" — k"|a € Vp, f, local at a), that are symmetric
in the arguments,

(3) and a permutation o = («(1),...,a(n)) = (aq,...,a,) € S, of the set Vi of vertices
of I, called update schedule.

The global update function of a PSDS is the function
f=1fa, 0.0 fa t K" — K"

Definition 1.4. A sequential dynamical system or an SDS', F = (F, (k[a]), (fa), @) consists
of

(1) a finite graph F' with n vertices,

(2) a family of sets (k[a]la € V) in Z,

(3) a family of local functions (f, : k™ — k"‘a € Vg, fu local at a),

(4) and a word o = ar = (ay,...,qa,) € V7 in the Kleene closure of the set of vertices
Ve, called update schedule (i.e. a map a: {1,...,7} — V).

The word « is used to define the global update function of an SDS as the function
f=fa,0...0fq K" — k"

The length of the update schedule oo = («, ..., ) is r. The global update function of an
SDS defines its dynamical behavior, properties of limit cycles, transients, etc..

If we choose k[a] = {0,1}, a a permutation in S, and assume that the f, are symmetric in
the arguments, then we obtain the definition of a permutation sequential dynamical system.

2. MORPHISMS OF SEQUENTIAL DYNAMICAL SYSTEMS

In order to define a morphism of SDS we have to consider the following data of an SDS:
the graph F', the local functions (f,), the word «, and the sets of states (k[a]), all of which
may be changed by maps. For the graph F, the word «, and the sets of states k[a] we shall
introduce maps with certain compatibility requirements. The local functions f, will occur
in commutative diagrams.

Definition 2.1. Let F = (F, (k[a]), (f; : k» — k™), ) (with Vp = {a1,...,a,} and f; = f,,)
and G = (G, (k[b)), (g; : k™ — km),ﬁ) be SDS. Let ¢, : G — F be a graph morphism, and
(ps[b] = k[pg(b)] — E[b]|b € Vi) be a family of maps in the category Z. Then ¢, and the
family (¢4[b]) induce an adjoint map on the state spaces as follows: consider the pairing

E'x Ve 3 (z,0) = (z,a) == z[a] € | kla],
a€Vp
and similarly £™ x Vo — [Jk[b]. Then ¢, : G — F and (p,[b]) induce an adjoint map
©* k™ — E™ with
(1) (0" (2),b) == @s[b]((z, g (b))

ISubsequently, we will use the acronym SDS for plural as well as singular instances.
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or

P (wlarl, s wlan]) = (pslbal (g (01)]), - - - ps[bm] ([0g (b )]))-

Remark 2.2. Let (G, (k[b]), (g; : K™ — k™), B) be an SDS. Let {G;) } be the set of connected
components of G. Let g; : k™ — k™ and g; : k™ — k™ be two local functions for the vertices
a;, a; in different connected components, then g;og; = g;0g¢;, since both maps depend only on
the 1-neighborhoods of a; and a; contained in the disjoint connected components. Similarly
any two products of local functions f; o...o f; all being defined over a connected component
Gy and fj o...o f;, all being defined over a connected component G () commute.

Let F = (F, (kla]), (f; : k" — k"),a) and G = (G, (k[b]), (g; : k™ — k™), 3) be SDS. As
first components of a morphism ¢ : F — G we have already a map of graphs ¢, : G — F
and a family of maps (¢;[b] : k[pg(b)] — k[b]|b € Vi) in Z (together with its adjoint map
©* + k™ — k™). With the following examples we want to motivate the conditions that we
have to impose on maps between words that relate o and f.

We want that morphisms between SDS should preserve the local and global dynamical be-
havior. This implies that morphisms between SDS lead to morphisms between the associated
global update functions. The following diagram should commute:

e ! e
" \ \ "
Em g Em

We use the word @ = («, ..., as) to describe the global update function as f = f,, 0--- fa,
and 3 = (fy,...,0:) for g = g, 0---gs. We want to reduce the above diagram to similar
conditions about the local update functions. The followings examples will show the most
important points that have to be observed for this definition.

Examples 2.3. In the following list of examples we refer to the graphs in Figure 1. We
assume kla] = k[b] = k for all @ € Vg, b € Vi, and ¢4[b] = id for all b € V.

(1) Let ¢, : G; — F be the identity map on the vertices. Let F be defined with the word
a = (abed), and let G be defined with the word 8 = (abed). If we require that the following
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diagrams commute

kn fai kn
” l l ”
L 98i L
then the diagram
kn fa kn fb kn fc kn fd kn
" { " { " { " { " {
km ga km b km Jc km 9d km

commutes, and thus we have a commutative diagram for the global update functions.

(2) Consider the graph morphism ¢, : Gy, — F, given by the inclusion on the vertices. We
use the words o = (abed) and 8 = (abc). Then we are forced to require that the following
diagram commutes.

kn fa k)n fb k)n fc k)n fd kn

@* { @* { @* { @* { @* {
Em Ja Em gb Em ge Em id Em
So we have to assume that the partial diagram concerning f; commutes with the identity

as lower arrow, since go;l(d) = (). Again we have that the diagram for the global update
functions commutes.

(3) Use ¢, : G5 — F, with ¢,(a) = a and ¢4(b) = ¢4(c) = b, and a = (abcd), resp.
f = (abc). Then we have to consider the following diagram:

kn fa k)n fb k)n fc k)n fd kn

1A

Em Ja Em 9c b Em id Em id Em

Observe that there are no vertices being mapped into ¢,d € V(F'), but that the two vertices
b and ¢ in G3 are mapped to b in F. Obviously the order of g, and g. is important. So a
map between the words of the two SDS should not only be compatible with the graph map
but it should also be order preserving in some sense.

(4) Now we consider ¢, : Go — F, resp. @, : G3 — F, sending a to a, b to b, and ¢ to a,
and « = (abed), resp. = (abc). Then we have to consider the following diagram:
kn fa kn fb kn fc kn fd kn

{ 1A

Em 9cGa Em 3 Em id km id Em

Observe that the composition in the lower row gives g,g.g,. In case of the graph G5 this is the
global update function g = g.g,9., since b and c are in different connected components of the
graph, so that g, and ¢g. commute under composition. In the case of the graph G5, however,
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these two local update functions do not commute in general, so that this construction should
not give a morphism in our category, and we have to exclude it. This can be done by looking
at order preserving maps from the subwords on the connected components of G,, resp. G3,
to the word « on the graph F.

Now we fix some notation that we will use in the following definition.

Let 3y denote the subword of 3 whose letters belong to the connected component G;). Let
|3| denote the ordered set of indices {1,..., length of 5} and let || denote the ordered
subset of indices of [ (in |f]).

Observe that the (unordered) set |3| decomposes into a disjoint union of the (unordered)
sets | Byl

Definition 2.4. Let F = (F, (kla]), (f; : k™ — k"), @) (with V& = {a1,...,a,} and f; = f,,)
and G = (G, (k[b)), (g; : k™ — k™), B) (with Vi = {by,...,bn}) be SDS.

A (Z-)morphism of sequential dynamical systems ¢ : (F,(k[a]),(f; : k" — k"),a) —
(G, (k[b)), (g; : k™ — k™), B) consists of

- a graph morphism ¢, : G — F (reverse direction!),
- a family of maps (¢;[b] : k[py(b)] — k[b] | b € Vi, ¢s[b] € Z),
- and a family of order preserving maps

e 1Bwyl — o
for each connected component G of G

such that

-V Vi€ Byl s pg(B5) = agy ), ie. all pgy are compatible with the given graph
morphism ¢,.

- if i € |a| and ;) (i) == (Bj|#w)(j) = i) is the subword of ;) mapped into o; then
the diagram

fa;
k™ k™

" \ \ ®
km L Hﬁ(l)(i) 954 Lm

commutes, where the product H%)(i) gp; is taken in the order of the entries in the

subword P, (i). (If §(;)(7) is the empty word, then the product is assumed to be the
identity map.)

In order to further motivate this definition we give a few examples that show that the
conditions are necessary for our further studies.

Example 2.5. (1) This example shows that two very simple SDS that should be isomorphic,
are indeed isomorphic. Here we use k[a] = k[b] = k and we need the set maps ¢4[b] : k — k.

Let F' = {a} be the one vertex graph. For i € k define the set map p; : k — k to be the
projection of k£ onto the element ¢ € k. Let 7,7 € k with ¢ # j. Let F = (F, (k), (pi = k
— k), (a)) and G = (F, (k), (pj : k — k), (a)). Then F = G.
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We define the isomorphism ¢ : F — G by ¢, =id : {a} — {a}, ¢sla] =7 : k — k where 7
is some bijective map from k to k with 7 (i) = j. Finally let ;) = id. Then ¢ is a morphism
of SDS with inverse ¢ = (id,77",id). In fact we have ¢,(f;) = id(a) = az, 1) and the
diagram

k b k

w*ﬂ\ \ .

k k

Pj

commutes.

(2) Consider the following two SDS F = (F,(k),(f;),a) and G = (F, (k), (g:), ) over
k ={0,1} where Vp = {a,b} and Ep = {{a,b}}. Let

Ja(@1,22) = (22, 72), folzr,22) = (21, 72),

9a(@1, 2) = (T3, 72), g1, T2) = (21,T2)-

The update schedule « is arbitrary. It is not clear if these SDS are isomorphic, in particular
if they give isomorphic state spaces as described in section 3. If we define ¢ : F — G by
@q = id, psla] = 7, @,[b] = id, and () = id then this is an isomorphism since the diagrams

e S

k2 k2 k2 k2
(p*TXid{ {QP*TXid Lp*TXid{ {QP*TXid
g2 % g2 g2 —2 g2

commute.

(3) We determine the set of all morphisms in some very simple cases. Let k[a] = k[b] =k =
{0,1}. We consider 4 SDS all defined on the trivial one point graph {a} and with the trivial
one letter update schedule a. Let

T :=(a,k,id: k — k,a)
T :=(a,k,7:k — k,a)
Po = (a,k,po: k — k,a)
Py = (a,k,p1: k — k,a),

)
)
)

where 7 is the interchange map sending 1 to 0 and 0 to 1, and the p; are the maps in the
preceding example. In order to find isomorphic SDS, we have to find out if the diagram

f

k k
k g k

commutes. If f # g this is only the case for f = py and g = p; (or conversely). Thus we
have that three of the four SDS are nonisomorphic. More generally we have for the number
of morphisms

|MOI"(I,I)| =4 |MOI"(T, T)| =2 |MOY(P0,7D0)| =2 |MOY(P1,7D1)| =2
IMor(Z, T)| =0 |Mor(T,Z)| =2 |Mor(Py,P1)| =2 |Mor(Py,Po)| =2
IMor(Z,Py)| =1 |Mor(Py,Z)| =2 |Mor(T,Py)| =1 |Mor(Py,T)| =0
IMor(Z,Py)| =1 |Mor(P,Z)|=2 |Mor(T,P1)|=1 |Mor(Py,T)|=0.
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(4) We consider now some morphisms that only depend on the choice of the order preserving
maps () but that are defined on the same morphism ¢, of graphs.

Let F' be defined by Vi = {a1, a2} = {u,v} (with u = a1, v = ag) and Er = {{u,v}}, and let
a = (u,v,u). Let k[u] = k[v] = k. At this time we do not fix the local functions f,, f, : k?
— k%. Furthermore let G be defined by Vi = {b,} = {w} and Eg = 0, let k[w] = k, and let
f = (w,w). For G we also do not fix the local function g,, : £ — k. Define a graph morphism
¢g: G — F by g,(w) =u. We also fix ps[w] : &k — k to be the identity. Then ¢* : k* — k
is the projection onto the first component pry, since p*(z[u], z[v]) = z[p4(w)] = z[u]. Both
graphs have only one connected component. Our definitions give ordered sets |a| = {1,2, 3},
81 = {L,2} = |8

For @y : |Bayl — |af or @y = {1,2} — {1,2,3} we have the choice among three “order
preserving maps of ordered multisets” that satisfy the first axiom for morphisms:

w w w w w w
0 ¥ 4 N4
U v U U v U U v U

We want to establish conditions so that these three maps define morphisms of SDS.

Case 1: We have ¢(1)(1) = 1 and ¢(1)(2) = 1. So the following diagrams must commute:

k2 foq:fu k2 fazzfv k2 fa?):fu k-z
pry { \ pry \ pry \ pry
k gﬂ2g[31:ggj k id k id k

Conditions for the local maps so that this becomes a morphism of SDS are f, = id and
2 .
gy, = id.

Case 2: We have ¢(1)(1) = 1 and ¢(1)(2) = 3. So the following diagrams must commute:

k2 foq:fu k2 fazzfv k2 fa?):fu kz
pry { \ pry \ pry \ pry
k gﬁlzgw k id k gﬁlzgw k

Conditions for the local maps so that this becomes a morphism of SDS are f,(z[u],z[v]) =
(9w (@[ul), 2[v]).

Case 3: We have ¢(1)(1) = 3 and ¢(1)(2) = 3. So the following diagrams must commute:
foq:fu facz:fv fozngu

k2 ]{12 ]{)2 k2
pry { \ pry \ pry \ pry

Conditions for the local maps so that this becomes a morphism of SDS are f, = id and
g2 =id.

(5) If k[a] = [0,1] C R is the closed unit interval and k[b] = {0, 3,1}, then any SDS with
state spaces k[a] can be considered as a probabilistic or fuzzy dynamical system, where each
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vertex has states between 0 and 1. Some interesting local update functions f, : kK — k™ are
the ones where the a-th component is the product of all states in a 1-neighborhood of z,. A
discretization of such a system is obtained by taking the identity maps for ¢, and ¢, and as
maps between the states the maps that send 0 to 0, 1 to 1, and all other values to %

Theorem 2.6. The sequential dynamical systems (F, (k[a]), (f.), ) together with the mor-
phisms of SDS form a category SDS.

Proof. The associativity and unit laws are easily checked. So the proof follows from U

Proposition and Definition 2.7. Let
g F=(F (kld), (fr,-. fa) @) = G = (G, (k[B]), (g1, -, 9m) B)

and
w : g = (G7 (k[b])a (gla s 7gm)7ﬁ) —H= (Ha (k[C]), (hh trt hr)afy)
be two morphisms of SDS. Then the composition

Ypop: F—H
s a morphism of SDS, where the composition 1 o ¢ consists of

- the composite of the associated graph morphisms gy, : H — F,
- the family of maps

(2) (¥ 0 @)sld] == ¥s[cl@s[thy(c)] for all c € H,

- and the composite of the corresponding families of order preserving maps 1;(1) vl —18]
and SZ(Z’) : |B(l/)|—>|04|

Proof. The composite of the graph morphisms is obviously again a graph morphism.

Since connected components of the graph H are mapped into connected components of the
graph G, we find a connected component Gy into which the connected component H is

mapped hence we get 1:/;([) . 7w |—|Bwy| so that the order preserving maps can be composed
to

—_— /‘p

B
() : ol = 1Ban] = lal.

The first axiom is easily verified: let H() be a connected component of H. Let j € |y

Then pgthy(7;) = 909(5{/}(1)(]')) = A% dnG) = a@’w(l)(j)-

Now observe that
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which implies (¢ o ¢)* = ¥*p*. So we have to show that the diagram
fay

o ——— s

P P

o [T9s;

Y P

kr H h’Yu kr

commutes. The middle arrow can be decomposed into [], H%)(i) 9s; = 9p. -~ -9, and for

each gs. we get associated diagrams from 1 so that the total diagram

k™ fai Em
@* e
km 961 km . km 954 k;n
UM y* \ UM \ UM
IL H%(z)(l) h"’j IL H%(l)(t) h”j '
k" kT C.. kT k"

commutes. From the considerations we made about the composition of 1;([) and @y it follows
that the product on the lower line is [], HW(!)(Z') h.; by using the fact from Remark 2.2 that

local functions on different connected components commute:

HHhW"'HHh%‘:H H o :H H ha |

L gy () Loy (1) o\ () (1) AN O]
where E(l)(t) . -E(z) (1) is the concatenation of the corresponding subwords. This is a subword
of 7 since v is order preserving and (5,..., 1) is a subword of .
Hence the diagrams
fa;
k™ k™
(Yop)* l l (Yop)*

1 g0 by

commute. 0

Since the composition of morphisms of SDS is defined by composition of certain set maps,
isomorphisms of SDS consists of certain bijective set maps. This is useful to construct or
identify isomorphisms. In fact Example 2.5 (2) was constructed in such a way.

3. STATE SPACES

Any function f : K — k™ defines a finite directed graph with vertex set k" and directed
edges (z, f(z)) for all x € k™, called the state space of f : k™ — k™. A morphism from f : k"
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— k™ to g : K™ — k™ is a commutative diagram

f

Jr—— k"

|

em —2 |m .

In this way every morphism of ’functions’ induces a morphism of the associated state spaces
in the category of directed graphs. So we have a covariant functor from ’functions’ to the
full subcategory S of state spaces in the category of directed graphs.

Let F = (F,(kla]), (f1,-.-, fn),@) be an SDS with update function f, : k™ — k", f, :=
for -+ fan- In this section we show that there is a covariant functor

S:SDS — S,

given by assigning to an SDS the state space of its update function.
Lemma 3.1. A morphism ¢ : F — G of SDS induces a commutative diagram

kni,k.n
w*l lw*
kmi,km R

that is a morphism of the update functions. Furthermore ¢ induces a graph morphism S(p)
between the state space of fo : k™ — k™ and the state space of gg : K™ — k™.

Proof. The diagram

I o ——Jer g
Lp*\ {(p* \(p* \Lp*
jem i) ) 98, jom jom Ty ) 98, Jom

commutes. It remains to show that
g =95 95 =]] H g5, --- 1] H 95,
boay(r Lo

Since the gs, are local functions, the functions g, and gs, commute if their vertices (3; and
B; are in different connected components of G. Hence it suffices to show that

H gﬁj = H ggj Ca H ggj.

Bicbu Bi€py(r) Bi Py (1)
In fact the g’s may be grouped together according to connected components without changing
their product. But this equation holds since the map ¢y : |5z)| — || is order preserving.
The rest of the statement follows trivially. O

Thus ¢ induces a morphism of state spaces
S(p) : S(F) — S(G).

This proves the following theorem.
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Theorem 3.2. Passage to state spaces induces a covariant functor
S :SDS — S.

Observe that this functor extracts and clarifies the dynamic behavior of an SDS.

4. PRODUCTS OF SEQUENTIAL DYNAMICAL SYSTEMS
Theorem 4.1. The category SDS has finite products.

Proof. Let F = (F, (k[a]), (f1,..., fn), ) and G = (G, (k[b]), (g1, - - -, gm), B) be SDS. Define
the product

H = (H, (kl[c]), (hi,..., hpim),7) =F X G
as follows. Let H = FUG be the disjoint union of the graphs F' and G, with vertex set
VrUVg. Observe that the graph components F' and G are disconnected. Define k[c] := k[a]
for any ¢ = a € Vg C V and k[c] := k[b] for any ¢ = b € Vi C V. Now define
R e N o
as follows. For ¢ = a € Vg define h, := f, x id, and for ¢ = b € V5 we set h. := id X g,.
Finally, we define the update schedule as the concatenation of words

v =ap.
Next we define a projection morphism
prg : FxG — G,

and similarly a projection into F. Let prg , : G — F UG be the inclusion, and prg ([b] := id
for all b € Viz. Observe that pr§ : A"*™ = k™ x k™ — k™ is the projection. Finally let
prg() () = (length of a) + j. To verify that in this way we indeed obtain a morphism of
SDS, observe that we have commutative diagrams

o km A L gm ey gom k% km

Prg { { Prg Prg l l Prg

Em id Em Em 9o Em
This shows that the second condition of a morphism is satisfied and that prg is indeed a
morphism of SDS.

idXx gy

It remains to verify the universal property of the product. Suppose we are given an SDS
K = (K, (k[d]), (ka),6) and morphisms ¢ : K — F and ¢ : K — G. We need to show that
there is a unique morphism

w: K —Fxg,
such that prrow = ¢ and prg o w = 9. Define
wg: FUG — K
to be equal to ¢4, resp. 1),, on the component F', resp. G. Define wq[c] := ¢4[a] for

¢ =a € Vg and wg[c] := 1)[b] for ¢ = b € V. Since a connected component of F x G is a
connected component of either F or G the order preserving map W is determined by either

Py or Y.
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Then clearly (pryow), = ¢, and (prgow), = 9,. Furthermore (przow),[a] = pryx [alw,[prs ,(a)] =
wsla] = ¢,la] for all a € Vi and similarly (prg o w)s[b] = 1,[b].

It is clear now that w is a morphism uniquely determined by ¢ and . ([l

Lemma 4.2. Let F = (F, (k[a)), (f.), @) be an SDS. If o; and a1 are in different connected
components of F, then

(Fa (k[a])v (fa)a (&1, ey Qg1 Ay - "ar))

15 1somorphic to F.

Proof. Define ¢ : F — (F, (kla)), (fa), (01, ..., 0ip1, iy ..., 0p)). Use @, = (id : FF — F)
and p,a] = id. Let o; € Fi1y and a;yq € Flg). Then let ¢9)(i) := i+ 1 and ¢u)(i + 1) :=
and ¢ := id otherwise. This is obviously a canonical isomorphism. 0

Thus the update schedule a of any SDS F may be rearranged according to the connected
components of F' and this gives a canonically isomorphic SDS.
Theorem 4.3. (1) An SDS is indecomposable (w.r.t. products) if and only if the under-
lying graph is connected.
(2) Any SDS is uniquely isomorphic to the product of its connected components, and the
connected components are uniquely determined.

Proof. If F is a proper product then the underlying graph F'is not connected. If F' has more
than one connected component, then by the preceding lemma it is canonically isomorphic to
the product of its connected components as constructed above. O

To study morphisms of SDS it suffices to know the morphisms of the form ¢ : F — G where
G is indecomposable or connected. This holds since

Mor(F, Q(I) X ... X Q(r)) = H Mor(F, Q(i)).

5. DECOMPOSITION OF MORPHISMS

Theorem 5.1. Let F = F; X ... x F, with indecomposable components F; and let G be
indecomposable. Let ¢ : F — G be a morphism. Then there is a uniquely determined
component F; and a uniquely determined morphism ¢; : F; — G such that

(p: F—G)=(pipr;: F — F; — G).
Therefore

Mor(F; % ... x F,,G) 2= | JMor(F;, G).
=1

Proof. These assertions follow from the construction of the product and the fact that the
image of a connected graph is connected. O

An indecomposable SDS must be considered in some sense as an autonomous system. So an
SDS may be considered as a parallel system of several connected components. The above
theorem also implies that every morphism ¢ : F — G, where F and G are arbitary SDS,
can be described by a family of morphisms ¢; : F;; — G;, where the F;, are suitable
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indecomposable components of F, and the G; run through all r indecomposable components
of G. So we could write

Y = (8017"'7807")‘
Therefore it is sufficient only to study morphisms between indecomposable SDS.

6. EQUALIZERS

Example 6.1. We want to give an example of a nontrivial equalizer in the category SDS.

This will also give us some examples and show the great variety of morphisms between fairly
small SDS.

Let G := ((b), (k), (9o = idy), 8 = (b, b)) be an SDS on the one vertex graph. The local and
global update function is the identity id : £ — k. Finally the update schedule is a two letter
word (b, b).
Let H := ((b),(k),(hy = 7),7 = (b,b)) be an SDS with local function 7 : k& — k, the
transposition 7(0) = 1,7(1) = 0.
We construct two morphisms @, ¢’ : G — H by

poB)=b B =1, 3(2)=L

(b)) =0b, o'(1)=2, F(2)=2.
Observe that the numbers 1 and 2 are the indices or positions of the letters in the word
(b, b). Furthermore we use p,[b] = ¢,[b] :=id : k — k.

In order to check that these are morphisms we only have to show the second property of
morphisms, namely that the two diagrams

gp=id gpr=id
— —

k k k k
p*=id l l pr=id  pr=id l l p*=id
Ly —9 e g

commute. The first diagram arises from the counterimage of the first letter of 8 = (b, b) con-
sisting of two instances of the letter b, and the second diagram arises from the counterimage
of the second letter of 5 = (b,b) that is empty. Similarly we show for ¢’ that the diagrams

gp=id gp=id
k——k k——k
' =id \ \ o'"=id o'"=id \ \ o'"=id
id hZ=id
k——k k——k

commute.
Let K = ((b), (k), (I, = id), (b)) be an SDS and define a morphism ¢ : K — G by «(b) = b
(reverse direction!) and (1) = 1 = 7(2). Since the diagram

I ly=id k

LV =id { { v*=id
9.

g, =id

k———k
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commutes, ¢ is a morphism and we have morphisms
7
K v . g —’—/> H -
@
We have ¢ = ¢'1 since K has only one element components. We claim that (,:) is an

equalizer of the pair (¢, ¢').

Let F = (F, (kla]), (fz-),a) be an SDS and ¢ : F — G be a morphism such that @i = 1.
We have to show that there is a unique morphism v : F — K such that v = 1. Let
Yy(b) := a € Vp, and let 1;(1) = 7 and 1;(2) = j,le. a; = a = a;. From gy = @' we
get 1%5 = J(E’ and hence i = J(E(l) = J(E’(l) = j. Furthermore we have * = v[b|pr, : k"
— k[a] — k[b], and we have commutative diagrams

fa Jor

kn kn % %
" \ \ " " { { "
=N and p—9

for all @’ #a in F.

Now define v : F — K by v,(b) := a, vs[b] = 1,[b], and v(1) := ¢ = j. This is obviously the
only choice if we want to get . = ). Then we have v* = v[blpr, : k" — k and the diagrams

=g p—9

commute, hence ¢ is the unique morphism such that (v = . So (K, ) is an equalizer.

For the next two remarks we will assume Z = {k,id}.

Remark 6.2. We want to show that, in general, there are no equalizers in the category of
SDS. Let G = (G, (k[b]), (9s), B) and H = (H, (k[c]), (h¢),y) be the following SDS

- Vo :=Aa,b,c,d}, Eq := {{a,b}, {c,d}},
- k[b] := k ={0,1} for all b € V,

- gy :=1id for all b € Vg,

- B:=(a,b,¢,d) = (by, ba, b3, by).

- Vi :={a}, Ep =10,

- k[e] ==k ={0,1} for all ¢ € Vy,

- he:=1id for all ¢ € Vy,

- 7= (a) = (a1).

Let ¢,1 : G — H be two morphisms given by
- @g4(a) = a, Py(a) == c,
- psla] == id =: ¢s]al,
- (1) =1, (1) = 3.

We want to find an equalizer p : &€ — G of these two morphisms (i.e. ¢p = ¥p and (&, p)
universal w.r.t. this property).
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As a test object we use the SDS F = (F, (k[a]), (fa.), «) defined as follows

- Vi :={a,b,d}, Ep := {{a,b},{a,d}},
- kla] ==k ={0,1} for all a € Vp,

- fo:=id for all a € Vp,

- a:=(a,b,d) = (a1, a2, a3).

The following two morphisms o, 7 : F — G should serve as test morphisms. They are given

- 04(a) = 04(c) :==a, g,(b) ==, 0,(d) =d,
7,(¢c) == a, 1,(b) :=d, 1,(d) = b,

<)
—
S
~
I
<
—~
)

id =: 74[a] for all a € Vg,

Then it is easy to see that op = oy and 7 = 7.

Assume that we have an equalizer p: £ — G of ¢ and . Then p, must have the following
images p,(a) = p,(c) =: a (since py, = pyb,), pa(b) =: b, and p,(d) =: d in V. Furthermore
let p(1) =: i1, p(2) =: is, p(3) =: i3, and p(4) =: iy. Then we have iy = p(1) = pp(l) =
p(1) = p(3) = i3. Since p is order preserving on the connected components, we get i; < iy
and iy < 44. Since all of iy, i, 7, map into a connected component of the graph E (they map
into a, b, d resp.) we must have i, and i, comparable in the order of |§|, the update schedule
of £.

The morphisms ¢ and 7 have unique factorizations ¢ = poy and 7 = pry through the
equalizer. Now oy(iy) = 0(2) = 2 and 74 (i4) = 0(4) = 3. Since oy is order preserving we get
19 < 4.
With the same argument for 7 we get iy > 74 a contradiction. Hence there cannot exist an
equalizer for ¢, .
Remark 6.3. In this context and with Z = {k, id, } it might appear asif O = ((a), (), (id), (a))
is an initial object in SDS. This is not the case since this SDS does not admit a morphism
into any SDS with update functions not the identity on the diagonal in k", the diagram

id

k———k

NI
does not commute. To complete our study of products we have, however, the empty product.

Lemma 6.4. The SDS (0,0 =(),0 = (),0 = ()) s a final object in SDS.

Proof. There is a unique morphism of graphs () — F' and the diagram

{x} = {+}

commutes. ]
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7. SIMULATIONS AND THEIR EFFECTS ON STATE SPACES

As we mentioned in the introduction, we consider a morphism ¢ : F — G as a simulation
if ¢ is a monomorphism — then G is simulated by F — or, if ¢ is an epimorphism — then F
is simulated by G. We will only consider those monomorphisms ¢ where ¢, is surjective on
the set of vertices, and the p4[b] are injective. We will call them injective monomorphisms.

Lemma 7.1. If ¢ : F — G 1is an injective monomorphism, then ¢* : k" — k™ is an
mjective map.

Proof. Let ¢*(x1,...,2,) = ¢"(y1,...,Yn). Then
s @s[bm] (2] (b))

s [01](x ]9 (b1)]),

= (slbil(Wleg(01)]); - - - Palbm](y[0g (bm)])) -
Hence, for all i = 1,...,m, we get @s[b;](x[p,(0:)]) = @s[bi](y[ey(bi)]). Since the ¢ [b;] are
injective we get that x[gog(bz)] = y[py(b;)]. Now, ¢, is surjective, so we get (z1,...,2,) =
(yla ) yn) U

Considering epimorphisms, we will only consider those ¢ : F — G, where ¢, is injective on
the set of vertices, and the o4[b] are surjective. We will call them surjective epimorphisms.

Lemma 7.2. If o : F — G s a surjective epimorphism, then ¢* : k™ — k™ is a surjective
map.

Proof. Let (y[bi],...,y[bm]) € k™. Then there is an m-tuple
(= [ g(b1)], - 2[0g(bn)]) € Eliog(b)] X ... X klpg(bm)],

such hat. (ol (00D ool s Gu) = (s en s3], snce he ] e
surjective. Define x[a;] := 2[p,4(b;)] € klai], if gog(b ) = a;, and x[a;] arbitrary if a; ¢ Im(¢p,).
The z[a;] = 2[py(b;)] are well deﬁned since ¢, is injective, so that there is a (z[a1], ..., z[a,]),
such that

)
1)

(@lg (01)]; - s 2oy (bm)]) = (2l2g(B1)]; - -, 2[0g (bm)]).
and thus ¢* is surjective. ([l

Proposition 7.3. Let ¢ : F — G be an injective monomorphism, and let S(p) : S(F)
— 8(G) be the graph morphism of the associated state spaces. Then

(1) S(p) maps each limit cycle of S(F) bijectively onto a limit cycle of S(G);
(2) S(p) is injective on the set of limit cycles;
(3) S(v) maps transients injectively into transients, preserving endpoints.

Proof. The three statements are clear, since S(i) is injective on the set of vertices. U

Proposition 7.4. Let ¢ : F — G be a surjective epimorphism, and let S(p) : S(F) — S(G)
be the graph morphism of the associated state spaces. Then

(1) S(p) maps each limit cycle of length n of S(F) onto a limit cycle of length t of S(G),
where t divides n;
(2) S(p) maps the set of limit cycles of S(F) onto the set of limit cycles of S(G);
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(3) if two nodes of a transient in S(F) of distance n+ 1 are mapped into the same node
of 8(G), then the path between the two nodes in S(F) is mapped onto a limit cycle
of length t in S(G), where t divides n.

Proof. Again, the three statements follow from the fact that S(p) : S(F) — S(G) is surjec-
tive on the set of vertices. O

The two propositions show what kind of information about the dynamical behavior of some
SDS is preserved if it is simulated by another SDS.
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