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UPDATE SCHEDULES OF SEQUENTIAL DYNAMICAL SYSTEMS

REINHARD LAUBENBACHER AND BODO PAREIGIS

Abstract. Sequential dynamical systems have the property, that the updates of states of
individual cells occur sequentially, so that the global update of the system depends on the
order of the individual updates. This order is given by an order on the set of vertices of
the dependency graph. It turns out that only a partial suborder is necessary to describe
the global update. This paper defines and studies this partial order and its influence on the
global update function.

Introduction

The theory of sequential dynamical systems (SDS) was first introduced in [1, 2, 3], with the
goal of providing a mathematical foundation for computer simulations. Such a foundation
will allow a rigorous mathematical analysis of a variety of questions that arise in simulation
practice. Many computer simulations can be represented in terms of sequential dynamical
systems for computational purposes. By design SDS carry more internal structure than, say,
cellular automata. As a result it is possible to prove general results about SDS relating their
structural properties to the dynamics they generate. This represents an important first step
toward an understanding of how local properties of a system affect global dynamics.

In [6] we generalized the notion of a sequential dynamical system, and defined transforma-
tions of SDS. Such transformations are compatible with the internal structure and induce a
transformation of the associated state spaces, that is, are compatible with the dynamics gen-
erated by the systems. One important role such transformations can play is as mathematical
formalizations of a simulation of one SDS by another. Such important practical questions
as how to reduce the dimension of a simulation can be phrased in this way. Transformations
also allow the study of the relationship between structural changes in a simulation to the
resulting changes in the dynamics.

A second role for transformations is in a structure theory of SDS as the first step toward a
classification. For instance, in [6] it was shown that every SDS can be uniquely decomposed
into a product of indecomposable SDS, which can then be studied individually.

Finally, a third role is in comparing SDS with other interesting objects in computer science
used for simulations and as computational devices. This can be done very well in a categorical
framework, and one goal of this research is to develop a good categorical setting for the study
of SDS.

1Keywords: sequential dynamical system, morphism of pographs, poset models of graphs, update
schedules.
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Recall from [6] that a sequential dynamical system is a function

f :
n∏
i=1

ki −→
n∏
i=1

ki,

on strings of length n, with entries in the ith component coming from a specified set ki. We
simply write kn :=

∏n
i=1 ki. This function f : kn −→ kn is obtained from the following data:

(1) a dependency graph F on n vertices;
(2) a collection of local update functions fi : kn −→ kn, i = 1, . . . , n, which change only

the ith coordinate, and whose inputs are controlled by the graph F ,
(3) an update schedule α, consisting of a word in n letters a1, . . . , an from the set of

vertices VF of F .

The function f is the composition of the fi, in the order specified by the update schedule α.
(More details can be found in the next section.)

It was shown in [4] that the graph F is implicit in the rest of the data, using a Galois
correspondence between collections of local functions and graphs, constructed in [5]. Thus,
if expedient, this part of the structure of an SDS may be ignored.

The focus in the present paper is on the update schedule α. Recall that the global update
function of the SDS is generated by composing the local update functions in the order
prescribed by α. Part of the work reported in [2, 3] concerned the extent to which changes
in the update schedule affect the global update function, respectively, the resulting dynamic
structure. (In contrast to [6] and the present paper the update schedule in [2, 3] is taken to
be a permutation of the indices of the nodes, rather than a general finite word in a subset
of those indices.) It was shown that some changes in the update schedule leave the global
update function unchanged. This is similar to a distributed computation in which certain
steps can be carried out in various orders, whereas others need to be done according to a
prescribed schedule so that the end result remains unchanged. We want to find properties of
an update schedule on which the global update function depends and other properties that
can freely be changed without changing the global update function and thus the dynamic
behavior of the whole system.

We show in this paper that this degree of freedom in the update schedule is a very important
aspect of an SDS that deserves to be studied as part of the explicit structure of the SDS.
This leads us to propose a new definition of SDS which incorporates this dichotomy of the
update schedule. We will see in a subsequent paper that such a change leads to a notion of
transformations of SDS with very desirable properties. In particular, we obtain a categorical
framework for SDS that is rich in transformations and structure.

In order to describe and study the ordering of the vertices given by the update schedule we
introduce the notion of a poset model of a graph, an interesting connection between posets
and graphs. Let F be a finite graph (e.g., the dependency graph of an SDS), and let

α : {1, . . . , n} −→ VF

be an update schedule, i.e. a function into the set of vertices of F . Any update schedule
a1, . . . , an of an SDS can be represented as such a function. The key result of this paper is
that there exists a unique poset OF and poset model β : OF −→ VF of the graph F together



UPDATE SCHEDULES OF SEQUENTIAL DYNAMICAL SYSTEMS 3

with a function γ : OF −→ {1, . . . , n}, i.e.

{1, . . . , n} γ←− OF
β−→ VF ,

where γ is invertible and order preserving, such that α = γ−1 ◦β. That is, we can decompose
the update schedule α into a poset model β of the graph F (called pograph) and an update
schedule γ for the pograph β : OF −→ VF .

Surprisingly, it turns out that the pograph β : OF −→ VF completely determines the dynam-
ical behavior of the SDS. Consequently, we can define SDS on a pograph OF −→ VF alone
instead of on a graph F together with an update schedule α.

It will turn out that the definition of morphisms of SDS defined on pographs becomes very
natural and straightforward.

If the map β is bijective, and we view the poset OF as a directed graph via its Hasse diagram,
then β becomes a graph map which induces an acyclic orientation on F . In [7, Prop. 1] it
is shown that there is a one-to-one correspondence between acyclic orientations on a graph
F on n vertices and the set of equivalence classes of permutations on n letters for a certain
equivalence relation. The equivalence relation is generated by making two permutations
equivalent if they differ by transpositions of adjacent elements whose corresponding vertices
are not connected by an edge in F . The SDS defined by Barrett et. al., called permutation
SDS in [6], use an update schedule given by a permutation, that is, every local update
function is used exactly once in the composition that defines the global update function of
the SDS. It was shown in [3] that from an acyclic orientation of F one can construct different
update schedules α, which all produce the same global update function. That is, an acyclic
orientation of F contains enough information to construct the global update function. This
result was used in [3] to derive a sharp upper bound on the number of different global update
functions that can be generated by varying the update schedule, for a fixed graph F and
fixed local update functions.

In the more general setting considered here, the pograph β : OF −→ VF is taking the place
of the acyclic orientation of F . We will show that for a fixed β it does not matter what
choice we make for the corresponding γ in order to study the dynamic behavior. The global
update function is independent of the choice of γ. As a corollary we obtain a one-to-one
correspondence between pographs with m elements on a graph F and equivalence classes
of update schedules {1, . . . ,m} −→ VF . The equivalence relation is generated by setting
two update schedules α and α′ equivalent if they generate the same global update function
fα = fα′ from any family of local update functions fα(i).

1. Sequential dynamical systems and graphs with update schedule.

For the convenience of the reader we repeat the definition of sequential dynamical systems
as used in [6]. We will rephrase that definition under some new points of view. Some of the
basic notions are explained in the following

Remark 1.1. Let X be a set and let P(X) be its power set. Let P2(X) ⊆ P(X) be the
subset of all two-element subsets of X.

A (loop free, undirected) graph F = (VF , EF ) consists of a set VF of vertices and a subset
EF ⊆ P2(VF ) of edges.
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Let F be a graph. A 1-neighborhood N(a) of a vertex a ∈ VF is the set

N(a) := {b ∈ VF
∣∣{a, b} ∈ EF or a = b}.

Let Z be a subcategory of the category of sets. Let (k[a]|a ∈ VF ) be a family of sets in Z,
e.g. finite sets. The set k[a] will be called the set of local states at a. Define

kVF :=
∏
a∈VF

k[a],

the set of (global) states of F . In case VF is finite with r elements we write

kr := k[a1]× . . .× k[ar].

We use the following notation. For a state x ∈ kr and a vertex a ∈ VF we write x[a] for the
state of the vertex a or the a-th component of x so that

x = (x[a]|a ∈ VF ) or x = (x[a1], . . . , x[ar]).

In case that all k[a] are equal to a set k, this definition reduces to the usual definition of kVF

resp. kr.

A function f : kVF −→ kVF is called local at ai ∈ VF if

f(x)[aj] =

{
x[aj], if aj 6= ai,

f i(x), if aj = ai.

where f i(x) = f i
(
(x[a]|a ∈ VF )

)
∈ k[ai] depends only on the states x[a] of those variables a

that are in the 1-neighborhood N(ai) of the vertex ai.

If VF is finite this means the following. A function f : kr −→ kr is local at ai ∈ VF if

f(x[a1], . . . , x[ar]) = (x[a1], . . . , x[ai−1], f i(x[a1], . . . , x[ar]), x[ai+1], . . . , x[ar]),

where f i(x[a1], . . . , x[ar]) ∈ k[ai] depends only on the states x[aj] of those vertices aj that
are in the 1-neighborhood N(ai) of the vertex ai.

One of the fundamental observations is the following easy fact. If a, b ∈ VF such that
{a, b} /∈ EF then fa ◦ fb = fb ◦ fa if fa and fb are local functions.

Definition 1.2. Let F be a graph. A map α : {1, . . . , n} −→ VF is called an update schedule
of length n for F . A pair (F, α) is called a graph with update schedule or a ugraph F .

Definition 1.3. A sequential dynamical system (SDS) 1 on a ugraph F

F =
(
F, (k[a]

∣∣a ∈ VF ), (fa
∣∣a ∈ VF )

)
consists of

(1) a finite ugraph F ,
(2) a family of sets (k[a]|a ∈ VF ) in Z,
(3) a family of local functions (fa : kr −→ kr

∣∣a ∈ VF , fa local at a) in Z.

Remark 1.4. The update schedule α : {1, . . . , n} −→ VF of a ugraph F of an SDS F defines
an associated global update function of the SDS F

fα := fα(1) ◦ . . . ◦ fα(n) : kr −→ kr.

1Subsequently, we will use the acronym SDS for plural as well as singular instances.
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For the moment we consider an update schedule just as an additional structure of the graph
used in the definition of an SDS. We will call the graph F with this (or possibly another)
additional structure on which an SDS is defined the basis of the given SDS. Surprisingly a
map α : {1, . . . , n} −→ VF induces an interesting additional structure on the graph F that
we will subsequently study.

2. Poset models of graphs

In this section we show the relationship between a graph with update schedule and an
associated partially ordered set together with a certain map into the graph which we call a
poset model of F .

Let O be a poset (partially ordered set) with order relation ≤. We define

iC j :⇐⇒
(
i < j and ∀k ∈ O : i ≤ k ≤ j =⇒ i = k or k = j

)
,

i.e., j is an immediate successor of i.

Theorem 2.1. Let F be a ugraph with update schedule α : {1, . . . , n} −→ VF . Then there
are maps

{1, . . . , n} γ←− OF
β−→ VF

with

• a finite poset OF ,
• a bijective order preserving map γ : OF −→ {1, . . . , n} and
• a map β : OF −→ VF

such that

(1) ∀i, j ∈ OF : iC j =⇒ {β(i), β(j)} ∈ EF ,
(2) ∀i, j ∈ OF : {β(i), β(j)} ∈ EF =⇒ i ≤ j ∨ j ≤ i,
(3) α = βγ−1.

Proof. The poset OF is constructed as follows. Define OF := {1, . . . , n} with the following
partial order. Define

i ≺̇ j :⇐⇒ (i ≤ j ∧ {α(i), α(j)} ∈ EF ).

Let i � j be the reflexive and transitive closure of the relation ≺̇.

Then (OF ,�) is a poset since i � j and j � i implies that there are chains i = i1 ≺̇ i2 ≺̇ . . . ≺̇ ir =
j and j = j1 ≺̇ j2 ≺̇ . . . ≺̇ js = i. From this we get i = i1 ≤ i2 ≤ . . . ≤ ir = j and
j = j1 ≤ j2 ≤ . . . ≤ js = i hence i = j.

Furthermore β := α : OF = {1, . . . , n} −→ VF satisfies (1), for let iCj then j is an immediate
successor of i in (OF ,�), so we must have i ≺̇ j since these pairs generate the order on OF .
But that implies {β(i), β(j)} ∈ EF . Assume now that {β(i), β(j)} ∈ EF holds. Since i ≤ j
or j ≤ i in {1, . . . , n} we get i ≺̇ j or j ≺̇ i hence i � j or j � i. So (2) is satisfied.

By construction γ := id : OF −→ {1, . . . , n} is bijective. It is order preserving since i � j
implies that there is a chain i = i1 ≺̇ i2 ≺̇ . . . ≺̇ ir = j. From this we get i = i1 ≤ i2 ≤
. . . ≤ ir = j.

Obviously α = βγ−1. �
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Observe that iC j in OF implies i ≺̇ j, but the converse does not hold in general.

Definition 2.2. Let F be a graph and OF be a poset. Let β : OF −→ VF be a map satisfying
∀i, j ∈ OF :

(1) iC j =⇒ {β(i), β(j)} ∈ EF ,
(2) {β(i), β(j)} ∈ EF =⇒ i ≤ j ∨ j ≤ i

Then β : OF −→ VF is called a poset model of the graph F or a pograph.

Remark 2.3. Theorem 2.1 says that we can construct a pograph (F,OF , β) together with
a bijective order preserving map γ : OF −→ {1, . . . , n} from a ugraph (F, α). Conversely
if we have a pograph (F,OF , β) together with a bijective order preserving map γ : OF
−→ {1, . . . , n} then we get a ugraph with update schedule α := βγ−1.

If β in the definition of a pograph is bijective then this is the same as an acyclic orientation
of the graph F as discussed in [7]. In this case the map β and the order of the poset OF
defines an orientation on each edge of F by condition (2). Since OF is a poset the orientation
on all of F (as it is defined) will be acyclic, i.e. there are no cycles. Condition (1) means
that the order of OF is “generated” by the graph. If α is injective then some of the edges
will be oriented, the orientation of the edges will be transitive, and F with this orientation
will be acyclic . Else it may happen that edges are oriented in both directions.

Example 2.4. An example is α : {1, 2, 3, 4} −→ {a, b, c} = VF where all vertices are con-
nected by an edge and α(1) = α(4) = a, α(2) = b, α(3) = c. Then 1 ≺̇ 2 ≺̇ 3 ≺̇ 4, 1 ≺̇ 3,
and 2 ≺̇ 4, and the edges {a, b} and {a, c} are directed in both directions. Furthermore
OF = {1, 2, 3, 4} as posets, in particular 1 � 4 but 1 ≺̇ 4 does not hold.

Definition 2.5. Let (F,OF , β) be a pograph. A bijective, order preserving map γ : OF
−→ {1, . . . , n} is called an update schedule for (F,OF , β). The pair ((F,OF , β), γ) is called a
pograph with update schedule.

Now Theorem 2.1 says that we can construct a pograph with update schedule out of every
ugraph. Conversely we can construct a ugraph out of every pograph with update schedule
in the obvious way. These two constructions are almost inverses of each other.

Proposition 2.6. Let F = (F,OF , β, γ) and (F,O′F , β′, γ′) be finite pographs with update
schedules γ : OF −→ {1, . . . , n} and γ′ : O′F −→ {1, . . . , n} resp. Assume that βγ−1 = β′γ′−1.
Then there is a unique isomorphism of posets δ : OF −→ O′F such that γ = γ′δ and β = β′δ.

Proof. Obviously δ := γ′−1γ is the only choice for this map and δ satisfies γ = γ′δ and
β = β′δ. We only have to show that δ is order preserving, since the inverse map will also be
order preserving by the symmetry of the situation. Let i, j ∈ OF . Since OF is finite we only
have to show

iC j =⇒ δ(i) ≤ δ(j).

Since iC j implies {β(i), β(j)} ∈ EF we get {β′δ(i), β′δ(j)} ∈ EF hence δ(i) ≤ δ(j)∨ δ(j) ≤
δ(i). Assume that δ(j) ≤ δ(i) holds. Then we have γ(j) = γ′δ(j) ≤ γ′δ(i) = γ(i), a
contradiction to iC j. Thus δ(i) ≤ δ(j). �

So we see that the pograph with update schedule (F,OF , β, γ) constructed from a ugraph
(F, α) by Theorem 2.1 is unique up to an isomorphism (of posets), compatible with the
update schedule and with the pograph map β.
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Definition 2.7. Let (F,OF , β, γ) and (F,O′F , β′, γ′) be finite pographs with update schedule.
A strong isomorphism between these pographs with update schedule is an isomorphism of
posets δ : OF −→ O′F such that γ = γ′δ and β = β′δ.

Observe that for a strong isomorphism we have βγ−1 = β′δγ−1 = β′γ′−1. Obviously strong
isomorphisms define an equivalence relation and the above observations give

Corollary 2.8. The constructions given in Theorem 2.1 and Proposition 2.6 define a bijec-
tion between ugraphs and strong isomorphism classes of pographs with update schedules.

The next proposition relates the notion of pograph with update schedule to the permutation
update schedules used by Barrett et. al. . For a given graph F on n vertices {1, . . . , n} define
an equivalence relation ∼F on the permutations in Sn as follows. Let π, π′ ∈ Sn, denoted
by π = (i1, . . . , in) and π′ = (i′1, . . . , i

′
n). (That is, π(j) = ij, etc.) Then π ∼Y π′ if there is

a k ∈ {1, . . . , n} such that ij = i′j for all j 6= k, k + 1 and there is no edge in F connecting
vertices ik and ik+1. Let ∼F be the equivalence relation generated by this relation. Denote
by Sn/ ∼F the set of equivalence classes. Let AF denote the set of acyclic orientations on
F .

Proposition 2.9. [7, Prop. 1] There is a one-to-one correspondence between AF and Sn/ ∼Y .

The next result shows how the new concepts of poset model and pograph with update
schedule reduce to the case of permutation update schedules used in permutation SDS. Let
IF denote the set of strong isomorphism classes of bijective pographs with update schedule
on F (that is, β is bijective).

Proposition 2.10. There is a one-to-one correspondence between IF and AF , hence a one-
to-one correspondence between the set of strong isomorphism classes of bijective poset models
and Sn/ ∼Y .

Proof. Let β : OF −→ F be a poset model of F , and assume that β is bijective. We define
an acyclic orientation O of F as follows. Let {u, v} be an edge of F . Then u = β(i) and
v = β(j) for some i, j ∈ OF . Since β is a poset model, we have that i ≤ j or j ≤ i. If i ≤ j,
then orient the edge (u, v) from u to v. Since β is onto, every edge of F is oriented in this
way. It is straightforward to see that this orientation is acyclic, since OF is a partial order.

If β′ : O′F −→ F is another poset model of F which is strongly isomorphic to β via an
isomorphism ϕ : OF −→ O′F , then it is clear that β′ induces the same orientation on F .

Conversely, letO be an acyclic orientation of F . ThenO defines a partial order on the vertices
of F , by setting u < v if there is an oriented path in O from u to v. Then id : O −→ F
is a poset model of F . Together with Prop. 1 in [7] this completes the proof of the first
statement. �

As outlined in the introduction, from the point of view of the global update function of an
SDS, there is a certain amount of freedom on the order prescribed by an update schedule.
There are those order relations that need to be kept fixed if the global update function is
not to be changed, and then there are order relations that can be reversed without affecting
the global update function. The previous proposition shows that these two aspects of an
update schedule are neatly separated in a pograph with update schedule, the poset model
β which encodes those order relations that are required, and the update schedule γ which
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contains all choices that are available in the update schedule that do not affect the global
update function.

3. Morphisms of pographs and of ugraphs

In this section we define morphisms of ugraphs and of pographs with update schedules.
The two resulting categories are equivalent. This result will form the basis for a shift from
considering SDS on ugraphs to SDS on pographs. The definition of morphisms of pographs
is very natural, and, as a consequence, the definition of morphisms of SDS on pographs will
be very natural as well.

Definition 3.1. Let F = (F,OF , βF ) and G = (G,OG, βG) be two pographs. A morphism
of pographs ϕ : F −→ G is a pair of morphisms (ϕg, ϕ̃) where

ϕg : F −→ G is a morphism of graphs and
ϕ̃ : OF −→ OG is a morphism of posets

such that the diagram

?

ϕ̃

?

ϕg

OF VF-βF

OG VG-βG

commutes.

The composition of morphisms of pographs is again a morphism of pographs. So we obtain
a category Pograph of pographs.

Next we define morphisms of ugraphs. The following discussion will compare our new def-
inition of a morphism of pographs with the definition we used in the discussion of SDS in
[6]. Let (F, α : {1, . . . ,m} −→ VF ) be a ugraph. For each connected component F(l) of
F let |α(l)| ⊆ {1, . . . ,m} denote the preimage of F(l) under the map α. Consider |α(l)| as
an ordered set, the order being induced by the natural order of {1, . . . ,m}. We also define

|α| :=
⋃̇
|α(l)| with the order induced by the components |α(l)|. Then the identity map id : |α|

−→ {1, . . . , n} is a morphism of posets, but not an isomorphism, since certain pairs may be
unordered in |α| whereas all pairs are ordered in {1, . . . , n}. We say that |α| has a coarser
partial order than {1, . . . , n}.
Observe that |α| is a disjoint union of totally ordered sets, one for each connected component
of F , which is equal to {1, . . . , n} if F is connected.

Definition 3.2. Let (F, αF : {1, . . . ,m} −→ VF ) and (G,αG : {1, . . . , n} −→ VG) be ugraphs.
A morphism of ugraphs ϕ : F −→ G consists of

- a morphism of graphs ϕg : F −→ G and
- a morphism of posets ϕ̃ : |αF | −→ |αG|
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such that

|αF | VF-αF

|αG| VG-αG?

ϕ̃

?

ϕg

commutes. Ugraphs together with these morphisms form a category Ugraph.

This definition is equivalent to what we used in [6]. There we studied a pairs (ϕg, (ϕ̃(l)))
satisfying the condition:

(∗)

- ϕg : F −→ G is a graph morphism,
- the family

ϕ̃(l) : |(αF )(l)| −→ {1, . . . , n}
for each connected component F(l) of F is a family of order preserving maps,

- ∀l ∀j ∈ |(αF )(l)| : ϕg(αF (j)) = αG(ϕ̃(l)(j)), i.e. all ϕ̃(l) are compatible with the
given graph morphism ϕg.

Indeed we have

Proposition 3.3. Let (F, αF : {1, . . . ,m} −→ VF ) and (G,αG : {1, . . . , n} −→ VG) be ugraphs.

(1) Let (ϕg, (ϕ̃(l))) satisfy condition (∗). Then ϕ̃ : |αF | −→ |αG| with ϕ̃(i) := ϕ̃(l)(i) for all
i ∈ |(αF )(l)| is a morphism of posets and ϕ = (ϕg, ϕ̃) is a morphism of ugraphs.

(2) Conversely let ϕ = (ϕg, ϕ̃) be a morphism of ugraphs. Then ϕg together with the family
of maps

ϕ̃(l) : |(αF )(l)| ⊆ |αF |
ϕ̃−→ |αG|

id−→ {1, . . . , n}

satisfy condition (∗).

Proof. (1) Since |αG| has a coarser order than {1, . . . , n} we have to show that ϕ̃ : |αF |
−→ |αG| is order preserving. Let i, j ∈ |αF | be given with i ≤ j. Then by definition of the
partial order on |αF | there is a unique connected component F(l) with αF (i), αF (j) ∈ F(l)

so that i, j ∈ |(αF )(l)|. Thus ϕ̃(l)(i) ≤ ϕ̃(l)(j) and hence ϕ̃(i) ≤ ϕ̃(j) in {1, . . . , n}. Since
ϕg(F(l)) ⊆ G(l′) for a unique connected component of G we get ϕ̃(i), ϕ̃(j) in |(αG)(l′)| hence
ϕ̃(i) ≤ ϕ̃(j) in |(αG)(l′)| and also in |αG|. By the compatibility of ϕ̃(l) with ϕg we get the
commutativity of the square.

(2) Obviously ϕ̃(l) is order preserving and satisfies the compatibility condition of ϕ̃(l) with
ϕg. �

The definition of morphisms of pographs and of ugraphs are very similar. A ugraph, however,
contains the complete information on an update schedule, whereas a pograph contains only
part of this information. The main point is that OF and |αF | are different posets!

Lemma 3.4. Let F = (F, αF : {1, . . . ,m} −→ VF ) and G = (G,αG : {1, . . . , n} −→ VG) be
ugraphs and let ϕ : F −→ G with ϕ = (ϕg, ϕ̃) be a morphism of ugraphs. Let (F,OF , βF : OF
−→ VF , γF : OF −→ {1, . . . ,m}) and (G,OG, βG : OG −→ VG, γG : OG −→ {1, . . . , n}) resp.
be the pographs with update schedule as constructed in Theorem 2.1. Then ϕ induces a
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morphism of pographs such that

{1, . . . ,m} |αF |�id OF�γF VF-βF

{1, . . . , n} |αG|�id OG�γG VG-βG?

ϕ̃

?

ϕ̃

?

ϕg

commutes.

Proof. Since the underlying sets of OF and of |αF | are equal to {1, . . . ,m} and the map γF
is the identity, the left square commutes. The same set theoretic argument shows that the
right square commutes. We have to show that γF and ϕ̃ : OF −→ OG are order preserving.

Let i, j ∈ OF with i ≺̇ j be given. Then i ≤ j in {1, . . . ,m} and {βF (i), βF (j)} ∈ EF . Thus
βF (i) and βF (j) are contained in a common connected component F(l) of F and hence i ≤ j
in |αF |. This shows that γF is order preserving.

Furthermore ϕ̃(i) ≤ ϕ̃(j) in |αG| and in {1, . . . , n}. Since {βGϕ̃(i), βGϕ̃(j)} ∈ EG we get
ϕ̃(i)≺̇ϕ̃(j) in OG. So ϕ̃ : OF −→ OG is also order preserving. �

We have now proved the following

Theorem 3.5. The constructions given in Theorem 2.1 and Lemma 3.4 define a embedding
functor

Q : Ugraph −→ Pograph
by

Q((F, αF : {1, . . . , n} −→ VF )) = (F,OF , βF : OF −→ VF )
Q((ϕg, ϕ̃ : |αF | −→ |αG|)) = (ϕg, ϕ̃ : OF −→ OG).

Remark 3.6. From the point of view of SDS, pographs and their morphisms are useless
since in the course of the construction of the global update function we need the full total
order on the poset. Recall that the local update functions are composed in this total order
to give the global update function. However, we will show that we always may complete the
partial order of O to a linear order.

Now two questions arise in this context. First, is the construction of the global update
function independent of the choice of this total completion of the order? And second, can
the completion of the order be chosen in such a way, that it is compatible with morphisms
of pographs, so that the construction of the global update function defines a functor? In the
end both questions will be answered to the affirmative.

In the following example we will show the following. Given two ugraphs (F, αF ) and (G,αG)
there may be a morphism from the associated pograph (F,OF , βF ) to (G,OG, βG) that does
not arise from a morphism of ugraphs (ϕg, ϕ̃) : (F, αF ) −→ (G,αG). This shows that the
functor Q : Ugraph −→ Pograph is not full. This is almost a counterexample to the second
question. The example seems to show that there can be morphisms of pographs that do not
arise from morphisms of ugraphs. Compare, however, Theorem 3.15.

Example 3.7. We define two ugraphs. Let F = G with VF = {a, b, c} andEF = {{a, b}, {a, c}}.
Let αF : {1, 2, 3} −→ VF be given by αF (1) = a, αF (2) = b, αF (3) = c. Let αG : {1, 2, 3}
−→ VG be given by αG(1) = a, αG(2) = c, αG(3) = b.



UPDATE SCHEDULES OF SEQUENTIAL DYNAMICAL SYSTEMS 11

Then OF = OG = {1, 2, 3} with 1 � 2 and 1 � 3. Furthermore βF (1) = a = βG(1),
βF (2) = b = βG(3), βF (3) = c = βG(2).

Hence (ϕg, ϕ̃) : (F,OF , βF ) −→ (G,OG, βG) with ϕg = id and ϕ̃(1) = 1, ϕ̃(2) = 3, ϕ̃(3) = 2
is a morphism of pographs.

Since both graphs have only one connected component we have |αF | = {1, 2, 3} = |αG| with
the natural total order. Hence ϕ̃ : |αF | −→ |αG| as defined above is not order preserving.

So the morphism (ϕg, ϕ̃) : (F,OF , βF ) −→ (G,OG, βG) of pographs is not induced by any
morphism of ugraphs from (F, αF ) to (G,αG).

If a pograph (F,OF , βF ) has an update schedule γ : OF −→ VF then (F,OF , βF ) ∼= Q((F, βFγ
−1
F )).

So different ugraphs can have isomorphic images under Q. They clearly differ only in their
update schedules. The question if Q is a representative functor, i.e. if for every object
Y ∈ Pograph there is an X ∈ Ugraph with Q(X) ∼= Y , is answered in the following.

We use the following proposition about ordered sets.

Proposition 3.8. Let (O,≤) be a poset and (T ,≤) be a totally ordered set. Let ϕ : (O,≤)
−→ (T ,≤) be a poset map. Then there is a total order ≤′ on O extending ≤ such that
ϕ : (O,≤′) −→ (T ,≤) is a poset map.

Proof. We consider the set of pairs (U,≤U) with U ⊆ O and ≤U a total order on U , that is
an extension of ≤ |U , the order ≤ on O restricted to U , such that ϕ|U : (U,≤U) −→ (T ,≤) is
a poset map. The set S of these pairs is inductively ordered by (U,≤U) v (V,≤V ) iff U ⊆ V
and (≤V )|U =≤U . Thus S has a maximal element (U,≤′) by Zorn’s Lemma.

Assume U 6= O. Let x ∈ O\U . Define Ux := {u ∈ U |ϕ(u) < ϕ(x) or ∃w ∈ U : u ≤′ w ≤ x}.
Define the following relation ≤′′ on U ∪ {x} where u, v ∈ U

u ≤′′ v ⇐⇒ u ≤′ v;
u ≤′′ x ⇐⇒ u ∈ Ux;
x ≤′′ v ⇐⇒ v /∈ Ux;

x ≤′′ x.

It is easy to show that this is an element in S. Reflexivity and symmetry of ≤′′ are clear
from the definition. Furthermore it is clear by definition that this is a total order as soon as
we have proved transitivity. The only important cases for transitivity are u ≤′′ x ∧ x ≤′′ v,
x ≤′′ u ≤′′ v, and u ≤′′ v ≤′′ x. These are easy exercises in the axioms for the new order. So
is the fact that ≤′′ extends ≤.

Then it is clear that ≤′′ is a continuation of ≤′. This is a contradiction to the maximality of
(U,≤′). Hence U = O. �

Corollary 3.9. [8] Let (O,≤) be a poset. Then there is a total order ≤′ on O extending ≤.

Proof. In the theorem take T as the one-element totally ordered set and ϕ the only possible
map. �

Observe that the proof of Proposition 3.8 is non-constructive, but that it has sufficient
constructive ingredients, in particular the construction of U ∪{x} and its order, to define an
algorithm in case the sets of interest (e.g. SDS) are finite.
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Now we return to the discussion of pographs.

Corollary 3.10. Let (F,O, β) be a pograph. Then there exists an update schedule γ : O
−→ {1, . . . , n}.
Corollary 3.11. The embedding functor

Q : Ugraph −→ Pograph

is a representative functor.

Definition 3.12. Let (F, γF : OF −→ {1, . . . ,m}) and (G, γG : OG −→ {1, . . . , n}) be
pographs with update schedules. A morphism of pographs with update schedule consists of

- a morphism of graphs ϕg : F −→ G,
- a morphism of posets ϕ̃ : OF −→ OG

such that

(1) the diagram

OF VF-βF

OG VG-βG?

ϕ̃

?

ϕg

commutes and
(2) for all i, j ∈ OF with βF (i) and βF (j) contained in a common connected component

of F

γF (i) ≤ γF (j) =⇒ γGϕ̃(i) ≤ γGϕ̃(j).

Remark 3.13. It is clear that the composition of two morphisms of pographs with update
schedule is again a morphism of pographs with update schedule. Thus pographs with update
schedule (F, γF ) as objects and their morphisms form a category Upograph.

Theorem 3.14. There is an equivalence between the category of ugraphs and the category
of pographs with update schedule

P : Ugraph ' Upograph.

Proof. The construction given in Theorem 2.1 defines an pograph with update schedule
P((F, αF )) = (F,OF , βF , γF ) for every ugraph (F, αF ). Conversely every pograph (F,OF , βF )
with update schedule γF : OF −→ {1, . . . , n} defines a ugraph P ′((F,OF , βF , γF )) = (F, βFγ

−1
F :

{1, . . . , n} −→ VF ).

Given a morphism (ϕg, ϕ̃) of ugraphs we have seen in Lemma 3.4 that we get a morphism
P((ϕg, ϕ̃)) = (ϕg, ϕ̃) of pographs.

We have to show that condition (2) is satisfied. We have βF := αF and γF := id from the
construction of P . Let i, j ∈ OF be given with βF (i) = αF (i) and βF (j) = αF (j) contained
in a common connected component of F . Assume that i = γF (i) ≤ γF (j) = j in {1, . . . ,m}.
Then ϕ̃(i) ≤ ϕ̃(j) in |αG| hence also in {1, . . . , n}. This means γGϕ̃(i) = ϕ̃(i) ≤ ϕ̃(j) =
γGϕ̃(j) in {1, . . . , n}.
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Given a morphism (ϕg, ϕ̃) : (F,OF , βF , γF ) −→ (G,OG, βG, γG) in Upograph. By the con-
struction of P ′ we have αF = βFγ

−1
F and αG = βGγ

−1
G . Define ϕ̃′ := γGϕ̃γ

−1
F : |αF | −→ |αG|.

Then ϕgαF = ϕgβFγ
−1
F = βGϕ̃γ

−1
F = βGγ

−1
G ϕ̃′ = αGϕ̃

′.

So it remains to show that ϕ̃′ : |αF | −→ |αG| is order preserving. Let i, j ∈ |αF | with i ≤ j
in |αF | be given. Then i ≤ j in {1, . . . ,m}, and αF (i) and αF (j) are in the same connected
component in F . Let i′ := γ−1

F (i) and j′ := γ−1
F (j). Then i′, j′ ∈ OF with βF (i′) and βF (j′)

contained in a common connected component of F . Furthermore we have γF (i′) = i ≤ j =
γF (j) hence γGϕ̃(i′) ≤ γGϕ̃(j′). Obviously αGϕ̃

′(i) = βGγ
−1
G ϕ̃′(i) = βGϕ̃(i′) = ϕgβFγ

−1
F (i) =

ϕgαF (i) and αGϕ̃
′(j) = ϕgαF (j) are contained in a common connected component of G.

Finally we have ϕ̃′(i) = γGϕ̃(i′) ≤ γGϕ̃(j′) = ϕ̃′(j) in {1, . . . , n} since γG is order preserving
so ϕ̃′(i) ≤ ϕ̃′(j) in |αG|.
It is clear that P and P ′ are functors. Furthermore we have P ′P = Id and PP ′ ∼= Id given
by the construction of the strong isomorphism in Proposition 2.6 which is an isomorphism
in Upograph. �

The construction of Corollary 3.10 can be extended to morphisms as follows.

Theorem 3.15. Let (F,OF , βF ) and (G,OG, βG) be pographs and let (ϕg, g̃) be a morphism
of pographs.

Then there exist update schedules γF : OF −→ {1, . . . ,m} and γG : OG −→ {1, . . . , n} and
a morphism of ugraphs (ϕg, ϕ̃) : (F, αF ) −→ (G,αG) that restricts to the given morphism of
pographs (ϕg, g̃).

Proof. This is a direct consequence of Proposition 3.8 and Corollary 3.9. �

4. Sequential Dynamical Systems on pographs

We have proved that every ugraph defines a pograph with update schedule unique up to
strong isomorphism and conversely. Furthermore morphisms of ugraphs turn out to be
special morphisms of pographs. We apply this now to SDS.

Definition 4.1. A sequential dynamical system or an SDS on a pograph F

F =
(
F, (k[a]

∣∣a ∈ VF ), (fa
∣∣a ∈ VF )

)
consists of

(1) a finite pograph F ,
(2) a family of sets (k[a]|a ∈ VF ) in Z,
(3) a family of local functions (fa : kr −→ kr

∣∣a ∈ VF , fa local at a) in Z.

Given an SDS on a pograph and assume that we have an update schedule γ : O −→ {1, . . . , n}
for the pograph. Then we can define a global update function as we did for an SDS over a
ugraph:

fβγ−1 := fβγ−1(1) ◦ . . . ◦ fβγ−1(n) : kr −→ kr.

For an SDS on a pograph without a given update schedule, however, it is not clear how to
construct a global update function. So the following Proposition and its consequences are
surprising and important.
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Proposition 4.2. Let F be a finite sequential dynamical system on a pograph F . Let γ, η :
OF −→ {1, . . . , n} be update schedules. Then

fβγ−1 = fβη−1 .

Proof. For all i ∈ {1, . . . , n} let ai := βγ−1(i) and bi := βη−1(i). We want to show fa1 ◦ . . . ◦
fan = fb1 ◦ . . . ◦ fbn .

For each j there is an i(= γη−1(j)) such that bj = ai and conversely.

Claim: Given j, k ∈ {1, . . . , n} such that k < j and ηγ−1(j) < ηγ−1(k), then fβγ−1(j) ◦
fβγ−1(k) = fβγ−1(k) ◦ fβγ−1(j). Let u := γ−1(j) and v := γ−1(k). Then γ(v) < γ(u) and
η(u) < η(v). Since both maps γ and η are order preserving we get that u 6≤ v and v 6≤ u in
the poset OF hence {β(u), β(v)} /∈ EF . So we get that fβ(u) ◦ fβ(v) = fβ(v) ◦ fβ(u) by Remark
1.1.

Assume now that we have already arranged a reordering of the update function such that

fa1 ◦ . . . ◦ fan = fb1 ◦ . . . ◦ fbj−1
◦ fal ◦ . . . ◦ fam

where the fal , . . . , fam are those factors among the fa1 , . . . , fan that do not occur as factors
fb1 , . . . , fbj−1

and where their product is taken in the same order as in fa1 , . . . , fan .

Let η−1(j) = γ−1(i) and thus bj = ai and fbj = fai . We want to shift the local update
function fbj = fai in the right hand side of the equation towards the left. Given k with
l ≤ k < i then ηγ−1(i) = j < ηγ−1(k) (because fbηγ−1(k)

in the update function fb1 ◦ . . . ◦ fbn
does not occur in the partial product fb1 ◦ . . . ◦ fbj−1

). Thus fbj ◦ fak = fak ◦ fbj . So we can
rearrange the update function to

fa1 ◦ . . . ◦ fan = fb1 ◦ . . . ◦ fbj ◦ fal′ ◦ . . . ◦ fam′ .

By induction this completes the proof. �

Theorem 4.3. Let F be an SDS on a pograph. Then F has a well-defined global update
function fβ := fβγ−1 : kr −→ kr.

Proof. By Corollary 3.10 there is an update schedule γ. By Proposition 4.2 the global update
function is independent of the choice of the update schedule γ. �

In a subsequent paper where we will define and study morphisms of SDS on pographs we
will use this theorem and Theorem 3.15 to prove:

The construction of global update functions of SDS on pographs and its associated state graphs
defines a functor to the category of dynamical systems and to the category of graphs.

Remark 4.4. What we have proved is that any two update schedules of pographs give the
same global update function. Furthermore, the number of different update schedules for a
ugraph giving the same global update function is greater than or equal to the number of
bijective order preserving maps OF −→ {1, . . . , n}.

Actually we can prove more.

Proposition 4.5. Let F be a graph and let α : {1, . . . , n} −→ VF be an update schedule with

canonical decomposition {1, . . . , n} γ←− OF
β−→ VF . If α̃ : {1, . . . , n} −→ VF is an update
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schedule for F that does not factor through β then there is a structure of an SDS on F (in
particular a family of state spaces and a family of local update functions) such that fα 6= fα̃.

We first need the following

Lemma 4.6. Let β : O −→ VF and β̃ : Õ −→ VF be pographs on the same graph F . Assume

there is a bijective order preserving map δ : O −→ Õ such that β̃δ = β. Then δ is an
isomorphism of posets.

Proof. Let i C j in Õ. Then {β̃(i), β̃(j)} ∈ EF . Let u := δ−1(i) and v := δ−1(j). Then

{β(u), β(v)} = {β̃δ(u), β̃δ(v)} = {β̃(i), β̃(j)} ∈ EF , hence u ≤ v or v ≤ u. Since δ is order
preserving we obtain u ≤ v hence δ−1(i) ≤ δ−1(j). Thus δ−1 is order preserving. �

Proof. of Proposition:
Since α 6= α̃ we can consider 3 cases.

Case 1: Let Im(α) 6= Im(α̃). Without loss of generality assume a ∈ Im(α) \ Im(α̃). Then set
fb = id for all b 6= a in VF . Then the global update functions are fα̃ = id and fα = f ra 6= id
for a suitable choice of fa, hence fα 6= fα̃.

Case 2: Let Im(α) = Im(α̃) and assume there is an a ∈ Im(α) such that fα contains r copies
of fa and fα̃ contains s 6= r copies of fa. Again set all fb = id for b 6= a. Then by a suitable
choice of fa we get fα 6= fα̃.

Case 3: Let Im(α) = Im(α̃) and let there be the same number of factors fa in fα resp. fα̃ for
all a ∈ VF . So fα̃ arises from fα by a reordering of the factors. Thus there is a permutation
σ : {1, . . . , n} −→ {1, . . . , n} such that α̃σ = α. We can choose σ on the preimage of each
a ∈ EF to be order preserving, since the orderings of factors fa among each other in the
global update function are irrelevant.

We use the decomposition of α and α̃ into (OF , β, γ = id) and (ÕF , β̃, γ = id) resp. as

constructed in Theorem 2.1. Then σ may be considered as a map σ : OF −→ ÕF . Assume
fα = fα̃ for all choices of families of local update functions (fa). We claim that σ : OF
−→ ÕF is order preserving.

Let a, b ∈ VF with {a, b} ∈ EF . Assume that the subwords of fα and fα̃ consisting of factors
fa and fb are of the form f i1a f

i2
b f

i3
a . . . f

ir
b and f j1a f

j2
b f

j3
a . . . f jsb (with ik, jk > 0 except for

i1, ir, j1, js which may also be zero). We will show further down that there are choices for
fa and fb such that f i1a f

i2
b f

i3
a . . . f

ir
b = f j1a f

j2
b f

j3
a . . . f jsb iff (i1, . . . , ir) = (j1, . . . , js). This is

equivalent to σ being order preserving on the preimage of {a, b} under α. Since we may
choose fc = id for all c 6= a, b, the assumption fα = fα̃ implies that σ is order preserving on
the preimage of {a, b} under α.

Now we show under the given assumptions that σ is order preserving. Let i, j ∈ OF with
i ≺̇ j. Then i ≤ j (as numbers) and {α(i), α(j)} ∈ EF . Define a := α(i) and b := α(j).

Then α̃σ(i) = a and α̃σ(j) = b. Hence σ(i) ≺̇ σ(j) or σ(j) ≺̇ σ(i) in ÕF . If σ(j) ≺̇ σ(i)
holds, then σ is not order preserving on the preimage of {a, b} under α. Hence we have
σ(i) ≺̇ σ(j) and thus σ is order preserving.
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By Lemma 4.6 we find that α̃ factors through β : OF −→ VF . This is a contradiction to
the assumption in the Proposition. So fα 6= fα̃ for some choice of a family of local update
functions (fa).

It remains to show that there are choices for fa and fb such that f i1a f
i2
b f

i3
a . . . f

ir
b = f j1a f

j2
b f

j3
a . . . f jsb

iff (i1, . . . , ir) = (j1, . . . , js). Take k[a] = k[b] = N (or a suitable finite subset thereof). Define

fa(. . . , x[a], . . . , x[b], . . .) =

{
(. . . , p · x[a], . . . , x[b], . . .) if x[a] > x[b],

(. . . , q · x[b], . . . , x[b], . . .) if x[a] ≤ x[b],

where p is the largest prime dividing x[a] and q is the smallest prime not dividing x[b].
Furthermore let

fb(. . . , x[a], . . . , x[b], . . .) =

{
(. . . , x[a], . . . , q · x[a], . . .) if x[a] ≥ x[b],

(. . . , x[a], . . . , p · x[b], . . .) if x[a] < x[b],

where p is the largest prime dividing x[b] and q is the smallest prime not dividing x[a]. Then

f i1a f
i2
b . . . f

ir−1
a f irb (. . . , 1, . . . , 1, . . .) = (. . . , 2ir ·3ir−1 · . . . ·pi2r−1 ·pi1r , . . . , 2ir ·3ir−1 · . . . ·pi2r−1, . . .),

for ik > 0. A similar argument holds for i1 = 0 and/or ir = 0. This proves the claim and
the Proposition. �

Corollary 4.7. The number of bijective order preserving maps OF −→ {1, . . . , n} is a sharp
lower bound for the number of different update schedules for a graph giving the same global
update function.

Let F be a graph. We call two update schedules α, α′ : {1, . . . , n} −→ VF equivalent, iff
for all choices of local state spaces (k[a]|a ∈ VF ) and all choices of local update functions
(fa|a ∈ VF ) on the given graph F the global update functions fα and fα′ are equal.

Corollary 4.8. There is a one-to-one correspondence between equivalence classes of update
schedules of length n and poset models with n elements of the graph F .

5. On the Posets of Pographs

We have seen that the structure of SDS strongly depends on the underlying pographs. In
this section we investigate which posets can occur as posets in pographs.

Definition 5.1. A pograph (F,OF , β) is called rigid, if there is only one bijective map of
posets γ : OF −→ {1, . . . , n}. In other words, a pograph is rigid, if OF has a unique extension
to a total ordering.

An update schedule α : {1, . . . , n} −→ VF of a graph F is called rigid if there is only one
bijective map of posets γ : OF −→ {1, . . . , n}, where OF is induced by α.

Proposition 5.2. α is rigid if and only if OF is totally ordered.

Proof. This follows from the fact that a poset has a unique extension to a total ordering if
and only if it is already totally ordered. See [8, p. 17]. �
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Thus for pographs with totally ordered poset OF we have only one update schedule. The
opposite observation is that a pograph with a discrete poset (no two elements can be com-
pared) has nn update functions β : OF −→ {1, . . . , n}. They all give the same global update
function.

Examples 5.3. (1) A linear graph a1, . . . , an with EF =
{
{ai, ai+1} | i = 1, . . . , n − 1

}
has a rigid update schedule α(i) = ai. An example for such an SDS is a column of
cars on a road a1, . . . , an where each car determines its behavior or its local update
function upon the preceding car. This gives a linear graph and the update schedule
α cannot be changed without the risk of changing the global update function of the
system.

(2) A linear graph with at least three vertices has a nonrigid update schedule. Let a, b, c
be three consecutive vertices in F with edges {a, b} and {b, c}. Consider the rigid
update schedule α with α(i) = a, α(i+ 1) = b, and α(i+ 2) = c. Define new update
schedules α̃ by α̃(j) := α(j) for j 6= i+ 1, i+ 2 and α̃(i+ 1) = c, α̃(i+ 2) = b and α
by α(j) := α(j) for j 6= i, i+ 1, i+ 2, and α(i) = c, α(i+ 1) = a, α(i+ 2) = b. Then
it is easy to see that both update schedules define the same poset O (as constructed
in the proof of Theorem 2.1).

(3) The hypercube F = {(x1, . . . , xn) | xi ∈ {0, 1}} with 2n vertices has a rigid update
schedule α : {1, . . . , 2n} −→ F . It is well known that F is a Hamiltonian graph.
By omitting the last edge in a Hamiltonian path we get a rigid update schedule
α : {1, . . . , 2n} −→ VF .

(4) It is an easy exercise to show that hypercubes of dimension n ≥ 2 have nonrigid
update schedules.

(5) An interesting example of a rigid update schedule is given in Example 2.4.

Now we show that any finite poset O can occur as a poset of a pograph.

Proposition 5.4. 1) Let O be a finite poset. Let V be a set and β : O −→ V be a map such
that iC j implies β(i) 6= β(j) for all i, j ∈ O. Then the Hasse diagram

EF :=
{
{β(i), β(j)} | i, j ∈ O : iC j

}
defines a graph F with vertex set VF = V such that (F,O, β) is a pograph.

2) Let O be a finite poset. Let V be a set and β : O −→ V be a map such that iC j implies
β(i) 6= β(j) for all i, j ∈ O. Then

EF :=
{
{β(i), β(j)} | i, j ∈ O : i < j and β(i) 6= β(j)

}
defines a graph F with vertex set VF = V such that (F,O, β) is a pograph.

3) The graph constructed in 1) over β : O −→ V is the smallest subgraph of the complete
graph on V such that (F,O, β) is a pograph. The graph constructed in 2) over β : O −→ V
is the largest subgraph of the complete graph on V such that (F,O, β) is a pograph.

Proof. 1) We have to check that β : O −→ VF is a pograph. By definition of the graph F we
have for all i, j ∈ O

iC j ⇐⇒ {β(i), β(j)} ∈ EF .

This implies both conditions (1) and (2).
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2) Again we have to check that β : O −→ VF is a pograph. By definition of the graph F we
have for all i, j ∈ O such that β(i) 6= β(j):

{β(i), β(j)} ∈ EF ⇐⇒ i < j ∨ j < i.

This implies also both conditions (1) and (2).

3) Let F be a graph with VF = V and assume that (F,O, β) is a pograph. Let Fmin be
the graph constructed in 1) from the map β. Let {β(i), β(j)} be in Fmin. Then iC j hence
{β(i), β(j)} is an edge in F by axiom (1).

Let Fmax be the graph constructed in 2) from the map β. Let {β(i), β(j)} be in F . Then
i < j (or j < i) by axiom (2). Hence {β(i), β(j)} is an edge in Fmax. �

It is interesting to note that any graph F ′ between Fmin and Fmax as constructed above
(subgraph and supergraph on the same set of vertices) gives also a poset model β : O −→ VF ′
as can be easily checked.
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